Skip to main content

A Learning Automata-Based Compression Scheme for Convolutional Neural Network

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 517))

  • 2579 Accesses

Abstract

The convolutional neural network has been proved to be the state-of-the-art technique in image classification problems. In general, the improved recognition accuracy of the CNN is often accompanied by the increase of structure complexity. However, apart from the accuracy issues, computational resources and operating speed need to be considered on some occasions. Therefore, we propose an efficient compression scheme based on learning automata, which are usually used to choose the optimal action as a reinforcement learning method in this paper. Our proposed method can help the trained CNN to delete insignificant convolution kernels according to the actual requirements. According to the results of experiments, the proposed scheduling method can effectively compress the number of convolutional kernels at the expense of losing weak classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 168.79
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lecun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems Curran Associates Inc. pp. 1097–1105 (2012)

    Google Scholar 

  3. Guo, H., et al.: A new learning automata based pruning method to train deep neural networks. IEEE Internet Things J. pp. 99, 1–1 (2017)

    Google Scholar 

  4. Tsetlin, M.L.: Automaton theory and modeling of biological systems. Am. Econ. Rev. 234–244 (1973)

    Google Scholar 

  5. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. Fiber 56(4), 3–7 (2015)

    Google Scholar 

  6. Thathachar, M., Sastry, P.S.: Varieties of learning automata: an overview. IEEE Trans. Syst. Man Cybern. (A Publication of the IEEE Systems Man & Cybernetics Society) 32(6), 711–722 (2002)

    Article  Google Scholar 

  7. Zipser, D., Andersen, R.A.: A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331(6158), 679–684 (1988)

    Article  Google Scholar 

  8. Mostafaei, H., Meybodi, M.R.: Maximizing lifetime of target coverage in wireless sensor networks using learning automata. Wirel. Pers. Commun. 71(2), 1461–1477 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research work is funded by the National Key Research and Development Project of China (2016YFB0801003) and the Sichuan province & university cooperation (Key Program) of science & technology department of Sichuan Province (2018JZ0050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, S., Guo, H., Yang, J., Xu, Z., Li, S. (2020). A Learning Automata-Based Compression Scheme for Convolutional Neural Network. In: Liang, Q., Liu, X., Na, Z., Wang, W., Mu, J., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2018. Lecture Notes in Electrical Engineering, vol 517. Springer, Singapore. https://doi.org/10.1007/978-981-13-6508-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6508-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6507-2

  • Online ISBN: 978-981-13-6508-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics