Empirical Software Engineering (2023) 28:64
https://doi.org/10.1007/510664-023-10303-0

®

Check for
updates

On the spread and evolution of dead methods in Java
desktop applications: an exploratory study

Danilo Caivano' - Pietro Cassieri? - Simone Romano? © . Giuseppe Scanniello?

Accepted: 6 February 2023 / Published online: 14 April 2023
© The Author(s) 2023

Abstract

Background. Dead code is a code smell. It can refer to code blocks, fields, methods, etc. that
are unused and/or unreachable—e.g., if a method is unused and/or unreachable, it is a dead
method. Past research has shown that the presence of dead code in source code harms its
comprehensibility and maintainability. Nevertheless, there is still little empirical evidence
on the spread of this code smell in the source code of commercial and open-source software
applications.

Aims. Our goal is to gather, through an exploratory study, empirical evidence on the
spread and evolution of dead methods in open-source Java desktop applications.

Method. We quantitatively analyzed the commit histories of 23 open-source Java desktop
applications, whose software projects were hosted on GitHub. To investigate the spread and
evolution of dead methods, we focused on dead methods detected at a commit level. The
total number of analyzed commits in our study is 1,587. The perspective of our exploratory
study is that of both practitioners and researchers.

Results. We can summarize the most important take-away results as follows: (i) dead
methods affect open-source Java desktop applications; (ii) dead methods generally survive
for a long time before being “buried” or “revived;” (iii) dead methods that are then revived
tend to survive less, as compared to dead methods that are then buried; (iv) dead methods
are rarely revived; and (v) most dead methods are stillborn, rather than becoming dead later.
Given the exploratory nature of our study, we believe that its results will help researchers to
conduct more resource- and time-demanding research on dead methods and, in general, on
dead code.

Conclusions. We can conclude that developers should carefully handle dead code (and
thus dead methods) since it is harmful, widespread, rarely revived, and survives for a long
time in software applications.

Keywords Code smell - Dead code - Unused code - Exploratory study - Java desktop
applications - Open-source - GitHub

Communicated by: Maria Teresa Baldassarre, Markos Kalinowski

This article belongs to the Topical Collection: Special Issue on International Symposium on Empirical
Software Engineering and Measurement (ESEM)

>4 Simone Romano
siromano @unisa.it

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10303-0&domain=pdf
http://orcid.org/0000-0003-4880-3622
mailto: siromano@unisa.it

64 Page 2 of 28 Empir Software Eng (2023) 28:64

1 Introduction

In the last two decades, the Software Engineering (SE) community has displayed an increas-
ing interest in code smells (also known as bad smells in code) because they are indicators of
potential problems in source code (Wake 2003). A number of catalogs of code smells have
been proposed in the literature (e.g., (Fowler 1999; Wake 2003)). These catalogs charac-
terize and list different code smells, one of them is dead code (also known as unused code
(Wake 2003), unreachable code (Fard and Mesbah 2013), or lava flow (Brown et al. 1998)).
Dead code is defined as unnecessary source code since it is unused and/or unreachable (i.e.,
never executed) (Haas et al. 2020; Mintyla et al. 2003; Wake 2003). This code smell can
refer to code blocks, fields, methods, etc. If a method is unused and/or unreachable, we can
refer to dead code as a dead method.

Different aspects related to code smells have been investigated in the SE research field.
Just to name a few, researchers have investigated the impact of code smells on source
code comprehensibility and maintainability (Hermans and Aivaloglou 2016), the fault- and
change-proneness of smelly classes (Khomh et al. 2009; Palomba et al. 2018), the spread
and evolution of code smells (Chatzigeorgiou and Manakos 2014; Tufano et al. 2017),
and the knowledge and perception of developers about code smells (Palomba et al. 2014;
Yamashita and Moonen 2013). The interest of the SE community in code smells has been
also manifested through the implementation of supporting tools for code-smell detection
(Moha et al. 2010).

The presence of dead code is claimed to harm source code comprehensibility and main-
tainability (Fard and Mesbah 2013; Mintyli et al. 2003). These claims are well-founded
since (Romano 2018; Romano et al. 2016; 2020) have gathered evidence, through a series
of experiments, that the presence of dead code significantly hinders the comprehensibil-
ity of unfamiliar source code and also negatively affects its maintainability. However, little
empirical evidence has been gathered on the spread of dead code in the source code of com-
mercial and open-source software applications —this evidence does not regard Java code.
For example, (Boomsma et al. 2012) reported that, in a subsystem of a commercial web-
based software application written in PHP, the developers removed 30% of the subsystem’s
files because these files were actually dead. On the other hand, (Eder et al. 2012) observed
that, in a commercial web-based software application written in .NET, 25% of methods
were dead.

There is little empirical evidence on the role of dead code during the evolution of soft-
ware applications. In particular, (Eder et al. 2012) reported that, during the maintenance and
evolution of a commercial (.NET) web-based software application, 7.6% of the modifica-
tions affected dead methods. Moreover, 48% of these modifications were unnecessary (e.g.,
because dead methods were removed later).

Summing up, dead code (i) harms source code comprehensibility and maintainability;
(ii) it seems to be widespread in the source code of software applications, despite little
empirical evidence is available; and (iii) the role of dead code during software evolution has
not been adequately studied.

In this paper, we present the results of an exploratory study whose main goal is to
improve the body of knowledge on the spread and evolution of dead code—more specif-

@ Springer

Empir Software Eng (2023) 28:64 Page30f28 64

ically, we focus on dead methods—in open-source Java desktop applications' given that
empirical evidence shows that this code smell hinders source code comprehensibility and
maintainability (Romano et al. 2016; 2020). Our study is the first one to investigate how
developers deal with dead code during software evolution by leveraging the information
available in open-source software repositories—as opposed to Romano et al. (Romano et al.
2020) that investigated how developers deal with dead code by considering the perspective
of developers (i.e., by interviewing them). To gather evidence on the spread and evolution
of dead methods, we analyzed the commit histories of 23 open-source Java desktop appli-
cations. The software projects of these applications were hosted on GitHub. We gathered
information on dead methods at a commit level, for a total of 1,587 commits. To detect dead
methods at a commit level, we used DCF (Romano and Scanniello 2018). It is a prototype
of a supporting tool (simply tool, from here onwards) that is freely available on the web and
represents the state of the art for the detection of dead methods in Java desktop applications.
We can summarize the most important take-away results of our study as follows:

— dead methods affect open-source Java desktop applications;

— dead methods generally survive for a long time, in terms of commits, before being
“buried” (i.e., removed) or “revived” (i.e., used);

— dead methods that are then revived tend to survive less, as compared to dead methods
that are then buried;

— dead methods are rarely revived;

— the majority of dead methods are dead since their creation.

This paper extends our past one (i.e., (Caivano et al. 2021)). Compared to this paper, we
provide the following extensions:

— We add ten open-source Java desktop applications to our past dataset. The data analyses
now take into account the commit histories of 23 Java desktop applications with soft-
ware project hosted on GitHub. This makes the study presented in this paper the largest
one on dead code in terms of studied software applications.

— We extend the presentation and discussion of the results in light of the new data.
We also highlight whether, or not, there are different patterns when passing from the
old dataset (comprising 13 software applications) to the new dataset (comprising 23
software applications).

— We provide further analyses.

— We update the discussion on the related work.

Paper structure In Section 2, we introduce background information as well as related
work. In Section 3, we present the design of our exploratory study, while the obtained
results are shown in Section 4. A discussion of the results, including implications from both
researcher and practitioner perspectives, is provided in Section 5. In this section, we also
highlight possible limitations of our study. Section 6 concludes the paper.

'With desktop applications, we mean both applications based on Graphical User Interface (GUI) frame-
works like Swing or SWT (i.e., GUI-based applications) and applications based on Command Line Interface
(i.e., CLI-based application). Therefore, desktop applications are not libraries, framework, web-based
applications, mobile applications, etc.

@ Springer

64 Page4of28 Empir Software Eng (2023) 28:64

2 Background and Related Work

In this section, we first summarize the research about the detection of dead code, and then
we present empirical studies on dead code.

2.1 Dead Code Detection

Given a given application, we can detect dead code by using dynamic or static code anal-
ysis. In the remainder on this section, we first focus on the detection of dead code by
using dynamic code analysis and than by using static code analysis. We conclude discussing
the differences between the refactoring and optimization perspectives when detecting dead
code.

2.1.1 Dynamic Code Analysis

As far as the use of dynamic code analysis is concerned, (Boomsma et al. 2012) proposed
an approach for detecting dead files in web-based software applications written in PHP. To
determine if a PHP file is dead or not, the approach monitors the execution of a target soft-
ware application in a given time frame. A PHP file is deemed dead if it is not used in that
time frame. Boomsma et al. then applied this approach in a case study consisting of a com-
mercial web-based software application written in PHP. Thanks to the proposed approach,
the developers were able to remove 2,740 dead files in one of the subsystems of the stud-
ied software application. Similarly, (Eder et al. 2012) exploited dynamic code analysis to
detect dead methods in their case study, which consists of a commercial web-based applica-
tion written in .NET, to investigate modifications to dead methods. In particular, the authors
monitored the execution of methods in a given time frame—methods not executed in this
time frame were considered dead. Fard and Mesbah (2013) presented JSNOSE, a code-smell
detection tool for web-based applications with client-side written in JavaScript. JSNOSE
leverages dynamic and static analyses to detect 13 smells, including dead code, in client-
side code. To detect dead code (more specifically, dead statements) JSNOSE counts either
the execution of statements (so using dynamic code analyses) or reachability of statements
(so using static code analysis). The main drawback of approaches for dead-code detection
based on dynamic code analysis is that their detection capability strongly depends on the
input data used to exercise the target software applications.

