Skip to main content
Log in

A class of linear multi-step method adapted to general oscillatory second-order initial value problems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper proposes and investigates a class of new linear multi-step methods for solving general oscillatory second-order initial value problems \(y^{\prime \prime }(t)+My(t)=f(t,y(t),y^{\prime }(t))\), where M is a positive semi-definite matrix containing implicitly the frequencies of the problem. The new methods, with coefficients depending on the frequency matrix M, incorporate the special structure of the problem brought by the linear term My(t) and integrate exactly the unperturbed oscillator \(y^{\prime \prime }(t)+My(t)=\mathbf {0}\). This class of new methods can be viewed extensions of famous Gautschi-type methods from special oscillatory problem to general oscillatory problem. A rigorous error analysis is given and the local truncation errors of the solution and the derivative are presented. Numerical experiments show that our new methods are more efficient in comparison with the well-known high quality methods proposed in the scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aubry, A., Chartier, P.: Pseudo-symplectic Runge–Kutta methods. BIT 38, 439–461 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avdyushev, V.A.: Special perturbation theory methods in celestial mechanics, I. Principles for the construction and substantiation of the application. Russ. Phys. J. 49, 1344–1353 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Franco, J.M.: Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)

    Article  MATH  Google Scholar 

  4. García-Alonso, F., Reyes, J., Ferrádiz, J., Vigo-Aguiar, J.: Accurate numerical integration of perturbed oscillatory systems in two frequencies. ACM Trans. Math. Softw. 36, 21–34 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. López, D.J., Martín, P.: A numerical method for the integration of perturbed linear problems. Appl. Math. Comput. 96, 65–73 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ramos, H., Vigo-Aguiar, J.: Variable-stepsize Chebyshev-type methods for the integration of secondorder I.V.P.s. J. Comput. Appl. Math. 204, 102–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations. An introduction for scientists and engineers, 4th edn. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  8. Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  9. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  10. Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wu, X., You, X., Xia, J.: Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Commun. 180, 2250–2257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  13. Yang, H., Wu, X.: Trigonometrically-fitted ARKN methods for perturbed oscillators. Appl. Numer. Math. 58, 1375–1395 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vigo-Aguiar, J., Ramos, H.: Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158, 187–211 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jator, S.N., Swindell, S., French, R.: Trigonometrically fitted block Numerov type method for \(y^{\prime \prime } = f (x, y, y^{\prime } )\). Numer. Algorithms 62, 13–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach Science Publishers, Amsterdam (1998)

    MATH  Google Scholar 

  17. Jator, S.N.: A sixth order linear multistep method for the direct solution of \(y^{\prime \prime } = f (x, y, y^{\prime })\). Int. J. Pure Appl. Math. 40, 457–472 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Jator, S.N.: Solving second order initial value problems by a hybrid multistep method without predictors. Appl. Math. Comput. 217, 4036–4046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jator, S.N.: On a class of hybrid methods for \(y^{\prime \prime }= f (x, y, y^{\prime })\). Int. J. Pure Appl. Math. 59(4), 381–395 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Ramos, H., Mehta, S., Vigo-Aguiar, J.: A unified approach for the development of \(k\)-step block Falkner-type methods for solving general second-order initial-value problems in ODEs. J. Comput. Appl. Math. 318, 550–564 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramos, H., Singhc, G.: A note on variable step-size formulation of a Simpson’s-type second derivative block method for solving stiff systems. Appl. Math. Lett. 64, 101–107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, X., You, X., Li, J.: Note on derivation of order conditions for ARKN methods for perturbed oscillators. Comput. Phys. Commun. 180, 1545–1549 (2009)

    Article  MathSciNet  Google Scholar 

  23. Wu, X., Wang, B.: Multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems. Comput. Phys. Commun. 181, 1955–1962 (2010)

    Article  MATH  Google Scholar 

  24. Yang, H., Wu, X., You, X., Fang, Y.: Extended RKN-type methods for numerical integration of perturbed oscillators. Comput. Phys. Commun. 180, 1777–1794 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, X., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. You, X., Zhao, J., Yang, H., Fang, Y., Wu, X.: Order conditions for RKN methods solving general second-order oscillatory systems. Numer. Algorithms 66, 147–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Van de Vyver, H.: An adapted explicit hybrid method of Numerov type for the numerical integration of perturbed oscillators. Appl. Math. Comput. 186, 1385–1394 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Franco, J.M., Palacian, J.F.: High order adaptive methods of Nyström–Cowell type. J. Comput. Appl. Math. 81, 115–134 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, Z., Qiu, Z., Li, J., You, X.: Two-derivative Runge-Kutta-Nyström methods for second-order ordinary differential equations. Numer. Algorithms (2015). doi:10.1007/s11075-015-9979-4

    MATH  Google Scholar 

  30. Weinberger, H.F.: A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Dover Publications Inc., New York (1965)

    MATH  Google Scholar 

  31. Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numer. 19, 159–208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to the anonymous referees for their constructive comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Li.

Additional information

The research was supported in part by the Natural Science Foundation of China under Grant No.: 11401164, by Hebei Natural Science Foundation of China under Grant No.: A2014205136, by the Natural Science Foundation of China under Grant No.: 11201113 and by the Specialized Research Foundation for the Doctoral Program of Higher Education under Grant No.: 20121303120001, by the Natural Science Foundation of China under Grant No.: 11401163, by Hebei Natural Science Foundation of China under Grant No.: A2014205133.

Appendices

Appendix 1: The proof of (15)

In fact

$$\begin{aligned} \sum \limits _{l=0}^{k-1}\bar{b}_{l+1}(V)f_{n-l}=\sum \limits _{j=0}^{k-1}\sigma _j(V)\nabla ^jf_{n} =\sum \limits _{j=0}^{k-1}\sigma _j(V)\sum \limits _{l=0}^j\left( \begin{array}{c}j\\ l\end{array}\right) (-1)^lf_{n-l} \end{aligned}$$

results in

$$\begin{aligned} \bar{b}_{l+1}(V)=\sum \limits _{j=l}^{k-1}\sigma _j(V)\left( \begin{array}{c}j\\ l\end{array}\right) (-1)^l. \end{aligned}$$

Replacing l with \(i-1\), we obtain the first formula of (15). The second one can be obtained similarly.

Appendix 2: Specific examples of particular methods

ASNSMS3K4P: The method is designed for \(y^{\prime \prime }+My=f(t,y,y^{\prime })\) and can be expressed as

$$\begin{aligned} \left\{ \begin{aligned}&\ \bar{y}_{n+1}=2\phi _0(V)y_n-y_{n-1}+h^2\sum \limits _{j=0}^{2}\sigma _j(V)\nabla ^jf_n,\\&\ \bar{y}_{n+1}^{\prime }=-2hM\phi _1(V)y_n+y_{n-1}^{\prime }+h\sum \limits _{j=0}^{2}\kappa _j(V)\nabla ^jf_n,\\&\ y_{n+1}=\ 2\phi _0(V)y_n-y_{n-1}+h^2\sum \limits _{j=0}^{3}\sigma _j^*(V)\nabla ^jf_{n+1},\\&\ y_{n+1}^{\prime }=\ -2hM\phi _1(V)y_n+y_{n-1}^{\prime }+h\sum \limits _{j=0}^{3}\kappa _j^*(V)\nabla ^jf_{n+1},\\ \end{aligned}\right. \end{aligned}$$
(48)

where \( f_{n+1}=f(t_{n+1},\bar{y}_{n+1},\bar{y^{\prime }}_{n+1})\) and \( f_{j}=f(t_{j},y_{j},y_{j}^{\prime })\) for \(j=n,n-1,n-2\). \(\nabla ^jf_n\) denotes the jth backward difference, defined recursively by

$$\begin{aligned} \nabla ^0f_n=f_n,\quad \nabla ^jf_n=\nabla ^{j-1}f_n-\nabla ^{j-1}f_{n-1},\quad j=1,2,3, \end{aligned}$$

and

$$\begin{aligned} \sigma _0(V)&=2\phi _2(V),\quad \sigma _1(V)=\mathbf {0},\quad \sigma _2(V)=2\phi _4(V),\\ \kappa _0(V)&=2\phi _1(V),\quad \kappa _1(V)=\mathbf {0},\quad \kappa _2(V)=2\phi _3(V),\\ \sigma _0^*(V)&=2\phi _2(V),\quad \sigma _1^*(V)=-2\phi _2(V),\quad \sigma _2^*(V)=2\phi _4(V),\quad \sigma _3^*(V)=\mathbf {0},\\ \kappa _0^*(V)&=2\phi _1(V),\quad \kappa _1^*(V)=-2\phi _1(V),\quad \kappa _2^*(V)=2\phi _3(V),\quad \kappa _3^*(V)=\mathbf {0}. \end{aligned}$$

ASNSMS4K5P: The method is designed for \(y^{\prime \prime }+My=f(t,y,y^{\prime })\) and can be expressed as

$$\begin{aligned} \left\{ \begin{aligned}&\ \bar{y}_{n+1}=2\phi _0(V)y_n-y_{n-1}+h^2\sum \limits _{j=0}^{3}\sigma _j(V)\nabla ^jf_n,\\&\ \bar{y}_{n+1}^{\prime }=-2hM\phi _1(V)y_n+y_{n-1}^{\prime }+h\sum \limits _{j=0}^{3}\kappa _j(V)\nabla ^jf_n,\\&\ y_{n+1}=\ 2\phi _0(V)y_n-y_{n-1}+h^2\sum \limits _{j=0}^{4}\sigma _j^*(V)\nabla ^jf_{n+1},\\&\ y_{n+1}^{\prime }=\ -2hM\phi _1(V)y_n+y_{n-1}^{\prime }+h\sum \limits _{j=0}^{4}\kappa _j^*(V)\nabla ^jf_{n+1},\\ \end{aligned}\right. \end{aligned}$$
(49)

where \( f_{n+1}=f(t_{n+1},\bar{y}_{n+1},\bar{y^{\prime }}_{n+1})\) and \( f_{j}=f(t_{j},y_{j},y_{j}^{\prime })\) for \(j=n,n-1,n-2,n-3\). \(\nabla ^jf_n\) denotes the jth backward difference, defined recursively by

$$\begin{aligned} \nabla ^0f_n=f_n,\quad \nabla ^jf_n=\nabla ^{j-1}f_n-\nabla ^{j-1}f_{n-1},\quad j=1,2,3,4 \end{aligned}$$

and

$$\begin{aligned} \sigma _0(V)&=2\phi _2(V),\quad \sigma _1(V)=\mathbf {0},\quad \sigma _2(V)=2\phi _4(V),\quad \sigma _3(V)=2\phi _4(V),\\ \kappa _0(V)&=2\phi _1(V),\quad \kappa _1(V)=\mathbf {0},\quad \kappa _2(V)=2\phi _3(V),\quad \kappa _3(V)=2\phi _3(V),\\ \sigma _0^*(V)&=2\phi _2(V),\quad \sigma _1^*(V)=-2\phi _2(V),\quad \sigma _2^*(V)=2\phi _4(V),\quad \sigma _3^*(V)=\mathbf {0},\\ \sigma _4^*(V)&=\frac{1}{6}(-\phi _4(V)+12\phi _6(V)),\\ \kappa _0^*(V)&=2\phi _1(V),\quad \kappa _1^*(V)=-2\phi _1(V),\quad \kappa _2^*(V)=2\phi _3(V),\quad \kappa _3^*(V)=\mathbf {0},\\ \kappa _4^*(V)&=-\frac{1}{6}\phi _3(V)+2\phi _5(V). \end{aligned}$$

ADAMS3K4P:The method is designed for \(y^{\prime }=f(t,y)\) and can be expressed as

$$\begin{aligned} \left\{ \begin{aligned}&\ \bar{y}_{n+1}=y_n+h\left( \frac{23}{12}f_n-\frac{16}{12}f_{n-1}+\frac{5}{12}f_{n-2}\right) ,\\&\ y_{n+1}=\ y_n+h\left( \frac{9}{24}f_{n+1}+\frac{19}{24}f_n-\frac{5}{24}f_{n-1}+\frac{1}{24}f_{n-2}\right) ,\\ \end{aligned}\right. \end{aligned}$$

where \( f_{n+1}=f(t_{n+1},\bar{y}_{n+1})\) and \( f_{j}=f(t_{j},y_{j})\) for \(j=n,n-1,n-2\).

ADAMS4K5P:The method is designed for \(y^{\prime }=f(t,y)\) and can be expressed as

$$\begin{aligned} \left\{ \begin{aligned}&\ \bar{y}_{n+1}=y_n+h\left( \frac{55}{24}f_n-\frac{59}{24}f_{n-1}+\frac{37}{24}f_{n-2}-\frac{9}{24}f_{n-3}\right) ,\\&\ y_{n+1}=\ y_n+h\left( \frac{251}{720}f_{n+1}+\frac{646}{720}f_n-\frac{264}{720}f_{n-1}+\frac{106}{720}f_{n-2}-\frac{19}{720}f_{n-3}\right) , \end{aligned}\right. \end{aligned}$$

where \( f_{n+1}=f(t_{n+1},\bar{y}_{n+1})\) and \( f_{j}=f(t_{j},y_{j})\) for \(j=n,n-1,n-2,n-3\).

RKN4S4P: The method is designed for \(y^{\prime \prime }=f(t,y,y^{\prime })\) and can be expressed as

$$\begin{aligned} \left\{ \begin{aligned}&Y_i=y_n+c_ihy_{n}^{\prime } +h^2\textstyle \sum \limits _{j=1}^{i-1}\bar{a}_{ij}f(t_n+c_jh,Y_j,Y_j^{\prime }),\quad i=1,\ldots ,4, \\&Y_i^{\prime }=y_{n}^{\prime } +h\textstyle \sum \limits _{j=1}^{i-1}a_{ij}f(t_n+c_jh,Y_j,Y_j^{\prime }),\quad i=1,\ldots ,4, \\&y_{n+1}=y_n+hy_{n}^{\prime }+h^2\textstyle \sum \limits _{i=1}^4\bar{b}_if(t_n+c_ih,Y_i,Y_i^{\prime }),\\&y_{n+1}^{\prime }=y_n^{\prime }+h\textstyle \sum \limits _{i=1}^4b_if(t_n+c_ih,Y_i,Y_i^{\prime }), \end{aligned}\right. \end{aligned}$$

where

$$\begin{aligned} c_1&= 0,\quad c_2 = \frac{1}{2},\quad c_3 =\frac{1}{2},\quad c_4 = 1, \\ a_{21}&=\frac{1}{2},\quad a_{31} =0,\quad a_{32 }= \frac{1}{2}, \quad a_{41} = 0, \quad a_{42} = 0,\quad a_{43} = 1, \\ \bar{a}_{21}&= \frac{1}{8},\quad \bar{a}_{31} = \frac{1}{8}, \quad \bar{a}_{32} = 0,\quad \bar{a}_{41} = 0,\quad \bar{a}_{42} = 0 , \quad \bar{a}_{43 }=\frac{1}{2},\\ b_1&= \frac{1}{6}, \quad b_2 = \frac{2}{6},\quad b_3 = \frac{2}{6}, \quad b_4 = \frac{1}{6},\\ \bar{b}_1&= \frac{1}{6}, \quad \bar{b}_2 = \frac{1}{6},\quad \bar{b}_3 = \frac{1}{6}, \quad \bar{b}_4 =0. \end{aligned}$$

RK4S4P:The method is designed for \(y^{\prime }=f(t,y)\) and can be expressed as

$$\begin{aligned} \left\{ \begin{aligned}&Y_i=y_n+h\textstyle \sum \limits _{j=1}^{i-1}a_{ij}f(t_n+c_jh,Y_j),\quad i=1,\ldots ,4, \\&y_{n+1}=y_n+h\textstyle \sum \limits _{i=1}^4 b_if(t_n+c_ih,Y_i),\\ \end{aligned}\right. \end{aligned}$$

where

$$\begin{aligned}&c_1 = 0,\quad c_2 = \frac{1}{3},\quad c_3 =\frac{2}{3},\quad c_4 = 1, \\&a_{21} =\frac{1}{3},\quad a_{31} =-\frac{1}{3},\quad a_{32 }= 1,\quad a_{41} = 1, \quad a_{42} =-1,\quad a_{43} = 1, \\&b_1 = \frac{1}{8}, \quad b_2 = \frac{3}{8},\quad b_3 = \frac{3}{8},\quad b_4 = \frac{1}{8}. \end{aligned}$$

ARKN4S4P: The method is designed for \(y^{\prime \prime }+My=f(t,y,y^{\prime })\) and can be expressed as

$$\begin{aligned} \left\{ \begin{aligned}&Y_i=y_n+c_ihy_{n}^{\prime } +h^2\textstyle \sum \limits _{j=1}^{i-1}\bar{a}_{ij}(-MY_j+f(t_n+c_jh,Y_j,Y_j^{\prime })),\quad i=1,\ldots ,4, \\&Y_i^{\prime }=y_{n}^{\prime } +h\textstyle \sum \limits _{j=1}^{i-1}a_{ij}(-MY_j+f(t_n+c_jh,Y_j,Y_j^{\prime })),\quad i=1,\ldots ,4, \\&y_{n+1}=\phi _0(V)y_n+h\phi _1(V)y_{n}^{\prime }+h^2\textstyle \sum \limits _{i=1}^4\bar{b}_if(t_n+c_ih,Y_i,Y_i^{\prime }),\\&y_{n+1}^{\prime }=-hM\phi _1(V)y_{n}^{\prime }+\phi _0(V)y_{n}^{\prime }+h\textstyle \sum \limits _{i=1}^4b_if(t_n+c_ih,Y_i,Y_i^{\prime }),\\ \end{aligned}\right. \end{aligned}$$

where

$$\begin{aligned} c_1&= 0,\quad c_2 = \frac{1}{2},\quad c_3 =\frac{1}{2},\quad c_4 = 1, \\ a_{21}&=\frac{1}{2},\quad a_{31} =0,\quad a_{32 }= \frac{1}{2},\quad a_{41} = 0, \quad a_{42} = 0,\quad a_{43} = 1, \\ \bar{a}_{21}&= 0,\quad \bar{a}_{31} = \frac{1}{4}, \quad \bar{a}_{32} = 0,\quad \bar{a}_{41} = 0,\quad \bar{a}_{42} = \frac{1}{2}, \quad \bar{a}_{43 }= 0, \\ b_1(V)&= \phi _1(V)-3\phi _2(V) + 4\phi _3(V), \quad \quad \bar{b}_1(V) = \phi _2(V)-3\phi _3(V) + 4\phi _4(V),\\ b_2(V)&= 2\phi _2(V)- 4\phi _3(V), \quad \quad \quad \bar{ b}_2(V) = 2\phi _3(V) - 4\phi _4(V), \\ b_3(V)&= 2\phi _2(V)- 4\phi _3(V), \quad \quad \quad \bar{b}_3(V) = 2\phi _3(V) - 4\phi _4(V),\\ b_4(V)&= -\phi _2(V) + 4\phi _3(V), \quad \quad \quad \bar{b}_4(V) = -\phi _3(V) + 4\phi _4(V). \end{aligned}$$

ARKN6S5P: The method is designed for \(y^{\prime \prime }+My=f(t,y,y^{\prime })\) and can be expressed as

$$\begin{aligned} \left\{ \begin{aligned}&Y_i=y_n+c_ihy_{n}^{\prime } +h^2\textstyle \sum \limits _{j=1}^{i-1}\bar{a}_{ij}(-MY_j+f(t_n+c_jh,Y_j,Y_j^{\prime })),\quad i=1,\ldots ,6, \\&Y_i^{\prime }=y_{n}^{\prime } +h\textstyle \sum \limits _{j=1}^{i-1}a_{ij}(-MY_j+f(t_n+c_jh,Y_j,Y_j^{\prime })),\quad i=1,\ldots ,6, \\&y_{n+1}=\phi _0(V)y_n+h\phi _1(V)y_{n}^{\prime }+h^2\textstyle \sum \limits _{i=1}^6\bar{b}_if(t_n+c_ih,Y_i,Y_i^{\prime }),\\&y_{n+1}^{\prime }=-hM\phi _1(V)y_{n}^{\prime }+\phi _0(V)y_{n}^{\prime }+h\textstyle \sum \limits _{i=1}^6b_if(t_n+c_ih,Y_i,Y_i^{\prime }),\\ \end{aligned}\right. \end{aligned}$$

where

$$\begin{aligned} c_1&= 0,\quad c_2 = \frac{1}{6},\quad c_3 =\frac{2}{6},\quad c_4 = \frac{3}{6},\quad c_5 =\frac{4}{6},\quad c_6 = 1, \\ a_{21}&=\frac{1}{6},\quad a_{31} =0,\quad a_{32 }= \frac{1}{3},\quad a_{41} = -\frac{1}{4}, \quad a_{42} = \frac{3}{4},\quad a_{43} = 0, \\ a_{51}&=-\frac{1}{27},\quad a_{52} =\frac{2}{9},\quad a_{53 }= \frac{1}{3},\quad a_{54} = \frac{4}{27},\\ a_{61}&=-\frac{2}{11},\quad a_{62} =\frac{3}{11},\quad a_{63 }= \frac{27}{11},\quad a_{64} =-4,\quad a_{65} = \frac{27}{11},\\ \bar{a}_{21}&= 0,\quad \bar{a}_{31} = \frac{1}{18}, \quad \bar{a}_{32} = 0,\quad \bar{a}_{41} = \frac{1}{8},\quad \bar{a}_{42} =0, \quad \bar{a}_{43 }= 0,\\ \bar{a}_{51}&= 0,\quad \bar{a}_{52} = \frac{2}{9}, \quad \bar{a}_{53} = 0,\quad \bar{a}_{54} = 0,\\ \bar{a}_{61}&=\frac{21}{22},\quad \bar{a}_{62} = -\frac{18}{11}, \quad \bar{a}_{63} = \frac{9}{11},\quad \bar{a}_{64} = \frac{4}{11},\quad \bar{a}_{65} = 0,\\ \end{aligned}$$

and

$$\begin{aligned} b_1(V)&= \phi _1(V)-\frac{15}{2}\phi _2(V) + 40\phi _3(V)- 135\phi _4(V)+216\phi _5(V),\quad b_2(V)=\mathbf {0},\\ b_3(V)&= 27(\phi _2(V)- 9\phi _3(V)+ 39\phi _4(V)-72\phi _5(V),\\ b_4(V)&= -32\left( \phi _2(V)- 11\phi _3(V)+ 54\phi _4(V)-108\phi _5(V)\right) ,\\ b_5(V)&= \frac{27}{2}\left( \phi _2(V)- 12\phi _3(V)+ 66\phi _4(V)-144\phi _5(V)\right) ,\\ b_6(V)&= -\phi _2(V)+13\phi _3(V)- 81\phi _4(V)+216\phi _5(V),\\ \bar{b}_1(V)&= \phi _2(V)-5\phi _3(V)+\frac{64}{5}\phi _4(V)-13\phi _5(V),\quad \bar{b}_2(V)=\mathbf {0},\\ \bar{b}_3(V)&=9\phi _3(V)-\frac{171}{5}\phi _4(V)+45\phi _5(V),\\ \bar{b}_4(V)&=-4\phi _3(V)+\frac{64}{5}\phi _4(V)-16\phi _5(V),\\ \bar{b}_5(V)&=\frac{54}{5}\phi _4(V)-27\phi _5(V),\quad \bar{b}_6(V) =-\frac{11}{5}\phi _4(V)+11\phi _5(V),\\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, X. & Lu, M. A class of linear multi-step method adapted to general oscillatory second-order initial value problems. J. Appl. Math. Comput. 56, 561–591 (2018). https://doi.org/10.1007/s12190-017-1087-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1087-2

Keywords

Navigation