Abstract
We study the problem of finding occurrences of motifs in vertex-colored graphs, where a motif is a multiset of colors, and an occurrence of a motif is a subset of connected vertices whose multiset of colors equals the motif. This problem has applications in metabolic network analysis, an important area in bioinformatics. We give two positive results and three negative results that together draw sharp borderlines between tractable and intractable instances of the problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abrahamson, K.R., Fellows, M.R.: Finite automata, bounded treewidth, and well-quasiordering. In: Robertson, N., Seymoued, P. (eds.), Graph Structure Theory, pp. 539–564 (1993)
Alon, N., Yuster, R., Zwick, U.: Color coding. Journal of the ACM 42(4), 844–856 (1995)
Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability. A survey. BIT Numerical Mathematics 25(1), 2–23 (1985)
Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)
Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)
Bodlaender, H.L., Fluiter, L.E.: Intervalizing k-colored graphs. In: Fülöp, Z., Gecseg, F. (eds.) Automata, Languages and Programming. LNCS, vol. 944, pp. 87–98. Springer, Heidelberg (1995)
Bodlaender, H.L., Fellows, M.R., Langston, M.A., Ragan, M.A., Rosamond, F.A., Weyer, M.: Kernelization for convex recoloring. In: Proceedings of the 2nd workshop on Algorithms and Complexity in Durham (ACiD), pp. 23–35 (2006)
Bodlaender, H.L., Fellows, M.R., Warnow, T.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) Automata, Languages and Programming. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992)
Chor, B., Fellows, M.R., Ragan, M.A., Rosamond, F.A., Snir, S.: Connected coloring completion for general graphs: Algorithms and complexity – Manuscript (2007)
Corneil, D.G., Keil, J.M.: A dynamic programming approach to the dominating set problem on k-trees. SIAM Journal on Algebraic and Discrete Methods 8(4), 535–543 (1987)
Deville, Y., Gilbert, D., Helden, J.V., Wodak, S.J.: An overview of data models for the analysis of biochemical pathways. Briefings in Bioinformatics 4(3), 246–259 (2003)
Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
Fellows, M.R., Hallett, M.T., Wareham, H.T.: DNA physical mapping: Three ways difficult. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 157–168. Springer, Heidelberg (1993)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)
Golumbic, M., Kaplan, H., Shamir, R.: On the complexity of DNA physical mapping. Advances in Applied Mathematics 15, 251–261 (1994)
Ideker, T., Karp, R.M., Scott, J., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. Journal of Computational Biology 13(2), 133–144 (2006)
Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proceedings of the National Academy of Sciences of the United States of America 100(20), 11394–11399 (2003)
Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: Application to metabolic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4), 360–368 (2006)
McMorris, F.R., Warnow, T.J., Wimer, T.: Triangulating vertex-colored graphs. SIAM Journal on Discrete Mathematics 7(2), 296–306 (1994)
Moran, S., Snir, S.: Convex recolorings of strings and trees: Definitions, hardness results and algorithms. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 218–232. Springer, Heidelberg (2005)
Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and applications. In: STOC. Proceedings of the 25th annual ACM Symposium on Theory Of Computing, pp. 213–223. ACM Press, New York (1990)
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. SIAM Journal of Algorithms 7, 309–322 (1986)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S. (2007). Sharp Tractability Borderlines for Finding Connected Motifs in Vertex-Colored Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_31
Download citation
DOI: https://doi.org/10.1007/978-3-540-73420-8_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73419-2
Online ISBN: 978-3-540-73420-8
eBook Packages: Computer ScienceComputer Science (R0)