2.1.2 Static Code Analysis

As for dead-code detection approaches based on static code analysis, (Romano et al. 2016)
proposed DUM. It was conceived to detect dead methods in Java desktop applications. DUM
first builds a graph-based representation of the target software application, where nodes are
methods and directed edges are caller-callee relationships. The approach by Romano et al.
deems nodes reachable from starting nodes (e.g., those corresponding to main methods)
as alive. Any unreachable node from the starting nodes is dead. DUM was implemented
in a tool named DUM-Tool (Romano and Scanniello 2015). To assess the validity of their
approach, (Romano et al. 2016) compared DUM-Tool with two baselines: JTombstone and
CodePro AnalytiX. DUM-Tool outperformed these two baselines in terms of correctness and
accuracy of the detected dead methods, while exhibiting good completeness in detecting
dead methods.

@ Springer

Empir Software Eng (2023) 28:64 Page50f28 64

Similarly, (Romano and Scanniello 2018) exploited static code analysis to detect dead
code in Java desktop applications. In particular, the authors proposed DCF, a tool based on
the Rapid Type Analysis (RTA) algorithm to detect dead methods. RTA is an algorithm for
call graph construction that is known to be fast and to well-approximate virtual method calls
(Tip and Palsberg 2000). DCF first identifies alive methods. These methods are reachable
nodes from some starting nodes in the call graphs built through the RTA algorithm. More
specifically, DCF identifies the following starting nodes: (i) main methods “internal” to the
target application and (ii) methods used to customize the serialization/deserialization pro-
cess of objects (these methods are thought to be invoked through reflection). When building
the call graphs, DCF is capable of inferring some kinds of implicit calls (e.g., calls to run ()
methods of threads, initializes, etc.). After identifying alive methods, DCF marks those
methods that are not alive as dead. To assess the validity of DCF, as well as the underlying
approach, Romano and Scanniello compared DCF with JTombstone, CodePro AnalytiX,
and DUM-Tool. The results of this comparison indicated that DCF outperformed the other
tools in terms of: correctness of detected dead methods (average precision equal to 84%)
and accuracy of detected dead methods (average f-measure equal to 85%). As for com-
pleteness (average recall equal to 87%) in detecting dead methods, DCF was comparable to
DUM-Tool.

Based on our study of the literature on approaches/tools to detect dead methods, DCF
represents the state of the art. This is why we used DCF to detect dead methods in our study.
Moreover, it is freely available on the web so allowing other researchers to replicate our
study.

2.1.3 Refactoring vs. Optimization Perspective

The approaches discussed above (Boomsma et al. 2012; Eder et al. 2012; Fard and Mesbah
2013; Romano and Scanniello 2015; 2018; Romano et al. 2016) take a refactoring perspec-
tive, rather than an optimization one, when tackling dead code. That is, developers taking
a refactoring perspective detect and then remove dead code because source code deprived
of dead code is easier to comprehend and maintain (e.g., (Eder et al. 2012; Romano et al.
2020)). On the contrary, developers taking an optimization perspective want to make their
software applications faster and lighter (e.g., (Obbink et al. 2018)). Taking a refactoring
perspective leads to the following practical implications:

1. developers remove dead code from source code—i.e., they are not interested in remov-
ing dead code from software applications’ dependencies like frameworks and libraries
(e.g., as done by Obbink et al. (2018) in the context of JavaScript web-based software
applications);

2. the removal of dead code is a permanent operation carried out on the source code of
a target software application—as opposed to an optimization perspective in which the
removal of dead code can be temporary and can be carried out on intermediate repre-
sentations of source code (i.e., bytecode in the case of Java) without affecting source
code.

To conclude, our study takes a refactoring perspective. That is, we are not interested in
detecting dead code from an optimization perspective where dead code removal can be
temporary and only affect intermediate representations of source code (e.g., bytecode) and,
therefore, developers do not notice the removal of dead code.

@ Springer

64 Page 6 of 28 Empir Software Eng (2023) 28:64

2.2 Empirical Studies on Dead Code

Researchers have claimed that the presence of dead code in software applications has neg-
ative effects on both source code comprehensibility and maintainability (Fard and Mesbah
2013; Mintyld et al. 2003). To verify whether these claims were well-founded, (Romano
et al. 2016) designed and conducted a controlled experiment with 47 participants. The
authors split the participants into two groups. The participants in the first group were asked
to comprehend and then maintain Java source code containing dead code, while the partic-
ipants in the other group were asked to do the same on source code deprived of dead code.
The results of that experiment suggested that dead code hinders source code comprehen-
sibility, while the authors did not observe a negative effect of dead code on source code
maintainability. Later, (Romano et al. 2020) replicated that experiment three times. The
combined analysis of the data from the baseline experiment and replications confirmed with
stronger evidence that dead code harms source code comprehensibility. Moreover, Romano
et al. found that the presence of dead code negatively affects source code maintainability
when developers deal with unfamiliar source code. The authors also noted that, during the
maintenance task, some participants wasted time in modifying dead code that did not con-
tribute in any way to the resolution of that task. Romano et al. also presented the findings
from an interview study with six developers. The goal of this interview study was to under-
stand when and why dead code is introduced and how developers perceive and cope with
it. The authors found, for example, that although developers consider dead code harmful,
this code smell is consciously introduced to anticipate future changes or consciously left
in source code because developers think to use it someday. The findings from this inter-
view study help us to motivate our empirical study (see Section 3.1). As a consequence,
our study can be seen as a form of triangulation with respect to the interview study by
Romano et al.

Eder et al. (2012) conducted a case study to investigate the amount of maintenance
affecting dead methods in a commercial web-based software application written in .NET.
As mentioned in Section 2.1, the authors leveraged dynamic code analysis to detect dead
methods. The authors observed that, during the evolution of the studied software applica-
tion, 7.6% of the modifications affected dead methods. Moreover, they reported that 48%
of the modifications to dead methods were unnecessary (e.g., because dead methods were
removed later).

Scanniello (2011) used the Kaplan-Meier estimator to analyze the death of methods
across different releases of five software applications. He reported that, on two out of these
five software applications, the developers avoided introducing dead code or removed dead
methods as much as possible. Later, (Scanniello 2014) presented a preliminary study whose
goal was to understand which software metrics are predictors for dead methods. Five out
of 13 software metrics were identified as good predictors for dead methods. LOC (Lines
Of Code) was the best predictor. Although it is not surprising, this implies that the larger a
class, the higher the probability that its methods are dead.

As compared to the research discussed above (Eder et al. 2012; Romano et al. 2016;
2020; Scanniello 2011; 2014), we quantitatively studied both the spread and evolution
of dead methods in the commit histories of 23 open-source Java desktop applications.
These applications are developed in the context of open-source software projects hosted on
GitHub. As for the evolution of dead code, we quantitatively studied the lifespan of dead
methods, whether developers remove dead methods and use dead methods, and when dead
methods are introduced.

@ Springer

Empir Software Eng (2023) 28:64 Page 7 of 28 64

3 Study Design

The goal of our study is to analyze, from a quantitative point of view, the commit histories
of open-source Java desktop applications with the purpose of investigating (i) the spread of
dead methods (i.e., their relative number) and (ii) their evolution (e.g., the lifespan of dead
methods). The perspective of our study is that of practitioners and researchers interested
in dead methods for refactoring reasons. Practitioners might be interested in improving
their knowledge on dead code so that such a code small can be properly managed during
source code maintenance and evolution. On the other hand, researchers might be interested
in conducting future research on dead code in light of our results. The context consists of
23 open-source Java desktop applications whose software projects were hosted on GitHub.

3.1 Research Questions

The Research Questions (RQs) of the study presented in this paper are the same as our past
study (Caivano et al. 2021). As far as the spread of dead methods is concerned, we defined
and then investigated the following RQ.

RQ1. Are dead methods spread in open-source Java desktop applications?

This RQ aims to understand whether open-source Java desktop applications are affected
by dead methods. We can postulate that the higher the spread of dead methods in
a Java desktop application, the higher the likelihood for a developer to bump into
dead methods during source code maintenance and evolution tasks. Since dead code
harms both source code comprehensibility and maintainability (Romano et al. 2016;
2020), the negative impact of dead methods on both source code comprehensibility and
maintainability would be amplified.

As far as the evolution of dead methods is concerned, we formulated and investigated the
following four RQs.

RQ2. How long do dead methods survive in open-source Java desktop applications?

Romano et al. (2020) found, as highlighted in Section 2, that developers can consciously
introduce or leave dead code in a software application because they think to use it later.
If a dead method has a long lifespan, its future use should be less likely. This is because
that dead code is not updated during the evolution of a software application—i.e., dead
code was written at a time when the software application was different (Martin 2008).

RQ3. Do developers “bury” dead methods in open-source Java desktop applications?

The study of this RQ allows us to understand if developers remove dead methods from
source code. We can postulate that if developers do not remove dead methods from
source code, they are unaware of their presence or they believe that dead methods are
not harmful (Romano et al. 2020). Our study is purely quantitative and, therefore, we
are not able to discern between these two scenarios. Nevertheless, the study of RQ3
can provide useful indications on whether developers take care of dead code. In other
words, the results from RQ3 can support the qualitative findings of the interview study

@ Springer

64 Page 8 of 28 Empir Software Eng (2023) 28:64

by Romano et al. (2020), so further contributing to the body of knowledge on dead
code.

