Skip to main content

Bayesian Inference on Hidden Knowledge in High-Throughput Molecular Biology Data

  • Conference paper
PRICAI 2008: Trends in Artificial Intelligence (PRICAI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5351))

Included in the following conference series:

Abstract

Along with the information overload brought about by the Internet in communication, economics, and sociology, high-throughput biology techniques produce vast amount of data, which are usually represented in form of matrices and considered as knowledge networks. A spectral based approach has been proved useful in extracting hidden information within such networks to estimate missing data. In this paper, we propose the use of a simple nonparametric Bayesian model to fully automate this approach and better utilize the available data at each stage of the learning process. Although the algorithm is developed with a general purpose in mind, within the scope of this paper, we evaluate its performance by applying on three different examples from the field of proteomics and genetic networks. The comparison with other general or data-specific methods has shown favor to ours. Systematic tests on synthetic data are also performed, showing the approach’s robustness in handling large percentage of missing data both in term of prediction accuracy and convergence rate. Finally, we describe a procedure to explore the nature of different types of noise containing within investigated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)

    Article  Google Scholar 

  2. Bagnoli, F., Berrones, A., Franci, F.: De gustibus disputandum (forecasting opinions by knowledge networks). Physica A 332, 509–518 (2004)

    Article  MathSciNet  Google Scholar 

  3. Comas, I., Moya, A., Gonzáez-Candelas, F.: Phylogenetic signal and functional categories in Proteobacteria genomes. BMC Evolutionary Biology 7(1), S7 (2007)

    Google Scholar 

  4. Everson, R., Roberts, S.: Inferring the eigenvalues of covariance matrices from limited, noisy data. IEEE Trans Signal Processing 48, 2083–2091 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Frankenstein, Z., Alon, U., Cohen, I.: The immune-body cytokine network defines a social architecture of cell interactions. Biology Direct 1(32), 1–15 (2006)

    Google Scholar 

  6. Gilks, W.R., Audit, B., de Angelis, D., Tsoka, S., Ouzounis, C.A.: Percolation of annotation errors through hierarchically structured protein sequence databases. Math. Biosci. 193(2), 223–234 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Assareh, A., Moradi, M.H., Volkert, L.G.: A hybrid random subspace classifier fusion approach for protein mass spectra classification. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 1–11. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Macchiarulo, A., Nobeli, I., Thornton, J.: Ligand selectivity and competition between enzymes in silico. Nature Biotechnology 22(8), 1039–1045 (2004)

    Article  Google Scholar 

  9. Maslov, S., Zhang, Y.-C.: Extracting Hidden Information from Knowledge Networks. Physical Review Letters 87(24), 1–4 (2001)

    Article  Google Scholar 

  10. Minka, T.: Automatic choice of dimensionality for PCA. Neural Information Processing Systems 13 (2000)

    Google Scholar 

  11. Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., Ishii, S.: A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16), 2088–2096 (2003)

    Article  Google Scholar 

  12. Rajan, J.J., Rayner, P.J.W.: Model order selection for the singular value decomposition and the discrete Karhunen-Loeve transform using a Bayesian approach. IEE Vison, Image and Signal Processing 144, 123–166 (1997)

    Google Scholar 

  13. Smarkets is a Web-based, person-to-person betting exchange for Amazon Products, http://www.midasoracle.org/2008/03/28/smarkets/

  14. Spellman, R., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D., Futcher, B.: Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell 9, 3273–3297 (1998)

    Article  Google Scholar 

  15. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B 61(3), 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)

    Article  Google Scholar 

  17. Wong, D.S.V., Wong, F.K., Wood, G.R.: A multi-stage approach to clustering and imputation of gene expression profiles. Bioinformatics 23(8), 998–1005 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, VA., Koukolíková-Nicola, Z., Bagnoli, F., Lió, P. (2008). Bayesian Inference on Hidden Knowledge in High-Throughput Molecular Biology Data. In: Ho, TB., Zhou, ZH. (eds) PRICAI 2008: Trends in Artificial Intelligence. PRICAI 2008. Lecture Notes in Computer Science(), vol 5351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89197-0_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89197-0_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89196-3

  • Online ISBN: 978-3-540-89197-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics