Abstract
Lung cancer remains one of the most common cancers worldwide. Temporal evaluation is a useful tool for analyzing the malignant behavior of a lesion during treatment or that of indeterminate lesions which may be benign. Thereby, this work proposes a methodology for analysis, quantification and visualization of unsupervised changes in lung lesions, through principal component analysis. From change regions, we extracted texture features for lesion classification as benign or malignant. To reach this purpose, two databases with distinct behavior were used, one of which concerning malign under treatment and another indeterminate, but likely benign, lesions. The results have shown that the lesion’s density changes in a public database of malignant lesions under treatment were greater than the private database of benign lung nodules. From the texture analysis of the regions where the density changes occurred, we were able to discriminate lung lesions with an accuracy of 98.41 %, showing that these changes could point out the nature of the lesion. Other contribution was visualization of changes occurring in the lesions over time. Besides, we quantified these changes and analyzed the entire set through volumetry, the most commonly used technique to evaluate progression of lung lesions.











Similar content being viewed by others
References
Alsmirat MA, Jararweh Y, Al-Ayyoub M, Shehab MA, Gupta BB (2016) Accelerating compute intensive medical imaging segmentation algorithms using hybrid cpu-gpu implementations. Multimedia Tools and Applications, 1–19. doi:10.1007/s11042-016-3884-2
Bashir U, Siddique M, McLean E, Goh V, Cook G (2016) Imaging heterogeneity in lung cancer: Techniques, applications, and challenges. Am J Roentgenol 207(3):534–543. doi:10.2214/AJR.15.15864
Böttcher J, Renz DM, Zahm D-M, Pfeil A, Fallenberg EM, Streitparth F, Maurer MH, Hamm B, Engelken FJ (2014) Response to neoadjuvant treatment of invasive ductal breast carcinomas including outcome evaluation: Mri analysis by an automatic cad system in comparison to visual evaluation. Acta Oncol 53(6):759–768. doi:10.3109/0284186X.2013.852688. PMID: 24299492
Chen B, Kitasaka T, Honma H, Takabatake H, Mori M, Natori H, Mori K Automatic Segmentation of Solitary Pulmonary Nodules Based on Local Intensity Structure Analysis and 3D Neighborhood Features in 3D Chest CT Images. doi:10.1117/12.911782
Chen Y-W, Lin C-J (2006) Combining SVMs with Various Feature Selection Strategies. In: Guyon I, Nikravesh M, Gunn S, Zadeh LA (eds) Feature Extraction: Foundations and Applications. doi:10.1007/978-3-540-35488-813. Springer, Berlin, Heidelberg, pp 315–324
Chu A, Sehgal CM, Greenleaf JF (1990) Use of gray value distribution of run lengths for texture analysis. Pattern Recogn Lett 11(6):415–419. doi:10.1016/0167-8655(90)90112-F
Costa PSS, Santos NCC, Cunha P, Cotter J, Sousa N (2013) The Use of Multiple Correspondence Analysis to Explore Associations between Categories of Qualitative Variables in Healthy Ageing. Journal of aging research 2013. doi:10.1155/2013/302163
Duindam T, de Hoop B, van Ginneken B (2009) Nodule volume change estimation in thoracic ct using sphere fitting, morphological segmentation and image registration. In: de Bruijne, van Ginneken B, Kiraly A, Kuhnigk J-M, Lorenz C, McClelland J, Mori K, Reeves A, Joseph Reinhardt MB (eds) 2nd International Workshop on Pulmonary Image Analysis, London, UK, pp 389–400
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: Revised fRECISTg guideline (version 1.1). Eur J Cancer 45 (2):228–247. doi:10.1016/j.ejca.2008.10.026. Response assessment in solid tumours (RECIST): Version 1.1 and supporting papers
El-Baz A, Yuksel SE, Elshazly S, Farag AA (2005) Non-rigid registration techniques for automatic follow-up of lung nodules. Int Congr Ser 1281(0):1115–1120. doi:10.1016/j.ics.2005.03.340. fCARSg 2005: Computer Assisted Radiology and Surgery Proceedings of the 19th International Congress and Exhibition
Field JK, Oudkerk M, Pedersen JH, Duffy SW (2013) Prospects for population screening and diagnosis of lung cancer. The Lancet 382(9893):732–741. doi:10.1016/S0140-6736(13)61614-1
Gu S, Wilson D, Tan J, Pu J (2011) Pulmonary nodule registration: Rigid or nonrigid?. Med Phys 38(7):4406–4414. doi:10.1118/1.3602457