RQ4. Do developers revive dead methods in open-source Java desktop applications?

Based on the findings by Romano et al. (2020), developers can consciously introduce
or leave dead code in the source code, because they think to use it later. We formulated
this RQ to understand whether developers actually use dead methods in the future. In
other words, if the introduction of dead code can be intended as a means for future
re/use of source code.

RQS5. In open-source Java desktop applications, were dead methods mostly “born” dead
or do they mostly become dead later?

With this RQ, we want to focus our attention on the introduction of dead methods in
the source code. Understanding when this code smell is introduced in a given software
application could help us to delineate/define a better counteraction to deal with this
smell. For example, if dead methods are mostly introduced when the corresponding
methods are created, then just-in-time dead-method detection tools are more advisable.
Such a kind of tools should continuously monitor developers while coding and possibly
warn them if they create a method that is dead.

3.2 Study Context and Planning

We focused our study on open-source Java desktop applications with software projects
hosted on GitHub. We considered GitHub because it is a very popular hosting platform for
software projects and gave us the possibility to access the data of open-source software
applications.

As for the detection of dead methods, we used DCF (Romano and Scanniello 2018).
Dead methods are hard to detect without tool support (Wake 2003); therefore, the use of a
dead-method detection tool was needed. We opted for DCF because: (i) it is available on
the web; (ii) it was empirically validated; and (iii) it represents the state of the art for the
detection of dead methods when taking a refactoring perspective (see Section 2.1).

DCF was conceived to detect dead methods in Java desktop applications, both GUI-based
and CLI-based. To detect dead methods, DCF requires the bytecode of the target software
application, including the bytecode of its dependencies. This implies that we needed to
build the target software application before running DCF. To automate the building pro-
cess of a target software application (without running its tests) and then apply DCF, we
focused on software applications that used Maven—a popular build-automation tool for Java
applications.

In Table 1, we provide some information on the 23 software applications we considered
in our study. We chose these applications (i.e., both those used in our past study (Caivano
et al. 2021) and the new applications) to have a heterogeneous set of software applica-
tions in terms of: (i) size, intended as the number of methods and classes; (ii) number of
stars, giving an indication of software applications’ popularity; (iii) lifespan, in terms of the
number of commits; and (iv) application domain (see Appendix A). Moreover, the choice
of these software applications was driven by DCF—it was conceived to detect dead meth-
ods in Java desktop applications and the target software applications had to be compatible

@ Springer

Empir Software Eng (2023) 28:64 Page 9 of 28 64

Table 1 A summary of the studied software applications

Application # Stars Last Analyzed Lifespan # Methodsx* # Classes*
Commit

4HWC Autonomous Car 1 5a5c472 102 137 37
8_TheWeather 1 féabd54 38 346 37
BankApplication 72 6856256 102 537 121
bitbox 1 af2af8b 15 548 64
Density Converter 225 e70dcad 162 384 71
Deobfuscator-GUI 112 deb003e 29 221 47
graphics-tablet 0 8a3dfdc 35 697 81
JavaANPR 125 eff9act 256 786 92
javaman 0 7a03c36 58 230 38
JDM 0 a435b4d 25 82 16
JPass 81 c6bl13af 134 366 82
MBot 0 ff07dac 21 56 16
SMV APP 1 4c17370 67 408 96
Calculator 9 cfa2504 112 259 60
Desktop Weather Widget 0 ealacf7 69 86 18
10U 1 c4ca28c 60 211 43
JavaAppBuilder 0 3c942ca 42 445 56
Metis Dictionary 1 c4ca28c 25 363 35
mvn-gui 0 e3db771 40 274 61
PocketMine-GUI 10 e1538b4 45 290 48
SaveMyPass 1 82bc309 31 507 98
SoccerQuizApp 0 0a6ca87 46 92 17
Swing Chat 2 02b64b2 73 113 21

Above the central horizontal line, we report the software applications used in our past study (Caivano et al.
2021). Below that line, we summarize the new software applications

*# Methods and # Classes mean, respectively, the maximum number of methods and classes in a commit.

TWe are aware that this table exceeds the current page margins. We decided to leave this table (and other
tables and figures that follow) as it is to preserve the readability of the table and because the final template
of EMSE has larger margins.

with DCF—and by Maven—we needed Maven to automatically build the target software
applications.

We are aware that some of the studied software applications are not so huge. However,
we believe that this can be considered acceptable given the exploratory nature of our study
and, especially, the long time it takes to detect dead methods. In that respect, we would
like to recall that we needed to first build the target software application on each commit
and then run DCF on that commit—on the software applications used to assess DCF, the
average execution time of DCF was equal to six minutes (Romano and Scanniello 2018).
In other words, while this study can contribute to enlarging the body of knowledge of dead
code, its results can justify more resource- and time-demanding research on dead code (e.g.,
large-scale studies on larger applications).

@ Springer

64 Page 10 of 28 Empir Software Eng (2023) 28:64

Given a software application, we locally cloned the corresponding (Git) software repos-
itory. For each commit of the master (i.e., main) branch of the considered software
application, we applied DCF to gather both dead and alive (i.e., not dead) methods. To that
end, we first built the software application at a commit level and then we ran DCF—as
mentioned above, DCF requires the bytecode of the target software application, including
the bytecode of its dependencies. It is worth mentioning that DCF reports both dead and
alive methods that are “internal” to the target application. That is, the methods of the depen-
dencies of the target application are not returned in the DCF report since such a kind of
methods is not of interest when taking a refactoring perspective. If we cannot build the tar-
get application for a given commit, we skipped that commit. Moreover, when detecting dead
methods, we discarded the test directory to avoid DCF from returning methods belonging
to test classes (e.g., test methods) as dead.

3.3 Data Analyses

To perform our data analyses, we exploited the R statistical environment.? In the following
of this section, we present the data analyses by RQ.

RQ1. To answer this RQ, we computed the relative number of dead methods for each
commit of the studied software applications. We named this variable %DeadMethods.
To summarize the distribution of the values for this variable, we used descriptive statis-
tics (e.g., median, mean, etc.) and box plots. We also exploited line plots to show
the values of the %DeadMethods variable across the commit history of each software
application.

RQ2. Unlike RQ1, RQ2 aims to study the evolution of each dead method along the com-
mit history of each software application. In other words, to study RQ2, we followed
the evolution of each dead method. In particular, given a dead method, we computed
its survival time in terms of commits (SurvTime)—i.e., the interval of consecutive com-
mits, in the master branch, from the first to the last commits in which DCF detected that
method as dead. A variable like SurvTime under/overestimates survival time when the
event of interest (in our case, dead-method removing® and dead-method reviving com-
mit*) occurs after the observation period. In studies like ours (e.g., (Chatzigeorgiou and
Manakos 2014; Tufano et al. 2016)), researchers are forced to analyze a finite commit
history despite the studied software application continues to evolve with time. In other
words, the event of interest can occur outside the analyzed commit history. Therefore,
we can distinguish two kinds of data points: complete and censored (Jr. 2011). Complete
data points are the ones for which the event of interest has occurred during the observa-
tion period, while censored data points are the ones for which the event of interest has not
occurred yet. By translating these definitions to our study, complete data points are dead

Zhttps://www.r-project.org

3The dead-method removing commit (if any) of a dead method is the one in which that dead method is
removed from the source code.

4The dead-method reviving commit (if any) of a dead method is the one in which that dead method is made
alive.

@ Springer

https://www.r-project.org

Empir Software Eng (2023) 28:64 Page 11 0f 28 64

methods for which we know both their dead-method introducing® and removing/reviving
commits. In other words, removed/revived dead methods are complete data points. On
the other hand, censored data points are dead methods—also referred to as censored dead
methods, from here onwards—for which we know their dead-method introducing com-
mits but not their dead-method removing/reviving commits. To take into account both
complete and censored data points and thus compute an unbiased estimate of how long
dead methods survive, we leveraged the Kaplan-Meier (KM) survival analysis (Kaplan
and Meier 1958). In particular, for each software application, we built the KM survival
curve, which graphically depicts the survival probability of dead methods at any point
of time. From the KM survival curve, we then computed the KM median survival time
(KMMedSurvTime), which is defined as the time for which the survival probability is
equal to 0.5 (Goel et al. 2010). The KM median survival time is used, in studies like ours,
to have an unbiased estimate of survival time by taking into account both complete and
censored data points (Rich et al. 2010). Summing up, we used KMMedSurvTime to esti-
mate how long dead methods survive in terms of commits—the SurvTime values and the
censoring information (i.e., whether a given method was censored or not) were used to
build the KM survival curves (from which the KMMedSurvTime are computed).

RQ3. Similarly to RQ2, we followed the evolution of dead methods along the commit his-
tory of the studied software applications. In particular, we computed the relative number
of removed dead methods for each application. We named this variable %RemovedDead-
Methods. To summarize the distribution of the values for %RemovedDeadMethods, we
used descriptive statistics. To compute %RemovedDeadMethods, we used the informa-
tion about the dead-method removing commit of each dead method, not the information
about the dead-method reviving commit. In other words, if a dead method becomes alive
during the commit history of an application, we did not consider that dead method as
removed—such a dead method is revived and it is the subject of RQ4.

