Abstract
We present an inference algorithm and connected Monte Carlo based estimation procedures for metric estimation from landmark configurations distributed according to the transition distribution of a Riemannian Brownian motion arising from the Large Deformation Diffeomorphic Metric Mapping (LDDMM) metric. The distribution possesses properties similar to the regular Euclidean normal distribution but its transition density is governed by a high-dimensional PDE with no closed-form solution in the nonlinear case. We show how the density can be numerically approximated by Monte Carlo sampling of conditioned Brownian bridges, and we use this to estimate parameters of the LDDMM kernel and thus the metric structure by maximum likelihood.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allassonnire, S., Amit, Y., Trouve, A.: Towards a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 69(1), 3–29 (2007)
Arnaudon, A., Castro, A.L., Holm, D.D.: Noise and dissipation on coadjoint orbits. JNLS, arXiv:1601.02249 [math-ph, physics: nlin], January 2016
Arnaudon, A., Holm, D.D., Pai, A., Sommer, S.: A stochastic large deformation model for computational anatomy. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 571–582. Springer, Cham (2017). doi:10.1007/978-3-319-59050-9_45
Arnaudon, A., Holm, D.D., Sommer, S.: A geometric framework for stochastic shape analysis. Submitted, arXiv:1703.09971 [cs, math], March 2017
Beg, M.F., Miller, M.I., Trouv, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV 61(2), 139–157 (2005)
Delyon, B., Hu, Y.: Simulation of conditioned diffusion and application to parameter estimation. Stoch. Process. Appl. 116(11), 1660–1675 (2006)
Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56(3), 587–600 (1998)
Fujita, T., Kotani, S.: The Onsager-Machlup function for diffusion processes. J. Math. Kyoto Univ. 22(1), 115–130 (1982)
Holm, D.D.: Variational principles for stochastic fluid dynamics. Proc. Math. Phys. Eng. Sci. 471(2176), 20140963 (2015). The Royal Society
Hsu, E.P.: Stochastic Analysis on Manifolds. American Mathematical Society, Providence (2002)
Joshi, S., Miller, M.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)
Kuhnel, L., Sommer, S.: Computational anatomy in Theano. In: Mathematical Foundations of Computational Anatomy (MFCA) (2017)
Markussen, B.: Large deformation diffeomorphisms with application to optic flow. Comput. Vis. Image Underst. 106(1), 97–105 (2007)
Marsland, S., Shardlow, T.: Langevin equations for landmark image registration with uncertainty. SIAM J. Imaging Sci. 10(2), 782–807 (2017)
Micheli, M.: The differential geometry of landmark shape manifolds: metrics, geodesics, and curvature. Ph.D. thesis, Brown University, Providence, USA (2008)
Papaspiliopoulos, O., Roberts, G.O.: Importance sampling techniques for estimation of diffusion models. In: Statistical Methods for Stochastic Differential Equations. Chapman & Hall/CRC Press (2012)
Sommer, S.: Anisotropic distributions on manifolds: template estimation and most probable paths. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 193–204. Springer, Cham (2015). doi:10.1007/978-3-319-19992-4_15
Sommer, S.: Anisotropically weighted and nonholonomically constrained evolutions on manifolds. Entropy 18(12), 425 (2016)
Sommer, S., Jacobs, H.O.: Reduction by lie group symmetries in diffeomorphic image registration and deformation modelling. Symmetry 7(2), 599–624 (2015)
Sommer, S., Joshi, S.: Brownian bridge simulation and metric estimation on lie groups and homogeneous spaces (2017, in preparation)
Sommer, S., Svane, A.M.: Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. J. Geom. Mech. 9(3), 391–410 (2017)
Stegmann, M.B., Fisker, R., Ersbll, B.K.: Extending and applying active appearance models for automated, high precision segmentation in different image modalities. In: Scandinavian Conference on Image Analysis, pp. 90–97 (2001)
Team, T.T.D.: Theano: a Python framework for fast computation of mathematical expressions. arXiv:1605.02688 [cs], May 2016
Trouve, A.: An infinite dimensional group approach for physics based models in patterns recognition (1995)
Trouve, A., Vialard, F.X.: Shape splines and stochastic shape evolutions: a second order point of view. Q. Appl. Math. 70(2), 219–251 (2012)
Vialard, F.X.: Extension to infinite dimensions of a stochastic second-order model associated with shape splines. Stoch. Process. Appl. 123(6), 2110–2157 (2013)
Acknowledgements
We are grateful for the use of the cardiac ventricle dataset provided by Jens Chr. Nilsson and Bjørn A. Grønning, Danish Research Centre for Magnetic Resonance (DRCMR).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Sommer, S., Arnaudon, A., Kuhnel, L., Joshi, S. (2017). Bridge Simulation and Metric Estimation on Landmark Manifolds. In: Cardoso, M., et al. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics. GRAIL MICGen MFCA 2017 2017 2017. Lecture Notes in Computer Science(), vol 10551. Springer, Cham. https://doi.org/10.1007/978-3-319-67675-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-67675-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67674-6
Online ISBN: 978-3-319-67675-3
eBook Packages: Computer ScienceComputer Science (R0)