Hadjiiski LM, Way TW, Sahiner B, Chan H-P, Cascade P, Bogot N, Kazerooni EA, Zhou C Computer-aided Diagnosis for Interval Change Analysis of Lung Nodule Features in Serial CT Examinations. doi:10.1117/12.713770
Han H, Li L, Han F, Song B, Moore W, Liang Z (2015) Fast and adaptive detection of pulmonary nodules in thoracic ct images using a hierarchical vector quantization scheme. IEEE Journal of Biomedical and Health Informatics 19 (2):648–659. doi:10.1109/JBHI.2014.2328870
Harrison LCV, Raunio M, Holli KK, Luukkaala T, Savio S, Elovaara I, Soimakallio S, Eskola HJ, Dastidar P (2010) fMRIg texture analysis in multiple sclerosis: Toward a clinical analysis protocol. Acad Radiol 17(6):696–707. doi:10.1016/j.acra.2010.01.005
Ibanez L, Schroeder W, Ng L, Cates J (2003) The ITK Software Guide, 1st edn. Kitware, Inc., New York. Kitware, Inc.. ISBN 1-930934-10-6. http://www.itk.org/ItkSoftwareGuide.pdf
Jaffe CC (2006) Measures of Response: RECIST, WHO, and New Alternatives. J Clin Oncol 24(20):3245–3251. doi:10.1200/jco.2006.06.5599
Kim T, Cho N, Jeong G, Bengtsson E, Choi H (2014) 3d texture analysis in renal cell carcinoma tissue image grading. Comput Math Methods Med 2014:536217–153621712. doi:10.1155/2014/536217
Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2. IJCAI’95, pp. 1137–1143. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. http://dl.acm.org/citation.cfm?id=1643031.1643047
Lai D, Rao N, Kuo C-h, Bhatt S, Dogra V (2007) Independent component analysis applied to ultrasound speckle texture analysis and tissue characterization. In: Wheeler B, Enderle JD, Viergever MA, Thakor NV, Saranummi N, Butera R, He B (eds) Engineering in Medicine and Biology Society 2007. EMBS 2007. 29th Annual International Conference of the IEEE, Convention Center; Cité Internationale; Lyon, France, pp 6523–6526. doi:10.1109/IEMBS.2007.4353854
Lindell RM, Hartman TE, Swensen SJ, Jett JR, Midthun DE, Tazelaar HD, Mandrekar JN (2007) Five-year lung cancer screening experience: Ct appearance, growth rate, location, and histologic features of 61 lung cancers. Radiology 242(2):555–562. doi:10.1148/radiol.2422052090. PMID: 17255425
Linning E, Wu S, Wang K, Meng H, Sun D, Wu Z (2013) Computed tomography quantitative analysis of components: a new method monitoring the growth of pulmonary nodule. Acta Radiol 54(8):904–908. doi:10.1177/0284185113485572. http://acr.sagepub.com/content/54/8/904.full.pdf+html
Netto SMB, Silva AC, Nunes RA, Gattass M (2016) Voxel-based comparative analysis of lung lesions in ct for therapeutic purposes. Medical and Biological Engineering and Computing 1–20. doi:10.1007/s11517-016-1510-0
N.I. of Cancer (INCA) (2013) Câncer no Brasil: Dados dos Registros de Base Populacional Accessible in 09/05/2013
O’Donoghue J, Roantree M, Cullen B, Moyna N, Sullivan CO, McCarren A (2015) Anomaly and event detection for unsupervised athlete performance data. In: Bergmann R, Görg S, Müller G (eds) LWA. CEUR Workshop Proceedings, vol. 1458, pp. 205–217. CEUR-WS.org,. http://doras.dcu.ie/20867
Parikh J, Selmi M, Charles-Edwards G, Glendenning J, Ganeshan B, Verma H, Mansi J, Harries M, Tutt A, Goh V (2014) Changes in primary breast cancer heterogeneity may augment midtreatment mr imaging assessment of response to neoadjuvant chemotherapy. Radiology 272(1):100–112. doi:10.1148/radiol.14130569. PMID: 24654970
Puri M, Patil KM, Balasubramanian V, Narayanamurthy VB (2005) Texture analysis of foot sole soft tissue images in diabetic neuropathy using wavelet transform. Med Biol Eng Comput 43(6):756–763. doi:10.1007/BF02430954
Rajkumar V, Goh V, Siddique M, Robson M, Boxer G, Pedley RB, Cook GJR (2015) Texture analysis of 125i-a5b7 anti-cea antibody spect differentiates metastatic colorectal cancer model phenotypes and anti-vascular therapy response British Journal of Cancer aop(current). doi:10.1038/bjc.2015.166
Reeves AP, Biancardi AM, Yankelevitz D, Fotin S, Keller BM, Jirapatnakul A, Lee J (2009) A public image database to support research in computer aided diagnosis. In: Pan BHYK (ed) Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, Minneapolis, MN, pp 3715–3718. doi:10.1109/IEMBS.2009.5334807
Reeves AP, Chan AB, Yankelevitz DF, Henschke CI, Kressler B, Kostis WJ (2006) On measuring the change in size of pulmonary nodules. IEEE Trans Med Imaging 25(4):435–450. doi:10.1109/TMI.2006.871548
Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395-409 (2011). doi:10.1056/NEJMoa1102873.