RQ4. To answer this RQ, we followed the evolution of dead methods along the commit
history of each software application. In particular, we computed the relative num-
ber of revived dead methods for each software application. We named this variable
YoRevivedDeadMethods. We also summarized the distribution of the %RevivedDead-
Methods values through descriptive statistics. To compute %RevivedDeadMethods, we
used the information about the dead-method reviving commit.

RQ5. To answer this RQ, we followed the evolution of dead methods one last time. In par-
ticular, we counted the relative number of dead methods born dead (% DeadBornMeth-
ods) and the relative number of dead methods became dead (%DeadBecameMethods) for
each Java desktop application. Given an application, the sum of the values for %Dead-
BornMethods and %DeadBecameMethods is 100%. We also used descriptive statistics
to summarize the distribution of the values for both these variables. To determine if there
was a (statistically) significant difference in the relative numbers of dead-born methods
and dead-become ones (in each software application), we ran a (one-proportion) Z-test
(Wilson 1927).

5The dead-method introducing commit of dead method is the one in which that dead method is introduced
into the source code. The introduction of a dead method happens either when a method is created already
dead (i.e., it was born dead) or when a method becomes dead after being alive in the previous commit.

@ Springer

64 Page 12 of 28 Empir Software Eng (2023) 28:64

3.4 Data Availability

The interested reader can find our replication package, which contains the scripts for the
data analyses and the raw data of our study, on a public repository issuing research outputs
with DOIs (i.e., Figshare) (Romano 2022).

4 Results

In this section, we present the results of our study. The results are arranged according to the
defined RQs.

4.1 RQ1. Are Dead Methods Spread in Open-source Java Desktop Applications?

In Fig. 1, we show the box plots summarizing the distributions of the %DeadMethods val-
ues. These box plots suggests that dead methods are quite widespread in all the software
applications. The software application with the highest average value for %DeadMethods is
bitbox (mean = 36.749%). On the other hand, the software application with the lowest aver-
age value is Calculator (mean = 0.454%). Besides JDM and Calculator (having a minimum
values for %DeadMethods equal to 0%), the minimum values for %DeadMethods range in
between 1.198% (SaveMyPass) and 35.593% (bitbox). This suggests the presence of dead
methods in every commit of these software applications, so confirming that this code smell
is widespread. We can also note that, in the case of SMV APP and Desktop Weather Widget,
the maximum values for %DeadMethods (96.296% and 94%, respectively) are very close
to 100% (we deepen this point in Section 4.4).

The line plots (see Fig. 2) allow us to better understand how the values of
9% Dead Methods change across the commit history of each software application. For most
of the software applications, the % DeadMethods values remain quite constant across
the commit histories. Clear exceptions are Deobfuscator-GUI, javaman, MBot, SMV APP,
Desktop Weather Widget, JavaAppBuilder, Metis Dictionary, and SoccerQuizApp. For

100-

3

%DeadMethods

]
|
.| &
n
~
4{1}
.|.
JPass ﬂ"
-
[
I
]
J
ﬂ
-t

==
0 === —— —
T LA i
© [o o [7} =} o © o o [7} 7] = =} » o ©
2 + o % = (=)
S £ % £ 5 0 3 % £ 8 £ £ g2 TP ¢ FEO
s £ £ 7 5 s & % os z & = e g g 223 ¢
Q. S = o e Q O £ £
E B & S8 & & & 5 & & S B s 3 € =
g £ g > 3 & ° £ 3 2 T 3 8 9
= S © = (9] o
S (- ® = © 3 s = X
L S 5 g T © S o
2 ® @ 5 s ° = S = 2 2]
%) e a g
; <
T [}
= [
[=]
Application

Fig. 1 Box plots for %DeadMethods. On the left-hand side, the software applications used in our past study
(Caivano et al. 2021). On the right-and side, the new software applications

@ Springer

Empir Software Eng (2023) 28:64

Page 130f28 64

4HWC Autonomous Car

bitbox

100

0 5 10
graphics—tablet

JDM

Zf’: W

0 10 20 3

0

25- I
0- : y

0 5 10 15 20 25
» SMV APP
T 100~
[o]
£ 75-
Q 50-
% 25~
3 o ; : :
a 0 20 40 60
=
Calculator
100~
75-
50-
25~
0-) g g g
0 30 60 90
JavaAppBuilder
100~
75-
50~
25- =
0=,
0 10 20 30 40

PocketMine-GUI

0: R
0 10 20 30 40
Swing Chat
100~
75+
50~
25- 1
0- | 0 ' 0
0 20 40 60

8_TheWeather

BankApplication

Commit Number

[t
0 10 20 30 0 25 50 75 100
Density Converter Deobfuscator-GUI
— . ===—c="=
0 50 100 150 0 10 20 30
JavaANPR javaman
0 100 200 0 20 40 60
JPass MBot
0 50 100 0 5 10 15 20
Desktop Weather Widget 10U
0 20 40 60 0 20 40 60
Metis Dictionary mvn—-gui
0 5 10 15 20 25 0 10 20 30 40
SaveMyPass SoccerQuizApp
0 10 20 30 0 10 20 30 40

Fig.2 Box plots for %DeadMethods. On the top, the software applications used in our past study (Caivano
et al. 2021). On the bottom, the new software applications

these applications, we can also notice that the values for % Dead Methods decrease across
the commits. The study of the next RQs can help us to better understand such a trend.

As for the comparison of the results from the extended dataset and the past one (Caivano
et al. 2021), we do not obverse huge differences. Therefore, we can confirm (with stronger
evidence) the presence of dead methods in Java desktop applications, as well as the presence
of different trends for the relative number of dead methods in their commit histories.

@ Springer

64 Page 14 0f 28 Empir Software Eng (2023) 28:64

Answer to RQ1: Although we observed different trends for the relative
number of dead methods in the commit histories of the studied open-source
Java desktop applications, dead methods are widespread. That is, the stud-
ied software applications are affected by this code smell.

4.2 RQ2.How Long Do Dead Methods Survive in Open-source Java Desktop
Applications?

In Table 2, we show the results of the survival analysis of dead methods. It is worth recall-
ing that, in RQ2 (as well as in the RQs that follow), we considered the evolution of each
(distinct) dead method in the commit history of the studied software application. That is
to say that, if a given dead method, m, is present in more than one commit, we consider it
only once. In Table 2, we report the number of (distinct) dead methods across the commit
history of each application; the number of events (i.e., the number of dead-method remov-
ing/reviving commits, in our case); and the KMMedSurvTime value, along with the 95%
confidence interval, estimated from the KM survival curve.

As shown in Table 2, we could estimate the KMMedSurvTime values for all the con-
sidered software applications, with the exceptions of: 8_TheWeather, bitbox, IOU, and
SaveMyPass. This is because, in these four software applications, a high number of (distinct)
dead methods was censored (i.e., in the last analyzed commit, these methods were still dead)
and their SurvTime values were overall higher than the SurvTime values of removed/revived
dead methods. In particular, only one dead method (out of 87) was removed/revived during
the observation period of 8_TheWeather—its SurvTime value was equal to two, while the
median® of the SurvTime values of the censored dead methods was equal to 38. As for bit-
box, 15 out of 210 dead methods were removed/revived during the observation period, while
four out of 30 dead methods were removed/revived during the observation period of IOU.
The medians of removed/revived dead methods were lower than those of censored dead
methods for both bitbox (six vs. 15) and IOU (18.5 vs. 60). As for SaveMyPass, the events
of interest were three (while the number of dead methods was equal to nine)—the medians
of the SurvTime values were equal to 24 and 31 for the removed/revived and censored dead
methods, respectively.

For the greater part of the other software applications, we can observe that dead methods
tend to survive for many commits. In particular, for twelve applications, the KMMedSurv-
Time values were equal to or greater than ten (commits), by reaching a maximum of 83
(commits) for JPass. For these applications, it would be the case of understanding from a
qualitative perspective why dead methods survive for many commits. This point could rep-
resent a future direction for the research presented in this paper. It is worth noting that only
on seven applications, the KMMedSurvTime values are lower than 10 (commits). Moreover,
although we could not compute the KMMedSurvTime value for SaveMyPass, we know the
lower bound of the confidence interval (24). This suggests that the KMMedSurvTime value
is at least equal to 24 (commits).

The results presented above are not so different from those reported in our past paper
(Caivano et al. 2021). In other words, we can confirm that, in open-source Java desktop

6We mean the traditional median (i.e., the middle value of a dataset (Wohlin et al. 2012)), not the estimate
computed from the KM survival curve (i.e., KMMedSurvTime).

@ Springer

Empir Software Eng (2023) 28:64 Page 150f 28 64

Table 2 Survival analysis results

Application # (Distinct) # Events KMMedSurvTime
Dead Methods
4HWC Autonomous Car 27 14 59 26, —]
8_TheWeather 87 1 — [—, =]
BankApplication 270 229 9 [8, 13]
bitbox 210 15 — [—, -]
Density Converter 288 203 21 [15, 24]
Deobfuscator-GUI 156 142 14 [12, 17]
graphics-tablet 407 227 17 [7, 18]
JavaANPR 237 164 5 [5, 88]
javaman 142 97 18 [9, 22]
JDM 17 16 3 [3, 3]
JPass 77 28 83 [60, —]
MBot 5 3 11 [1, =]
SMV APP 183 151 11 [7, 14]
Calculator 2 1 8 [8, —1]
Desktop Weather Widget 86 73 4 [2,7]
10U 30 4 - [— -1
JavaAppBuilder 369 228 6 [4, 8]
Metis Dictionary 143 137 17 [17, 17]
mvn-gui 76 16 26 [24, —]
PocketMine-GUI 133 75 11 [11,13]
SaveMyPass 9 3 — [24, —]
SoccerQuizApp 60 44 3.5 [2, 5]
Swing Chat 37 28 10 [5, 28]

Above the central horizontal line, the software applications used in our past study (Caivano et al. 2021).
Below that line, the new software applications

applications, dead methods tend to survive for a long time, in terms of commits, before
developers bury or revive them.

