Skip to main content

Advertisement

Log in

A quantum protocol for millionaire problem with Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a quantum protocol for the millionaire problem with Bell states, where two distrustful parties can compare the values of their fortune with the help of a semi-dishonest third party. The efficiency of our protocol is higher than that of previous protocols for millionaire problem. In our protocol, any information about the values of their fortune will not be leaked out. The security of our protocol is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. IEEE, New York, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Liu, B., Gao, F., Wen, Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quantum Electron. 47, 1389–1390 (2011)

    ADS  Google Scholar 

  5. Huang, W., Guo, F.Z., Huang, Z., Wen, Q.Y., Zhu, F.C.: Three-particle QKD protocol against a collective noise. Opt. Commun. 284, 536–540 (2011)

    Article  ADS  Google Scholar 

  6. Hillery, M., Buzěk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  7. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  9. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  10. Zhang, W.-W, Gao, F, Liu, B., et al.: A watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0423-6

  11. Zhang, W.-W., Gao, F., Liu, B., et al. : A quantum watermark protocol. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-012-1354-9

  12. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), Washington, DC, USA, p. 160 (1982)

  13. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  14. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  15. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  Google Scholar 

  16. Liu, W., Wang, Y.-B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57, 583–588 (2012)

    Article  ADS  MATH  Google Scholar 

  17. Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.-X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  18. Liu, W., Wang, Y.-B., Jiang, Z.-T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  19. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51, 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z., Cui, W.: New quantum private comparison protocol using \(\chi \)-type state. Int. J. Theor. Phys. 51, 1953–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. doi:10.1007/s10773-012-1246-z

  22. Jia, H.-Y., Wen, Q.-Y., Li, Y.-B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51, 1187–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, B., Gao, F., Jia, H.-Y., Huang, W., Zhang, W.-W., Wen, Q.-Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0439-y

  24. Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, Y.-G., Xia, J., Jia, X., Zhang, H.: Comment on “Quantum private comparison protocols with a semi-honest third party”. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0433-4

  26. Zhang, W.-W., Zhang, K.-J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0507-3

  27. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  28. Lin, S., Sun, Y., Liu, X.-F., Yao, Z.-Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0395-6

  29. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  30. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler C-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis of the Hillery–Buzek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  32. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam” [Phys. Lett. A, 350:174 (2006)]. Phys. Lett. A 360, 748 (2007)

    Article  ADS  Google Scholar 

  33. Gao, F., Qin, S.J., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  34. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on “Experimental demonstration of a quantum protocol for Byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  35. Song, T.T., Zhang, J., Gao, F., et al.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)

    Article  ADS  Google Scholar 

  36. Guo, F.Z., Qin, S.J., Gao, F., et al.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)

    Article  ADS  Google Scholar 

  37. Lin, S., Gao, F., Guo, F.Z., et al.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  38. Lin, S., Wen, Q.Y., Gao, F., et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom–Felbinger protocol. Opt. Commun. 281, 4553 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61272057, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), SRFDP (Grant No. 20090005110010), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2011YB01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, WW., Li, D., Zhang, KJ. et al. A quantum protocol for millionaire problem with Bell states. Quantum Inf Process 12, 2241–2249 (2013). https://doi.org/10.1007/s11128-012-0520-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0520-6

Keywords

Navigation