Abstract
Despite the rise of multilayer networks and their applications for the real world systems, the problem of link prediction is still one of the toughest to address. In this paper, we investigate the problem of link prediction in the multilayer scientific collaboration network. Our proposed solution alters the classic stacking technique for the supervised link prediction in terms of distribution of the training and testing data according to the structure of a multilayer network with training number of models for each layer to predict link formation in a target network. Experimental results show that our approach has positive effect on the link predictions quality, nevertheless, the influence of non-target layers on the resulting prediction is moderately low.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)
Ahuja, G.: Collaboration networks, structural holes, and innovation: a longitudinal study. Administrative Sci. Q 45(3), 425–455 (2000)
Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM06: Workshop on Link Analysis, Counter-terrorism and Security (2006)
Arenas, A., Danon, L., Diaz-Guilera, A., Gleiser, P.M., Guimera, R.: Community analysis in social networks. Eur. Phys. J. B 38(2), 373–380 (2004)
Cannistraci, C.V., Alanis-Lobato, G., Ravasi, T.: From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks. Sci Rep 3 (2013)
Carrington, P.J., Scott, J., Wasserman, S.: Models and methods in social network analysis, vol. 28. Cambridge University Press (2005)
Džeroski, S., Ženko, B.: Is combining classifiers with stacking better than selecting the best one? Mach Learn 54(3), 255–273 (2004)
Egghe, L., Rousseau, R.: Brs-compactness in networks: theoretical considerations related to cohesion in citation graphs, collaboration networks and the internet. Math Comput Model 37(7–8), 879–899 (2003)
Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explorations Newslett. 7(2), 3–12 (2005)
Guns, R., Rousseau, R.: Recommending research collaborations using link prediction and random forest classifiers. Scientometrics 101(2), 1461–1473 (2014)
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)
Hristova, D., Noulas, A., Brown, C., Musolesi, M., Mascolo, C.: A multilayer approach to multiplexity and link prediction in online geo-social networks. EPJ Data Sci 5(1), 24 (2016)
Kajikawa, Y., Ohno, J., Takeda, Y., Matsushima, K., Komiyama, H.: Creating an academic landscape of sustainability science: an analysis of the citation network. Sustainability Sci. 2(2), 221 (2007)
Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J Association Inf. Sci. Technol. 58(7), 1019–1031 (2007)
Lü, L., Jin, C.H., Zhou, T.: Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 80(4), 046–122 (2009)
Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A Stat. Mech. Appl. 390(6), 1150–1170 (2011)
Lu, Z., Savas, B., Tang, W., Dhillon, I.S.: Supervised link prediction using multiple sources. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 923–928. IEEE (2010)
Meyers, L.: Contact network epidemiology: bond percolation applied to infectious disease prediction and control. Bull. Am. Math. Soc. 44(1), 63–86 (2007)
Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report, Stanford InfoLab (1999)
Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval (1986)
Scellato, S., Noulas, A., Mascolo, C.: Exploiting place features in link prediction on location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1046–1054. ACM (2011)
Wasserman, S., Faust, K.: Social network analysis: methods and applications, vol. 8. Cambridge University Press (1994)
Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B-Condensed Matter Complex Syst. 71(4), 623–630 (2009)
Acknowledgement
This research financially supported by Ministry of Education and Science of the Russian Federation, Agreement #14.578.21.0196 (03.10.2016). Unique Identification RFMEFI57816X0196.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Mbogo, GK., Visheratin, A., Rakitin, S. (2018). Layer-Wise Model Stacking for Link Prediction in Multilayer Networks. Case of Scientific Collaboration Networks. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-72150-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72149-1
Online ISBN: 978-3-319-72150-7
eBook Packages: EngineeringEngineering (R0)