Further analysis To deepen the study of RQ2, we analyzed whether removed dead meth-
ods survived as much as revived ones. To do so, we could not use the KM survival analysis
to estimate how long removed dead methods and revived ones survive, respectively. This is
because we did not know which censored dead methods will be removed in the future, or
which ones will be revived. Therefore, we directly used the SurvTime values and showed
their distributions for removed and revived dead methods, respectively, by means of box
plots (see Fig. 3). These box plots also depict the distributions for censored dead method to
provide a complete picture of the results. As shown in Fig. 3, for eight software applications,
we could not compare removed and revived dead methods with respect to SurvTime because
of the absence of data points (i.e., no removed dead method or no revived dead method). For
the remaining software applications, we can observe that the boxes for removed and revived
dead methods either mostly overlap or are higher for removed dead methods. We also ver-
ified if there were (statistically) significant differences (at a 5% significance level) in the

@ Springer

64 Page 16 of 28

Empir Software Eng (2023) 28:64

SurvTime

4HWC Autonomous Car

=

censored removed revived
bitbox
H
. —
censored removed revived

graphics—tablet

i
H ;
_ "

L - $
censored removed revived
JDM

H
censored revived
SMV APP

.
censored removed revived

Calculator
censored removed

JavaAppBuilder

L

censored removed revived

PocketMine-GUI

L

|
T ———1 B

censored removed revived
Swing Chat

C =

censored removed revived

250-
200-
150~
100~

50-

100~

50-

8_TheWeather

censored removed

Density Converter

! !
censored removed revived
JavaANPR
L}

(]

]

H

I ——
censored removed revived
JPass
l—%
T T _—
censored removed revived
Desktop Weather Widget

T — .
censored removed revived

Metis Dictionary

.
censored removed
SaveMyPass
censored removed

Kind of Dead Method

BankApplication
8)

.
.

—

censored

Deobfuscator-GUI

— =

e—

removed revived

censored removed revived
javaman
.
o
censored removed revived
MBot
I———
censored removed

[e]V}

censored removed
mvn-gui
L]
[=5
censored removed revived
SoccerQuizApp
.
]
L = —
censored removed revived

Fig. 3 Box plots for SurvTime. On the top, the software applications used in our past study (Caivano et al.
2021). On the bottom, the new software applications

SurvTime values between removed and revived dead methods. To do so, we planned to use
the (unpaired two-tailed) z-test (Welch 1947) but the underlying assumption of normality’

7To check the normality assumption, we used the Shapiro-Wilk test (Shapiro and Wilk 1965).

@ Springer

Empir Software Eng (2023) 28:64 Page 17 of 28 64

was never met. Consequently, we used the non-parametric alternative to the t-test, namely
the (unpaired two-tailed) Mann-Whitney U test (Mann and Whitney 1947). In case of a sta-
tistically significant difference, we used the Cliff’s § effect size to estimates the magnitude
of such a difference, which is considered: negligible if § < 0.147; small if 0.147 < § <
0.33; medium if 0.33 < § < 0.474; or large otherwise (Romano et al. 2006).

In Table 3, we show the results (i.e., p-values) of the Mann-Whitney U test, along with
the Cliff’s § values (when there were significant differences). We can observe that, on
five software applications, the difference between removed and revived dead methods, in
terms of SurvTime, was significant. These software applications are: Density Converter,
Deobfuscator-GUI, JPass, Desktop Weather Widget, and JavaAppBuilder. As shown in
Fig. 3, the significant differences are due to higher Surv7ime values for removed dead meth-
ods. The magnitude of the significant differences ranges from small to large. Summing up,
both box plots and inferential analysis (i.e., Mann-Whitney U test) suggest that removed
dead methods tend to survive more than revived ones.

Answer to RQ2: In the studied open-source Java desktop applications,
dead methods generally survive for a long time, in terms of commits, before
being buried or revived. Also, removed dead methods tend to survive more
than revived ones.

Table3 P-values from the Mann-Whitney U test concerning the comparison between removed dead methods
and revived ones with respect to SurvTime, along with Cliff’s § values when there were significant differences
(in these case, p-values are reported in bold)

Application p-value Cliff’s 8

4HWC Autonomous Car 1 —

BankApplication 0.217 -

bitbox 0.159 -

Density Converter 0.002 0.323 (small)
Deobfuscator-GUI 0 0.481 (large)
graphics-tablet 0.853 -
JavaANPR 0.62 —

javaman 0.088 -

JPass 0.014 0.561 (large)
SMV APP 0.678 -

Desktop Weather Widget 0 0.883 (large)
JavaAppBuilder 0 0.467 (medium)
mvn-gui 0.677 -
PocketMine-GUI 0.483 -
SoccerQuizApp 0.305 —

Swing Chat 0.442 -

Above the central horizontal line, the software applications used in our past study (Caivano et al. 2021).
Below that line, the new software applications

@ Springer

64 Page 18 of 28 Empir Software Eng (2023) 28:64

4.3 RQ3.Do Developers Bury Dead Methods in Open-source Java Desktop
Applications?

In Table 4, we show the percentage of (distinct) dead methods that are removed (i.e.,
YoRemovedDeadMethods) in each application, as well as the percentage of dead methods
that are revived (i.e., %RevivedDeadMethods) or censored (i.e., %CensoredDeadMeth-
ods). While the %RevivedDeadMethods values are of interest to the study of the next
RQ, the %CensoredDeadMethods values are shown to have a full picture of the results.
Given an application, the sum of the %RemovedDeadMethods, %RevivedDeadMethods, and
% CensoredDeadMethods values is 100%.

For eight software applications (out of 23), dead methods appear not to be removed at all:
the %RemovedDeadMethods values range in between 0% (JDM) and 22.078% (JPass). For
the remaining software applications, it seems that developers pay attention to the removal

Table 4 Results regarding the relative number of removed and revived dead methods

Application 9YoRemovedDeadMethods — %RevivedDeadMethods % CensoredDeadMethods
4HWC Autonomous Car 48.148 3.704 48.148
8_TheWeather 1.149 0 98.851
BankApplication 63.333 21.481 15.185
bitbox 3.81 3.333 92.857
Density Converter 57.639 12.847 29.514
Deobfuscator-GUI 62.821 28.205 8.974
graphics-tablet 49.386 6.388 44.226
JavaANPR 68.354 0.844 30.802
javaman 41.549 26.761 31.69
JDM 0 94.118 5.882
JPass 22.078 14.286 63.636
MBot 60 0 40
SMV APP 16.94 65.574 17.486
Calculator 50 0 50
Desktop Weather Widget 36.047 51.163 12.791
10U 13.333 0 86.667
JavaAppBuilder 12.195 52.304 35.501
Metis Dictionary 95.804 0 4.196
mvn-gui 17.105 3.947 78.947
PocketMine-GUI 40.602 20.301 39.098
SaveMyPass 33.333 0 66.667
SoccerQuizApp 45 30 25
Swing Chat 54.054 21.622 24.324
Mean 38.812 19.864 41.324
SD 24.755 24.899 28.117
Median 41.549 12.847 35.501

The relative number of censored dead methods is also shown for completeness. Above the central horizontal
line, the software applications used in our past study (Caivano et al. 2021). Below that line, the new software
applications (and then some descriptive statistics)

@ Springer

Empir Software Eng (2023) 28:64 Page 190f 28 64

of dead methods. Indeed, the %RemovedDeadMethods values range in between 33.333%
(SaveMyPass) and 95.804% (Metis Dictionary). By looking at both Table 4 and Fig. 2, we
can grasp that there are different removal patterns. For example, in javaman, the developers
progressively removed dead method, while in Deobfuscator-GUI, the developers removed
dead methods in a shorter number of commits.

In Table 4, we also show the values of mean, SD, and median of %RemovedDeadMeth-
ods when aggregating the data from all the software applications. The average value for
%RemovedDeadMethods of the studied applications is 38.812%, while the median value is
41.549%. These values confirm that, in general, the developers paid attention to the removal
of dead methods. The SD value is high (24.755) so remarking that the developers took care
of dead method removal in a different fashion. That is, developers behave differently on
different software applications.

The results presented above are consistent with those reported in our past paper (Caivano
et al. 2021), so allowing, also in this case, strengthening our overall conclusion.

Answer to RQ3: In most of the studied open-source Java desktop appli-
cations, the developers paid attention to dead methods by giving them a
decent burial. Only for few software applications, this does not hold.

4.4 RQ4. Do Developers Revive Dead Methods in Open-source Java Desktop
Applications?

The %RevivedDeadMethods values suggest that developers rarely revive dead methods (see
Table 4). In particular, on 13 software applications (out of 23), the %RevivedDeadMethods
values are quite small, ranging from 0% (seven cases) to 14.286%. Only in four cases (i.e.,
JDM, SMV APP, Desktop Weather Widget, and JavaAppBuilder), the %RevivedDeadMeth-
ods values are higher than 50%. As for JDM, we can note a peak in the middle of the commit
history shown in Fig. 2. This allows us to postulate that the developers consciously intro-
duced some dead methods to use them in the subsequent commits. A similar postulation can
be done for SMV APP, Desktop Weather Widget, and JavaAppBuilder as well. However, in
these three software applications, the peak of dead methods arises at the beginning of the
commit history (see Fig. 2).

Again, the results presented above are consistent with those reported in our past paper
(Caivano et al. 2021), so allowing us to strengthen our conclusion.

Answer to RQ4: In the studied open-source Java desktop applications,
the developers rarely revived dead methods. Only in few occasions, the de-
velopers seem to introduce dead methods as a means of anticipating changes
and re/using code.

4.5 RQ5.In Open-source Java Desktop Applications, Were Dead Methods Mostly
Born Dead or Do They Mostly Become Dead Later?

In Table 5, we show, for any application, the percentage of dead methods that were born

dead (%DeadBornMethods) or that became dead later (%DeadBecameMethods), as well as
the p-values returned by the Z-test. In this table, we also report some descriptive statistics.

@ Springer

64 Page 20 of 28 Empir Software Eng (2023) 28:64

Table 5 Results regarding the relative number of dead methods born dead and became dead, as well as
p-values from the Z-test (in bold those suggesting significant differences)

Application YoDeadBornMethods Y DeadBecameMethods p-value
4HWC Autonomous Car 92.593 7.407 0
8_TheWeather 100 0 —
BankApplication 69.259 30.741 0
bitbox 98.095 1.905 0
Density Converter 95.139 4.861 0
Deobfuscator-GUI 98.718 1.282 0
graphics-tablet 88.698 11.302 0
JavaANPR 99.578 0.422 0
javaman 84.507 15.493 0
JDM 100 0 -
JPass 76.623 23.377 0
MBot 100 0 —
SMV APP 77.049 22.951 0
Calculator 100 0

Desktop Weather Widget 96.512 3.488 0
10U 66.667 33.333 0.1
JavaAppBuilder 72.087 27913 0
Metis Dictionary 100 0 —
mvn-gui 69.737 30.263 0.001
PocketMine-GUI 97.744 2.256 0
SaveMyPass 100 0 —
SoccerQuizApp 80 20 0
Swing Chat 96.296 3.704 0
Mean 89.535 10.465

SD 12.038 12.038

Median 96.296 3.704

Above the central horizontal line, the software applications used in our past study (Caivano et al. 2021).
Below that line, the new software applications (and then some descriptive statistics)

The comparison between the values of %DeadBornMethods and %DeadBecameMethods
clearly indicates that dead methods were mostly born dead rather than becoming dead later.
The %DeadBornMethods values range in between 66.667% and 100% (while the %Dead-
BecameMethods values range in between 0% and 33.333%). The observed difference in
the percentages of dead-born and dead-became methods is almost always significant (at a
5% significance level) as the p-values from the Z-test suggest. In particular, in six cases
(out of 23), we could not run the test because the values of %DeadBecameMethods were
equal to 0%; in the other cases, the test always suggested a significant difference with the
only exception of IOU. We can also observe high median (96.296%) and mean (89.535%)
% DeadBornMethods values and a low SD value (12.038). These descriptive statistics con-
firm that most dead methods were born dead and this outcome holds for any software
application.

These results confirm those we obtained on the hold dataset (Caivano et al. 2021).

@ Springer

Empir Software Eng (2023) 28:64 Page 21 0f 28 64

Answer to RQ5: Most dead methods are introduced when the correspond-
ing methods are added to the source code of the studied open-source Java
desktop applications.

4.6 Final Remarks about the New Dataset

As mentioned before, we considered ten further open-source Java desktop applications in
order to extend our past dataset (Caivano et al. 2021). Regardless of the RQ, the results
observed on the new dataset (comprising 23 Java desktop applications) are consistent
with those reported by Caivano et al. (2021) (observed on a subset of 13 Java desktop
applications) so allowing us to strengthen our conclusions.

5 Discussion

In this section, we discuss the results of our empirical study and also delineate possible
implications from the perspectives of both practitioners and researchers. We conclude this
section by discussing threats that might affect the validity of our results.

5.1 Overall Discussion and Implications

Dead methods, and thus dead code, affect the studied open-source Java desktop applications.
This finding complements those of past research reporting a large amount of dead code in
commercial web-based applications written in PHP and .NET (Boomsma et al. 2012; Eder
et al. 2012). Therefore, our finding (on Java desktop applications) joined with past ones
(on commercial web-based applications) seem to indicate that dead code affects software
applications regardless of: the programming language (Java vs. .NET vs. PHP); kind of soft-
ware application (desktop vs. web-based); kind of license (open-source vs. commercial);
and application domain (e.g., from conversion of images to weather forecast in our research,
and from insurance to customers relationship management in the research by Eder et al.
(2012) and Boomsma et al. (Boomsma et al. 2012)). This outcome is of interest to Practi-
tioners. In particular, practitioners should be aware that, whatever the software application
is (i.e., regardless of programming language, kind of software application and license, and
application domain), they could bump into dead code and then be exposed to its negative
effects (Romano et al. 2016; 2020). Therefore, practitioners should take care of dead code,
so removing it from the source code or avoiding the introduction of this code smell as much
as possible. Nevertheless, we believe that dead code deserves further attention from the SE
research community since, for example, there is a lack of empirical evidence on the spread
of dead code in software applications for mobile devices. Researchers could be interested
in conducting empirical studies in order to fill this gap.

We observed a variability in the amount of dead methods across the studied software
applications (on average, dead methods accounted for 0.454% to 36.749% of all methods).
This finding supports the one by Scanniello (2011), who observed that developers avoided
introducing dead methods or removed dead methods as much as possible on two out of the
five open-source Java desktop applications studied. The variability in the amount of dead
methods could be due to factors internal to software projects—e.g., LOC, as suggested by
the preliminary investigation by Scanniello (2014). Therefore, we foster researchers to
deepen the study of which factors can predict the introduction of dead methods in open-

@ Springer

64 Page 22 of 28 Empir Software Eng (2023) 28:64

source software applications. Researchers could be also interested in studying if these
results hold for commercial software applications. Our findings justify future work on this
matter.

For the software applications in which we observed that dead methods are more spread,
we can postulate that the likelihood for developers to bump into dead methods, during source
code maintenance and evolution tasks, is greater. Therefore, the likelihood for developers to
experience the detrimental effects of this code smell, in terms of source code comprehen-
sibility and maintainability (Romano et al. 2016; 2020), is greater. Practitioners should
thus keep under control the spread of dead methods and, therefore, we recommend them to
periodically plan code reviews (with tool support) to detect and remove dead methods from
open-source Java desktop applications.

We found that most dead methods were born dead, rather than becoming dead later. In
other words, most dead methods are dead since the creation of the corresponding methods.
This result is consistent with previous findings on code and test smells (Tufano et al. 2016;
Tufano et al. 2017), and it contradicts the common wisdom for which code smells are due
to side effects of software evolution (Parnas 1994). Practitioners should pay attention to
the design of open-source Java desktop applications by trying to avoid as much as possible
dead methods. Accordingly, future dead-method detection tools should take into account
that dead methods, in most cases, start affecting software applications since the creation
of methods. Researchers should thus provide practitioners with just-in-time dead-method
detection tools—i.e., tools highlighting the presence of dead methods in real time, while
developers code. Practitioners could clearly take advantage of such a kind of dead-method
detection tools.

Past qualitative research (i.e., interviews with practitioners) suggests that developers can
consciously introduce dead code or consciously leave dead code in a software application
because they think to use it later (Romano et al. 2020). However, we found that developers
rarely revive dead methods. We can thus make Martin’s recommendation for practition-
ers (in particular, those working on open-source Java desktop applications) ours: “When
you find dead code, do the right thing. Give it a decent burial. Delete it from the sys-
tem.” If developers think they can reuse dead code someday, version control systems should
help developers to find removed dead code. Following this recommendation should bring
advantages to developers when they have to comprehend and maintain source code. This is
because source code deprived of dead code is easier to comprehend and maintain (Romano
et al. 2016; 2020), and developers uselessly spend some effort modifying dead code (Eder
et al. 2012; Romano et al. 2020).

Dead methods generally survive for a long time, in terms of commits. Accordingly,
the future re/use of dead methods, in a given software application, should be unlikely
because dead methods are not updated with the rest of that software application (Martin
2008). Furthermore, the results of our further analysis suggest that revived dead methods
tend to survive less (with respect to removed dead methods); this is because the revival of
dead methods usually happens in a short commit frame. Based on these findings and the
known detrimental effects of dead code (Eder et al. 2012; Romano et al. 2016; 2020), we
recommend again practitioners avoid introducing dead methods and remove them from
open-source Java desktop applications whenever it is possible.

The results of the survey by Yamashita and Moonen (2013) indicate that dead-code detec-
tion was the 10th most desired feature (out of 29) for smell analysis tools, so suggesting
that dead-code removal matters to developers. In some of the studied software applications,

@ Springer

Empir Software Eng (2023) 28:64 Page 23 0f 28 64

we observed that developers paid attention to dead methods by removing them. This seems
to imply that the removal of dead methods matters to the developers of these applications
so confirming the results by Yamashita and Moonen (2013). This outcome is clearly rele-
vant for researchers since dead code seems to be relevant from a practical point of view.
In some other applications, we found that the developers did not remove dead methods. We
can only postulate possible reasons, namely: (i) some developers are unaware of the pres-
ence of dead methods and/or (ii) some developers are conscious of the presence of this smell
but they think that dead methods are harmless and/or believe to re/use dead methods in the
future. Besides providing tools for dead-method detection, researchers should investigate
on the above-mentioned postulations and inform developers about the negative effects of
dead methods and their uselessness.

Summing up, our study has the merit of expanding the body of knowledge on dead
code. In particular, we bring empirical evidence on the spread and evolution of dead meth-
ods in open-source Java desktop applications and complement/support the findings of past
research on this code smell, including our past study (Caivano et al. 2021) we here extends
by considering ten more software applications. Nevertheless, we do not consider our find-
ings conclusive; rather, we believe that our findings can justify researchers to conduct
more resource- and time-demanding studies on dead methods like, for example, large-scale
studies on applications larger than ours and randomly sampled from GitHub. Finally, our
findings could foster researchers to replicate our study in a different context (e.g., on
web-based or mobile applications).

5.2 Threats to Validity

In the section, we discuss the threats that might affect the validity of our results. Based on
the validity schema by Wohlin et al. (2012), these threats to validity fall in the following
categories: external, conclusion, and construct.8

5.2.1 External Validity

Threats to external validity deal with the generalizability of results (Wohlin et al. 2012).
Both the software applications considered in our study—almost all software applications
used SWING as a GUI framework—and their number might affect external validity. For
example, the studied software applications might be scarcely representative of open-source
Java desktop applications whose projects are hosted on GitHub or might not represent the
universe of Java desktop applications. While we gather empirical evidence on the spread
and evolution of dead methods (so increasing the body of knowledge on dead code), we
believe that the gathered evidence can justify more resource- and time-demanding research
on dead methods. For example, we advise further work on a larger number of open-source
Java desktop applications (e.g., randomly sampled from GitHub). To deal with external
validity threats, in this paper, we extend our past study (Caivano et al. 2021) by considering
ten further Java desktop applications with software projects hosted on GitHub. The results
presented in this paper confirm those of our past study.

8We do not have any threat to internal validity since such threats are defined as influences that can affect the
independent variable with respect to causality, and we did not investigate causality in our study.

@ Springer

64 Page 24 of 28 Empir Software Eng (2023) 28:64

5.2.2 Construct Validity

Threats to construct validity concern the relation between theory and observation (Wohlin
et al. 2012). The data collection approach might affect the results. In particular, when a
commit did not compile, we skipped that commit (see Section 3.2). Although we relied on
a popular build-automation tool (i.e., Maven) to automatically build the software applica-
tions, the lack of ability to build open-source applications at a commit level is an inherent
limitation to any study similar to ours (Tufano et al. 2017).

To detect dead methods, we used DCF. We opted for this tool for several reasons. It
is freely available on the web (and some of the developers of that tool took part in this
research). And more importantly, the validity of DCF was empirically assessed on a gold
standard by comparing it with other baseline tools to detect dead code (Romano and Scan-
niello 2018). The results of this comparison suggested that DCF outperformed the other
tools in terms of correctness and accuracy of the detected dead methods, while exhibiting
high completeness in detecting dead methods (see Section 2.1). Although DCF represents
the state of the art for dead-method detection in Java desktop applications, its use might
affect our results. In particular, methods invoked indirectly by means of reflection are not
supported by DCF, except for those used to customize the serialization/deserialization pro-
cess of objects. That is, the use of reflection might represent an issue when detecting dead
methods with DCF.

We identified each dead method by using its signature and the fully qualified name of
the belonging class. This might affect the results concerning the evolution of dead methods.

The metrics used to answer our RQs might pose a threat to construct validity. How-
ever, there is no accepted metric to quantitatively assess the spread and evolution of dead
methods. The proposal of these metrics might represent another contribution of our paper.

5.2.3 Conclusion Validity

Threats to conclusion validity concern issues that affect the ability to draw the correct
conclusion (Wohlin et al. 2012). We addressed such a kind of threats by checking the
assumptions of the statistical tests before using them (in case these assumptions were not
met, we used the non-parametric alternatives). Also, we used robust statistical tests.

As for the survival analysis, the use of the Kaplan-Mayer method might have affected the
validity of the results. However, this method represents one of the best options for survival
analysis (Tufano et al. 2017).

6 Conclusion

In this paper, we present the results of an exploratory study on dead methods in open-
source Java desktop applications. We quantitatively analyzed the commit histories of 23
open-source Java desktop applications, whose software projects were hosted on GitHub,
for a total of 1,587 commits. We studied the spread of dead methods and the evolution of
this code smell. The most important take-away results of our study can be summarized as
follows: (i) dead methods affect open-source Java desktop applications; (ii) dead methods
generally survive for a long time before being “buried” or “revived;” (iii) dead methods that
are then revived tend to survive less (with respect to dead methods that are then buried);
(iv) dead methods are rarely revived; and (v) most dead methods are dead since the creation
of the corresponding methods. We can conclude that developers should carefully handle

@ Springer

Empir Software Eng (2023) 28:64 Page 250f 28 64

dead methods in open-source Java desktop applications since this code smell is harmful,
widespread, rarely revived, and survives for a long time in the source code. Although caution
is needed, due to the exploratory nature of our research, our findings allow reaching a better
understanding of the presence and evolution of dead methods in open-source Java desk-
top applications so enlarging the body of knowledge on this code smell. Our findings also
justify future work. For example, researchers could be interested in conducting large-scale
studies on software applications larger than ours or focus their attention on another kind
of software applications (e.g., software applications for mobile devices or software appli-
cations developed by using model-driven principles or advanced programming techniques
intended to preserve compliance to user requirements).

Appendix

In this appendix, we provide a brief description of the studied Java Desktop applications,
including the links to their repositories on GitHub.

— 4HWC Autonomous Car: a simulator that allows verifying the movements of an
autonomous car (http://github.com/4hwc/4AHWCAutonomousCar).

— 8_TheWeather: an application that shows the current weather condition, as well
as short and long-term forecasts for an user-specified location (http://github.com/
workofart/WeatherDesktop).

— BankApplication: an application that provides support for some banking operations
(http://github.com/derickfelix/BankApplication).

— bitbox: a utility tool for bit operations (http://github.com/fusiled/bitbox).

— Calculator: a calculator (https://github.com/javadev/calculator).

— Density Converter: a tool that helps converting single or batches of images to specific
formats and density versions (http://github.com/patrickfav/density-converter).

— Deobfuscator-GUI: it provides a GUI for a popular Java deobfuscator based on
CLIDeobfuscator-GUI (http://github.com/java-deobfuscator/deobfuscator-gui).

— Desktop Weather Widget: an application that shows weather information (https://
github.com/kivimango/weather-widget).

— graphics-tablet: a drawing application (http://github.com/alexdoublesmile/
5-app-graphics-tablet).

— IOU: an application that helps people keep track of money owed by one to each other
(https://github.com/donalmurtagh/iou).

— JavaANPR: an application to automatically recognize number plates from vehicle
images (http://github.com/oskopek/javaanpr).

— JavaAppBuilder: A Java desktop application builder (https://github.com/
pedrohenriquebr/appbuilder).

— javaman: a Java implementation of the popular Bomberman game (http://github.com/
malluce/javaman).

— JDM: an application to manage the download of files (http://github.com/iamabs2001/
JDM).

— JPass: an application to manage passwords (http://github.com/gaborbata/jpass).

— MBot: an application to record and automate mouse and keyboard events (http://github.
com/znyi/MBot).

— Metis Dictionary: an English-Hungarian dictionary (https://github.com/gaborbata/
metis-dictionary).

@ Springer

http://github.com/4hwc/4HWCAutonomousCar
http://github.com/workofart/WeatherDesktop
http://github.com/workofart/WeatherDesktop
http://github.com/derickfelix/BankApplication
http://github.com/fusiled/bitbox
https://github.com/javadev/calculator
http://github.com/patrickfav/density-converter
http://github.com/java-deobfuscator/deobfuscator-gui
https://github.com/kivimango/weather-widget
https://github.com/kivimango/weather-widget
http://github.com/alexdoublesmile/5-app-graphics-tablet
http://github.com/alexdoublesmile/5-app-graphics-tablet
https://github.com/donalmurtagh/iou
http://github.com/oskopek/javaanpr
https://github.com/pedrohenriquebr/appbuilder
https://github.com/pedrohenriquebr/appbuilder
http://github.com/malluce/javaman
http://github.com/malluce/javaman
http://github.com/iamabs2001/JDM
http://github.com/iamabs2001/JDM
http://github.com/gaborbata/jpass
http://github.com/znyi/MBot
http://github.com/znyi/MBot
https://github.com/gaborbata/metis-dictionary
https://github.com/gaborbata/metis-dictionary

64 Page 26 of 28 Empir Software Eng (2023) 28:64

— mvn-gui: an application to manage Apache Maven projects (https:/github.com/
oguzhancevik/mvn-gui).

— PocketMine-GUI: it provides a GUI for PocketMine-MP (https://github.com/
PEMapModder/PocketMine-GUI).

— SaveMyPass: an application to manage passwords (https://github.com/tiagoppinho/
SaveMyPass).

— SMYV APP: an application to that provides support to a car repair shop (http://github.
com/bfriscic/ZavrsniRad).

— SoccerQuizApp: an application to evaluate the knowledge of Soccer and Futsal rules.
(https://github.com/cicciog/SoccerQuizApp)

— Swing Chat: it simulates a chat application for multiple users (https://github.com/
ingokuba/swing-chat).

Funding Open access funding provided by Universita degli Studi di Salerno within the CRUI-CARE
Agreement.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Boomsma H, Hostnet BV, Gross HG (2012) Dead code elimination for web systems written in php: lessons
learned from an industry case. In: Proceedings of international conference on software maintenance,
pp 511-515. IEEE

Brown WH, Malveau RC, McCormick HWS, Mowbray TJ (1998) AntiPatterns: Refactoring software,
architectures, and projects in crisis, 1st edn. Wiley

Caivano D, Cassieri P, Romano S, Scanniello G (2021) An exploratory study on dead methods in open-source
java desktop applications. In: ACM/IEEE international symposium on empirical software engineering
and measurement, pp 10:1-10:11

Chatzigeorgiou A, Manakos A (2014) Investigating the evolution of code smells in object-oriented systems.
Innov Syst Softw Eng 10(1):3-18

Eder S, Junker M, Jiirgens E, Hauptmann B, Vaas R, Prommer KH (2012) How much does unused code
matter for maintenance? In: Proceedings of international conference on software engineering, pp 1102—
1111. IEEE

Fard AM, Mesbah A (2013) Jsnose: detecting javascript code smells. In: Proceedings of international working
conference on source code analysis and manipulation, pp 116-125. IEEE

Fowler M (1999) Refactoring: improving the design of existing code, 1st edn. Addison-Wesley

Goel MK, Khanna P, Kishore J (2010) Understanding survival analysis: Kaplan-meier estimate. International
Journal of Ayurveda Research 1:274-278

Haas R, Niedermayr R, Roehm T, Apel S (2020) Is static analysis able to identify unnecessary source code?
ACM Trans Softw Eng Methodol 29(1):6:1-6:23

Hermans F, Aivaloglou E (2016) Do code smells hamper novice programming? a controlled experiment on
scratch programs. In: Proceedings of international conference on program comprehension, pp 1-10

Jr. RGM (2011) Survival Analysis, 2nd edn. Wiley

@ Springer

https://github.com/oguzhancevik/mvn-gui
https://github.com/oguzhancevik/mvn-gui
https://github.com/PEMapModder/PocketMine-GUI
https://github.com/PEMapModder/PocketMine-GUI
https://github.com/tiagoppinho/SaveMyPass
https://github.com/tiagoppinho/SaveMyPass
http://github.com/bfriscic/ZavrsniRad
http://github.com/bfriscic/ZavrsniRad
https://github.com/cicciog/SoccerQuizApp
https://github.com/ingokuba/swing-chat
https://github.com/ingokuba/swing-chat
http://creativecommons.org/licenses/by/4.0/

Empir Software Eng (2023) 28:64 Page 27 of 28 64

Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc
53(282):457-481

Khomh F, Di Penta M, Gueheneuc YG (2009) An exploratory study of the impact of code smells on software
change-proneness. In: Proceedings of working conference on reverse engineering, pp 75-84. IEEE

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. Ann Math Stat 18(1):50-60

Mintyld M, Vanhanen J, Lassenius C (2003) A taxonomy and an initial empirical study of bad smells in
code. In: Proceedings of international conference on software maintenance, pp 381-384. IEEE

Martin RC (2008) Clean code: a handbook of agile software craftsmanship, 1st edn. Prentice Hall

Moha N, Gueheneuc YG, Duchien L, Le Meur AF (2010) Decor: a method for the specification and detection
of code and design smells. IEEE Trans Softw Eng 36(1):20-36

Obbink NG, Malavolta I, Scoccia GL, Lago P (2018) An extensible approach for taming the challenges
of javascript dead code elimination. In: Proceedings of international conference on software analysis,
evolution and Reengineering, pp 291-401

Palomba F, Bavota G, Di Penta M, Fasano F, Oliveto R, De Lucia A (2018) On the diffuseness and the impact
on maintainability of code smells: a large scale empirical investigation. Empir Softw Eng 23(3):1188-
1221

Palomba F, Bavota G, Penta MD, Oliveto R, Lucia AD (2014) Do they really smell bad? a study on develop-
ers’ perception of bad code smells. In: Proceedings of international conference on software maintenance
and evolution, pp 101-110. IEEE

Parnas DL (1994) Software aging. In: Proceedings of international conference on software engineering,
pp 279-287. IEEE

Rich JT, Neely JG, Paniello RC, Voelker CCJ, Nussenbaum B, Wang EW (2010) A practical guide to under-
standing kaplan-meier curves. Otolaryngology—Head and Neck Surgery : Official Journal of American
Academy of Otolaryngology-Head and Neck Surgery 143:331-336

Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: should
we really be using t-test and Cohen’sd for evaluating group differences on the NSSE and other surveys?
In: Annual meeting of the florida association of institutional research, pp 1-3

Romano S (2018) Dead code. In: Proceedings of international conference on software maintenance and
evolution, pp 737-742

Romano S (2022) On the spread and evolution of dead methods in java desktop applications: a replication
package. https:/figshare.com/s/bc90817003996de8855¢c

Romano S, Scanniello G (2015) Dum-tool. In: Proceedings of international conference on software
maintenance and evolution, pp 339-341. IEEE

Romano S, Scanniello G (2018) Exploring the use of rapid type analysis for detecting the dead method
smell in java code. In: Proceedings of EUROMICRO conference on software engineering and advanced
applications, pp 167-174. IEEE

Romano S, Scanniello G, Sartiani C, Risi M (2016) A graph-based approach to detect unreachable methods
in java software. In: Proceedings of symposium on applied computing, pp 1538-1541. ACM

Romano S, Vendome C, Scanniello G, Poshyvanyk D (2016) Are unreachable methods harmful? results
from a controlled experiment. In: Proceedings of international conference on program comprehension,
pp 1-10. IEEE

Romano S, Vendome C, Scanniello G, Poshyvanyk D (2020) A multi-study investigation into dead code.
IEEE Trans Softw Eng 46(1):71-99

Scanniello G (2011) Source code survival with the kaplan meier. In: Proceedings of international conference
on software maintenance, pp 524-527

Scanniello G (2014) An investigation of object-oriented and code-size metrics as dead code predictors. In:
Proceedings of EUROMICRO conference on software engineering and advanced applications, pp 392—
397

Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika
52(3/4):591-611

Tip F, Palsberg J (2000) Scalable propagation-based call graph construction algorithms. In: Proceedings of
conference on object-oriented programming, systems, languages, and applications, pp 281-293. ACM

Tufano M, Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2016) An empirical
investigation into the nature of test smells. In: Proceedings of international conference on automated
software engineering, pp 4-15. ACM

Tufano M, Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2017) There and back
again: can you compile that snapshot? Journal of Software: Evolution and Process 29(4):e1838

@ Springer

https://figshare.com/s/bc90817003996de8855c

64 Page 28 of 28 Empir Software Eng (2023) 28:64

Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk D (2017) When and why
your code starts to smell bad (and whether the smells go away). IEEE Trans Softw Eng 43(11):1063—
1088

Wake WC (2003) Refactoring workbook, 1st edn. Addison-Wesley

Welch BL (1947) The generalisation of student’s problems when several different population variances are
involved. Biometrika 34(1-2):28-35

Wilson EB (1927) Probable inference, the law of succession, and statistical inference. J Am Stat Assoc
22(158):209-212

Wohlin C, Runeson P, Hst M, Ohlsson MC, Regnell B, Wessln A (2012) Experimentation in software
engineering springer

Yamashita A, Moonen L (2013) Do developers care about code smells? an exploratory survey. In:
Proceedings of working conference on reverse engineering, pp 242-251. IEEE

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

3

Danilo Caivano' - Pietro Cassieri? - Simone Romano? © . Giuseppe Scanniello®

Danilo Caivano
danilo.caivano @uniba.it

Pietro Cassieri
pietro.cassieri @studenti.unibas.it

Giuseppe Scanniello
gscanniello@unisa.it

University of Bari, Bari, Italy
University of Basilicata, Potenza, Italy

University of Salerno, Fisciano, Italy

@ Springer

http://orcid.org/0000-0003-4880-3622
mailto: danilo.caivano@uniba.it
mailto: pietro.cassieri@studenti.unibas.it
mailto: gscanniello@unisa.it

	On the spread and evolution of dead methods in Java desktop applications: an exploratory study
	Abstract
	Introduction
	Paper structure

	Background and Related Work
	Dead Code Detection
	Dynamic Code Analysis
	Static Code Analysis
	Refactoring vs. Optimization Perspective

	Empirical Studies on Dead Code

	Study Design
	Research Questions
	Study Context and Planning
	Data Analyses
	Data Availability

	Results
	RQ1. Are Dead Methods Spread in Open-source Java Desktop Applications?
	RQ2. How Long Do Dead Methods Survive in Open-source Java Desktop Applications?
	Further analysis

	RQ3. Do Developers Bury Dead Methods in Open-source Java Desktop Applications?
	RQ4. Do Developers Revive Dead Methods in Open-source Java Desktop Applications?
	RQ5. In Open-source Java Desktop Applications, Were Dead Methods Mostly Born Dead or Do They Mostly Become Dead Later?
	Final Remarks about the New Dataset

	Discussion
	Overall Discussion and Implications
	Threats to Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusion
	Appendix A
	Declarations
	References
	Affiliations

