Abstract
Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions.
To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design.
Partially supported by grant SCHO 1140/3-2 within the DFG programme Algorithm Engineering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
Number of items for finite, strict knapsack is estimated with the pegging test from [122].
References
Adasme, P., Lisser, A., Soto, I.: Robust semidefinite relaxations for a quadratic OFDMA resource allocation scheme. Comput. Oper. Res. 38(10), 1377–1399 (2011)
Agra, A., Christiansen, M., Figueiredo, R., Hvattum, L.M., Poss, M., Requejo, C.: The robust vehicle routing problem with time windows. Comput. Oper. Res. 40(3), 856–866 (2013)
Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation of min–max and min–max regret versions of some combinatorial optimization problems. Eur. J. Oper. Res. 179(2), 281–290 (2007)
Aissi, H., Bazgan, C., Vanderpooten, D.: Min–max and min–max regret versions of combinatorial optimization problems: a survey. Eur. J. Oper. Res. 197(2), 427–438 (2009)
Alem, D.J., Morabito, R.: Production planning in furniture settings via robust optimization. Comput. Oper. Res. 39(2), 139–150 (2012)
Arrival project under contract no. FP6-021235-2. http://arrival.cti.gr/index.php/Main/HomePage
Atamtürk, A.: Strong formulations of robust mixed 0–1 programming. Math. Program. 108(2), 235–250 (2006)
Averbakh, I.: The minmax regret permutation flow-shop problem with two jobs. Eur. J. Oper. Res. 169(3), 761–766 (2006)
Averbakh, I., Berman, O.: Algorithms for the robust 1-center problem on a tree. Eur. J. Oper. Res. 123(2), 292–302 (2000)
Beck, A., Ben-Tal, A.: Duality in robust optimization: primal worst equals dual best. Oper. Res. Lett. 37(1), 1–6 (2009)
Ben-Tal, A., Bertsimas, D., Brown, D.B.: A soft robust model for optimization under ambiguity. Oper. Res. 58(4–Part–2), 1220–1234 (2010)
Ben-Tal, A., Boyd, S., Nemirovski, A.: Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Program. 107(1–2), 63–89 (2006)
Ben-Tal, A., Chung, B.D., Mandala, S.R., Yao, T.: Robust optimization for emergency logistics planning: risk mitigation in humanitarian relief supply chains. Transp. Res. Part B: Methodol. 45(8), 1177–1189 (2011)
Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)
Ben-Tal, A., Golany, B., Shtern, S.: Robust multi-echelon multi-period inventory control. Eur. J. Oper. Res. 199(3), 922–935 (2009)
Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. A 99, 351–376 (2003)
Ben-Tal, A., den Hertog, D., Vial, J.P.: Deriving robust counterparts of nonlinear uncertain inequalities. Math. Program. 149(1), 265–299 (2015)
Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)
Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1–13 (1999)
Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. A 88, 411–424 (2000)
Berman, O., Wang, J.: The minmax regret gradual covering location problem on a network with incomplete information of demand weights. Eur. J. Oper. Res. 208(3), 233–238 (2011)
Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)
Bertsimas, D., Caramanis, C.: Finite adaptability in multistage linear optimization. IEEE Trans. Autom. Control 55(12), 2751–2766 (2010)
Bertsimas, D., Goyal, V.: On the power of robust solutions in two-stage stochastic and adaptive optimization problems. Math. Oper. Res. 35(2), 284–305 (2010)
Bertsimas, D., Goyal, V., Sun, X.A.: A geometric characterization of the power of finite adaptability in multistage stochastic and adaptive optimization. Math. Oper. Res. 36(1), 24–54 (2011)
Bertsimas, D., Pachamanova, D.: Robust multiperiod portfolio management in the presence of transaction costs. Comput. Oper. Res. 35(1), 3–17 (2008)
Bertsimas, D., Pachamanova, D., Sim, M.: Robust linear optimization under general norms. Oper. Res. Lett. 32(6), 510–516 (2004)
Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
Bertsimas, D., Thiele, A.: A robust optimization approach to inventory theory. Oper. Res. 54(1), 150–168 (2006)
Bohle, C., Maturana, S., Vera, J.: A robust optimization approach to wine grape harvesting scheduling. Eur. J. Oper. Res. 200(1), 245–252 (2010)
Bouman, P.C., Akker, J.M., Hoogeveen, J.A.: Recoverable robustness by column generation. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 215–226. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23719-5_19
Bruns, F., Goerigk, M., Knust, S., Schöbel, A.: Robust load planning of trains in intermodal transportation. OR Spectr. 36(3), 631–668 (2014)
Bürger, M., Notarstefano, G., Allgöwer, F.: A polyhedral approximation framework for convex and robust distributed optimization. IEEE Trans. Autom. Control 59(2), 384–395 (2014)
Büsing, C., Koster, A.M.C.A., Kutschka, M.: Recoverable robust knapsacks: the discrete scenario case. Optim. Lett. 5(3), 379–392 (2011)
Büsing, C., Koster, A., Kutschka, M.: Recoverable robust knapsacks: \(\varGamma \)-scenarios. In: Pahl, J., Reiners, T., Voß, S. (eds.) Network Optimization. Lecture Notes in Computer Science, vol. 6701, pp. 583–588. Springer, Heidelberg (2011)
Cacchiani, V., Caprara, A., Galli, L., Kroon, L., Maroti, G., Toth, P.: Railway rolling stock planning: robustness against large disruptions. Transp. Sci. 46(2), 217–232 (2012)
Calafiore, G., Campi, M.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102(1), 25–46 (2005)
Calafiore, G.C.: Random convex programs. SIAM J. Optim. 20(6), 3427–3464 (2010)
Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE Trans. Autom. Control 51(5), 742–753 (2006)
Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of uncertain convex programs. SIAM J. Optim. 19(3), 1211–1230 (2008)
Catanzaro, D., Labbé, M., Salazar-Neumann, M.: Reduction approaches for robust shortest path problems. Comput. Oper. Res. 38(11), 1610–1619 (2011)
Chassein, A.B., Goerigk, M.: A new bound for the midpoint solution in minmax regret optimization with an application to the robust shortest path problem. Eur. J. Oper. Res. 244(3), 739–747 (2015)
Cicerone, S., D’Angelo, G., Stefano, G.D., Frigioni, D., Navarra, A.: Robust algorithms and price of robustness in shunting problems. In: Proceedings of the 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2007) (2007)
Cicerone, S., D’Angelo, G., Stefano, G., Frigioni, D., Navarra, A., Schachtebeck, M., Schöbel, A.: Recoverable robustness in shunting and timetabling. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 28–60. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05465-5_2
Conde, E.: Minmax regret location–allocation problem on a network under uncertainty. Eur. J. Oper. Res. 179(3), 1025–1039 (2007)
Conde, E.: A minmax regret approach to the critical path method with task interval times. Eur. J. Oper. Res. 197(1), 235–242 (2009)
Conde, E.: On a constant factor approximation for minmax regret problems using a symmetry point scenario. Eur. J. Oper. Res. 219(2), 452–457 (2012)
Conde, E., Candia, A.: Minimax regret spanning arborescences under uncertain costs. Eur. J. Oper. Res. 182(2), 561–577 (2007)
D’Angelo, G., Di Stefano, G., Navarra, A.: Recoverable-robust timetables for trains on single-line corridors. In: Proceedings of the 3rd International Seminar on Railway Operations Modelling and Analysis - Engineering and Optimisation Approaches (RailZurich 2009) (2009)
Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. Lecture Notes in Computer Science, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)
Dhamdhere, K., Goyal, V., Ravi, R., Singh, M.: How to pay, come what may: approximation algorithms for demand-robust covering problems. In: 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 367–376. IEEE (2005)
Eggenberg, N.: Combining robustness and recovery for airline schedules. Ph.D. thesis, EPFL (2009)
Eggenberg, N., Salani, M., Bierlaire, M.: Uncertainty feature optimization: an implicit paradigm for problems with noisy data. Networks 57(3), 270–284 (2011)
Erera, A., Morales, J., Svalesbergh, M.: Robust optimization for empty repositioning problems. Oper. Res. 57(2), 468–483 (2009)
Falk, J.E.: Exact solutions of inexact linear programs. Oper. Res. 24(4), 783–787 (1976)
de Farias, J.R., Zhao, H., Zhao, M.: A family of inequalities valid for the robust single machine scheduling polyhedron. Comput. Oper. Res. 37(9), 1610–1614 (2010)
Feige, U., Jain, K., Mahdian, M., Mirrokni, V.: Robust combinatorial optimization with exponential scenarios. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 439–453. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72792-7_33
Fischetti, M., Monaci, M.: Light robustness. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 61–84. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05465-5_3
Fischetti, M., Monaci, M.: Cutting plane versus compact formulations for uncertain (integer) linear programs. Math. Program. Comput. 4(3), 239–273 (2012)
Fischetti, M., Salvagnin, D., Zanette, A.: Fast approaches to improve the robustness of a railway timetable. Transp. Sci. 43, 321–335 (2009)
Fujisaki, Y., Wada, T.: Sequential randomized algorithms for robust optimization. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 6190–6195 (2007)
Fujisaki, Y., Wada, T.: Robust optimization via probabilistic cutting plane technique. In: Proceedings of the 40th ISCIE International Symposium on Stochastic Systems Theory and its Applications, pp. 137–142 (2009)
Fujisaki, Y., Wada, T.: Robust optimization via randomized algorithms. In: ICCAS-SICE 2009, pp. 1226–1229 (2009)
Ghaoui, L.E., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18, 1034–1064 (1997)
Goerigk, M.: Algorithms and concepts for robust optimization. Ph.D. thesis, Georg-August Universität Göttingen (2012)
Goerigk, M.: ROPI homepage (2013). http://optimierung.mathematik.uni-kl.de/~goerigk/ropi/
Goerigk, M.: A note on upper bounds to the robust knapsack problem with discrete scenarios. Ann. Oper. Res. 223(1), 461–469 (2014)
Goerigk, M.: ROPI - a robust optimization programming interface for C++. Optim. Methods Softw. 29(6), 1261–1280 (2014)
Goerigk, M., Deghdak, K., T’Kindt, V.: A two-stage robustness approach to evacuation planning with buses. Transp. Res. Part B: Methodol. 78, 66–82 (2015)
Goerigk, M., Heße, S., Müller-Hannemann, M., Schmidt, M., Schöbel, A.: Recoverable robust timetable information. In: Frigioni, D., Stiller, S. (eds.) 13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. OpenAccess Series in Informatics (OASIcs), vol. 33, pp. 1–14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2013)
Goerigk, M., Knoth, M., Müller-Hannemann, M., Schmidt, M., Schöbel, A.: The price of robustness in timetable information. In: Caprara, A., Kontogiannis, S. (eds.) 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. OpenAccess Series in Informatics (OASIcs), vol. 20, pp. 76–87. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2011)
Goerigk, M., Schmidt, M., Schöbel, A., Knoth, M., Müller-Hannemann, M.: The price of strict and light robustness in timetable information. Transp. Sci. 48(2), 225–242 (2014)
Goerigk, M., Schöbel, A.: An empirical analysis of robustness concepts for timetabling. In: Erlebach, T., Lübbecke, M. (eds.) 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2010). OpenAccess Series in Informatics (OASIcs), vol. 14, pp. 100–113. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2010)
Goerigk, M., Schöbel, A.: A scenario-based approach for robust linear optimization. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 139–150. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19754-3_15
Goerigk, M., Schöbel, A.: Recovery-to-optimality: a new two-stage approach to robustness with an application to aperiodic timetabling. Comput. Oper. Res. 52(Part A), 1–15 (2014)
Goetzmann, K.S., Stiller, S., Telha, C.: Optimization over integers with robustness in cost and few constraints. In: Solis-Oba, R., Persiano, G. (eds.) Approximation and Online Algorithms (WAOA 2011). Lecture Notes in Computer Science, vol. 7164, pp. 89–101. Springer, Heidelberg (2012)
Goh, J., Sim, M.: Robust optimization made easy with ROME. Oper. Res. 59(4), 973–985 (2011)
Golovin, D., Goyal, V., Polishchuk, V., Ravi, R., Sysikaski, M.: Improved approximations for two-stage min-cut and shortest path problems under uncertainty. Math. Program. 149(1), 167–194 (2015)
Iida, H.: A note on the max-min 0–1 knapsack problem. J. Comb. Optim. 3(1), 89–94 (1999)
Inuiguchi, M., Sakawa, M.: Minimax regret solution to linear programming problems with an interval objective function. Eur. J. Oper. Res. 86(3), 526–536 (1995)
Jenkins, L.: Selecting scenarios for environmental disaster planning. Eur. J. Oper. Res. 121(2), 275–286 (2000)
Jeyakumar, V., Li, G., Srisatkunarajah, S.: Strong duality for robust minimax fractional programming problems. Eur. J. Oper. Res. 228(2), 331–336 (2013)
Kalai, R., Lamboray, C., Vanderpooten, D.: Lexicographic \(\alpha \)-robustness: an alternative to min–max criteria. Eur. J. Oper. Res. 220(3), 722–728 (2012)
Kasperski, A., Kurpisz, A., Zieliński, P.: Approximating a two-machine flow shop scheduling under discrete scenario uncertainty. Eur. J. Oper. Res. 217(1), 36–43 (2012)
Kasperski, A., Makuchowski, M., Zieliński, P.: A tabu search algorithm for the minmax regret minimum spanning tree problem with interval data. J. Heuristics 18(4), 593–625 (2012)
Kasperski, A., Zieliński, P.: An approximation algorithm for interval data minmax regret combinatorial optimization problems. Inf. Process. Lett. 97(5), 177–180 (2006)
Kasperski, A., Zieliński, P.: Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights. Eur. J. Oper. Res. 200(3), 680–687 (2010)
Khandekar, R., Kortsarz, G., Mirrokni, V., Salavatipour, M.R.: Two-stage robust network design with exponential scenarios. Algorithmica 65(2), 391–408 (2013)
Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Boston (1997)
Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The concept of recoverable robustness, linear programming recovery, and railway applications. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 1–27. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05465-5_1
Lin, J., Ng, T.S.: Robust multi-market newsvendor models with interval demand data. Eur. J. Oper. Res. 212(2), 361–373 (2011)
Löfberg, J.: Automatic robust convex programming. Optim. Methods Softw. 27(1), 115–129 (2012)
López, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180(2), 491–518 (2007)
Mani, M., Sing, A.K., Orshansky, M.: Joint design-time and post-silicon minimization of parametric yield loss using adjustable robust optimization. In: Proceedings of the 2006 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2006, pp. 19–26. ACM, New York (2006)
Mausser, H.E., Laguna, M.: A heuristic to minimax absolute regret for linear programs with interval objective function coefficients. Eur. J. Oper. Res. 117(1), 157–174 (1999)
Mausser, H., Laguna, M.: A new mixed integer formulation for the maximum regret problem. Int. Trans. Oper. Res. 5(5), 389–403 (1998)
Monaci, M., Pferschy, U.: On the robust knapsack problem. SIAM J. Optim. 23(4), 1956–1982 (2013)
Monaci, M., Pferschy, U., Serafini, P.: Exact solution of the robust knapsack problem. Comput. Oper. Res. 40(11), 2625–2631 (2013)
Montemanni, R.: A Benders decomposition approach for the robust spanning tree problem with interval data. Eur. J. Oper. Res. 174(3), 1479–1490 (2006)
Montemanni, R., Gambardella, L.: An exact algorithm for the robust shortest path problem with interval data. Comput. Oper. Res. 31(10), 1667–1680 (2004)
Montemanni, R., Gambardella, L.: A branch and bound algorithm for the robust spanning tree problem with interval data. Eur. J. Oper. Res. 161(3), 771–779 (2005)
Müller-Hannemann, M., Schirra, S. (eds.): Algorithm Engineering. LNCS, vol. 5971. Springer, Heidelberg (2010)
Mulvey, J.M., Vanderbei, R.J., Zenios, S.A.: Robust optimization of large-scale systems. Oper. Res. 43(2), 264–281 (1995)
Mutapcic, A., Boyd, S.: Cutting-set methods for robust convex optimization with pessimizing oracles. Optim. Methods Softw. 24(3), 381–406 (2009)
Ng, T.S., Sun, Y., Fowler, J.: Semiconductor lot allocation using robust optimization. Eur. J. Oper. Res. 205(3), 557–570 (2010)
Nikulin, Y.: Simulated annealing algorithm for the robust spanning tree problem. J. Heuristics 14(4), 391–402 (2008)
Ouorou, A.: Tractable approximations to a robust capacity assignment model in telecommunications under demand uncertainty. Comput. Oper. Res. 40(1), 318–327 (2013)
Paragon Decision Company: AIMMS - The Language Reference, Version 3.12, March 2012
Pereira, J., Averbakh, I.: Exact and heuristic algorithms for the interval data robust assignment problem. Comput. Oper. Res. 38(8), 1153–1163 (2011)
Pérez-Galarce, F., Álvarez-Miranda, E., Candia-Véjar, A., Toth, P.: On exact solutions for the minmax regret spanning tree problem. Comput. Oper. Res. 47, 114–122 (2014)
Reemtsen, R.: Some outer approximation methods for semi-infinite optimization problems. J. Comput. Appl. Math. 53(1), 87–108 (1994)
Roy, B.: Robustness in operational research and decision aiding: a multi-faceted issue. Eur. J. Oper. Res. 200(3), 629–638 (2010)
Sanders, P.: Algorithm engineering – an attempt at a definition. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 321–340. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03456-5_22
Sbihi, A.: A cooperative local search-based algorithm for the multiple-scenario max–min knapsack problem. Eur. J. Oper. Res. 202(2), 339–346 (2010)
Schöbel, A.: Generalized light robustness and the trade-off between robustness and nominal quality. Math. Methods Oper. Res. 80(2), 161–191 (2014)
Siddiqui, S., Azarm, S., Gabriel, S.: A modified Benders decomposition method for efficient robust optimization under interval uncertainty. Struct. Multidiscip. Optim. 44(2), 259–275 (2011)
Song, X., Lewis, R., Thompson, J., Wu, Y.: An incomplete m-exchange algorithm for solving the large-scale multi-scenario knapsack problem. Comput. Oper. Res. 39(9), 1988–2000 (2012)
Soyster, A.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21, 1154–1157 (1973)
Stiller, S.: Extending concepts of reliability. Network creation games, real-time scheduling, and robust optimization. Ph.D. thesis, TU Berlin (2008)
Suzuki, S., Kuroiwa, D., Lee, G.M.: Surrogate duality for robust optimization. Eur. J. Oper. Res. 231(2), 257–262 (2013)
Takeda, A., Taguchi, S., Tütüncü, R.: Adjustable robust optimization models for a nonlinear two-period system. J. Optim. Theory Appl. 136, 275–295 (2008)
Taniguchi, F., Yamada, T., Kataoka, S.: Heuristic and exact algorithms for the max–min optimization of the multi-scenario knapsack problem. Comput. Oper. Res. 35(6), 2034–2048 (2008)
Thuente, D.J.: Duality theory for generalized linear programs with computational methods. Oper. Res. 28(4), 1005–1011 (1980)
Velarde, J.L.G., Martí, R.: Adaptive memory programing for the robust capacitated international sourcing problem. Comput. Oper. Res. 35(3), 797–806 (2008)
Xu, J., Johnson, M.P., Fischbeck, P.S., Small, M.J., VanBriesen, J.M.: Robust placement of sensors in dynamic water distribution systems. Eur. J. Oper. Res. 202(3), 707–716 (2010)
Yaman, H., Karaşan, O.E., Pınar, M.Ç.: The robust spanning tree problem with interval data. Oper. Res. Lett. 29(1), 31–40 (2001)
Yin, Y., Madanat, S.M., Lu, X.Y.: Robust improvement schemes for road networks under demand uncertainty. Eur. J. Oper. Res. 198(2), 470–479 (2009)
Zanjani, M.K., Ait-Kadi, D., Nourelfath, M.: Robust production planning in a manufacturing environment with random yield: a case in sawmill production planning. Eur. J. Oper. Res. 201(3), 882–891 (2010)
Zieliński, P.: The computational complexity of the relative robust shortest path problem with interval data. Eur. J. Oper. Res. 158(3), 570–576 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
Goerigk, M., Schöbel, A. (2016). Algorithm Engineering in Robust Optimization. In: Kliemann, L., Sanders, P. (eds) Algorithm Engineering. Lecture Notes in Computer Science(), vol 9220. Springer, Cham. https://doi.org/10.1007/978-3-319-49487-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-49487-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49486-9
Online ISBN: 978-3-319-49487-6
eBook Packages: Computer ScienceComputer Science (R0)