Tao C, Gierada DS, Zhu F, Pilgram TK, Wang JH, Bae KT (2009) Automated Matching of Pulmonary Nodules: Evaluation in Serial Screening Chest CT. Am J Roentgenol 192:624–628
Thokale S, Patil SA (2016) Principal component analysis to detect anomaly in high dimensional data using cluster International Journal of Innovative Research in Computer and Communication Engineering 4(7)
Vapnik VN (1998) Statistical Learning Theory. Wiley, New York
Yip C, Tacelli N, Remy-Jardin M, Scherpereel A, Cortot A, Lafitte J-J, Wallyn F, Remy J, Bassett P, Siddique M, Cook GJR, Landau DB, Goh V (2015) Imaging tumor response and tumoral heterogeneity in non-small cell lung cancer treated with antiangiogenic therapy. J Thorac Imaging 30(5):300–307. doi:10.1097/RTI.0000000000000164
Zhang L, Yankelevitz DF, Carter D, Henschke CI, Yip R, Reeves AP (2012) Internal growth of nonsolid lung nodules: radiologic-pathologic correlation. Radiology 263(1):279–86
Zhang Y, Wells J, Buist R, Peeling J, Yong VW, Mitchell JR (2006) A novel MRI texture analysis of demyelination and inflammation in relapsing-remitting experimental allergic encephalomyelitis. In: Sporring RLN (ed) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2006, 9th International Conference, Copenhagen, Denmark, October 1-6, 2006, Proceedings, Part I, pp 760–767. doi:10.1007/1186656593
Zhang Y (2012) Mri texture analysis in multiple sclerosis. Int J Biomed Imaging 2012:762804–17628047
Zheng Y, Steiner K, Bauer T, Yu J, Shen D, Kambhamettu C (2007) Lung nodule growth analysis from 3d ct data with a coupled segmentation and registration framework. In: Ikeuchi LDPBK (ed) Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference On, Rio de Janeiro, Brazil, pp 1–8. doi:10.1109/ICCV.2007.4409150
Acknowledgments
The authors acknowledge CAPES, CNPq and FAPEMA for financial support. We are grateful to the PLD database for publishing the lung lesions used in this work and to Pedro Ernesto University Hospital, RJ, Brazil, for the lung nodule database.
Author information
Authors and Affiliations
Corresponding author
Appendix: Texture Analysis
Appendix: Texture Analysis
Texture features were used in this work for the diagnostic classification task of lung lesions.
1.1 Run-Length Features
These capture the gray level primitives’ proprieties. M is the run-length matrix, a is the gray level value and r is the length of primitive.
1.1.1 Short-Run Emphasis - (SRE)
1.1.2 Long-Run Emphasis - (LRE)
1.1.3 Gray-Level Nonuniformity - (GLNU)
1.1.4 Run-Length Nonuniformity - (RLN)
1.1.5 Low Gray Level Run Emphasis - (LGRE)
1.1.6 High Gray Level Run Emphasis - (HGLRN)
1.1.7 Short Run, Low Gray Level Emphasis - (SRLGLE)
1.1.8 Short Run, High Gray Level Emphasis - (SRHGLE)
1.1.9 Long Run, Low Gray Level Emphasis - (LRLGLE)
1.1.10 Long Run, High Gray Level Emphasis - (LRHGLE)
Rights and permissions
About this article
Cite this article
Barros Netto, S.M., Silva, A.C., Cardoso de Paiva, A. et al. Unsupervised detection of density changes through principal component analysis for lung lesion classification. Multimed Tools Appl 76, 18929–18954 (2017). https://doi.org/10.1007/s11042-017-4414-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-4414-6