
SIMULATING SIZE-CONSTRAINED GALTON-WATSON TREES

Luc Devroye

September 5, 2011

Abstract. We discuss various methods for generating random Galton-Watson trees conditional on their

sizes being equal to n. A linear expected time algorithm is proposed.

Keywords and phrases. Random variate generation. Cayley trees. Catalan trees. Simulation. Galton-

Watson branching process. Expected time analysis. Random trees.

1991 Mathematics Subject Classifications: Primary 65C10. Secondary 65C05, 11K45, 68U20.

Author’s address: Luc Devroye, School of Computer Science, McGill University, 3480 University Street,
Montreal, Canada H3A 2K6. Research was supported by NSERC Grant A3456 and FQRNT Grant
90-ER-0291.

Introduction

A Galton-Watson tree (Athreya and Ney, 1972) is an ordered tree in which all nodes independently

produce offspring distributed as ξ. They are called subcritical, critical, and supercritical, according to

whether E{ξ} is < 1 (subcritical), = 1 (critical), or > 1 (supercritical). We exclude the trivial cases ξ ≡ 1

and ξ ≡ 0. The size of a Galton-Watson tree T is denoted by |T |. The purpose of this note is to discuss

methods for the generation of T , conditional on |T | = n.

The size-conditioned Galton-Watson trees are important in combinatorial analysis, as they corre-

spond (Kennedy, 1975) to the so-called “simply generated trees” of Moon and Meir (1970, 1978) (see also

Moon, 1970). A random conditional Galton-Watson tree has the same distribution as a random simply

generated tree picked uniformly from a set of such trees. That particular set depends, of course, on the

distribution of ξ. For example, the distribution (1/4, 1/2, 1/4) on {0, 1, 2} yields a uniform random binary

tree, or Catalan tree. The distribution (1/3, 1/3, 1/3) on {0, 1, 2} yields a uniform unary-binary tree, or

Motzkin tree. The geometric distribution 1/2i+1, i ≥ 0, yields the uniform random planted plane tree

studied by DeBruijn and Knuth (1972). And the Poisson distribution yields a random rooted labeled

tree, or rooted Cayley tree. For simply generated trees, no generally applicable efficient method has

been published to our knowledge. The Boltzmann sampler of Duchon, Flajolet, Louchard and Schaeffer

(2001, 2002, 2004) is a general linear time procedure that is easy to implement, but it yields random

Galton-Watson trees of random size near n. Using rejection, one can generate random trees with their

method until the size is right, but then the complexity is superlinear.

For random Catalan trees, several linear-time methods exist. They are often based on equivalences

between these trees and other structures such as strings of n balanced parentheses, or simple walks of

length 2n that remain positive, and start and end at the origin, or Dyck paths. Arnold and Sleep (1980)

propose an elegant O(n) algorithm for Catalan trees, which uses an incremental tree construction based

on preserving uniformity every step of the way. Their algorithm is genetically linked to the general

recursive method of Nijenhuis and Wilf (1978) (see also Flajolet, Zimmerman and van Cutsem, 1994).

Another linear time algorithm is described in Alonso, Rémy and Schott (1997a, 1997b), who provide

a slightly more general “codeword” method that also covers other trees. Related work can be found

in Rémy (1985), Alonso (1992), Alnoso and Schott (1995), Mäkinen and Siltaneva (1999), Siltaneva

(2000), Gouyou-Beauchamps (1993, 2003), Hickey and Cohen (1983), Banderier, Bousquet-Mélou, Denise,

Flajolet, Gardy and Gouyou-Beauchamps (2002) and Barcucci, Del Lungo and Pergola (1992, 1999).

Devroye (1986) provides an early survey of various methods for Catalan trees. See Mäkinen (1999) for

another survey. Finally, Luczak and Winkler (2004) give an incremental algorithm for growing random

Catalan trees one node at a time such that for each n, the partial trees are uniformly random.

Via the well-known equivalence between an ordered tree on n nodes and a binary tree on n− 1

nodes, we can thus also generate a random rooted ordered tree in linear time. Such trees correspond to

conditional Galton-Watson processes with ξ geometrically distributed with parameter 1/2.

The Cayley trees have an equally extensive history. Various representations exist that explicitly

explain the number (nn−2) of labeled free trees of size n, typically based on a one-to-one mapping between

an n−2-vector drawn from {1, . . . , n}n−2 and such labeled (unrooted) trees. One of these is Pruefer’s code

(1918). Linear time algorithms can convert representations to trees and vice versa. For the Pruefer code,

this was in the thesis of Klingsberg (1977) at the University of Washington (see also Devroye (1986)).

2

Random rooted labeled free trees, of which there are nn−1, are in fact nothing but Galton-Watson trees

conditioned on size n when the number of children has the Poisson distribution.

The purpose of the present note is to provide a universal linear expected time algorithm for all

conditional Galton-Watson trees for which E{ξ2} <∞.

Preliminaries

The distribution of ξ is determined by the probabilities pi = P{ξ = i}. Consider the family of

distributions parametrized by θ > 0, having qi = cpiθ
i, i ≥ 0, where c = 1/

∑
i piθ

i is a normalization

constant. The range for θ is (0, ρ), where ρ, possibly infinite, is the radius of convergence. It is well-known

(Kennedy, 1975) that conditioning on |T | = n makes all the trees in this parametrized family identically

distributed—the value of θ does not matter! For this reason, but also for other reasons, it helps to pick a

canonical member with mean one, the critical distribution. Thus, we assume throughout that E{ξ} = 1,

and that p1 6= 1.

There is also the thorny issue of the span d of ξ, the greatest common divisor of all i ≥ 1 for which

pi > 0. If d = 1, then there exists n0 such that for all n ≥ n0, P{|T | = n} > 0, so that size conditioning

is possible. If d > 1, then there exists n0 such that for all n ≥ n0 such that n − 1 is a multiple of d,

P{|T | = n} > 0. We call N the set of integers n for which P{|T | = n} > 0, and will assume that n ∈ N .

The algorithms of this paper apply for all distributions of ξ. We are particularly interested in

those for which ξ is not monoatomic (to avoid trivialities). A particularly important class is those for

which

0 < σ2 def
= V{ξ} <∞.

At the end of the paper, we will briefly deal with ξ that do not have finite variance or even finite mean.

Finally, many complexity results depend upon the parameters ϕn and τn defined by

ϕn = P{ξ1 + · · ·+ ξn = n− 1}, τn = E {max(ξ1, . . . , ξn)} ,
where ξ1, . . . , ξn, as elsewhere in the paper, are i.i.d. random variables distributed as ξ. It is well-known

(see, e.g., Kolchin, 1986, or Petrov, 1975, 1995), that if 0 < σ <∞,

ϕn =
(d+ o(1))1[n∈N]

σ
√

2πn
.

Assuming a ram model of computation, and assuming that independent copies of ξ can be generated in

expected time 1, the main result of the paper is as follows.

Theorem 1. There exists an algorithm for generating T conditional on |T | = n in expected time bounded

from above by a constant times

n+
1 + τn
ϕn

, n ∈ N .

In particular, if E{ξ2} <∞, then τn = o(
√
n), ϕn = Θ(1/

√
n) and thus, the expected time is O(n).

3

In this paper, we were tempted to use the terminology “Bienaymé tree” instead of the widely

accepted name “Galton-Watson tree”, as it increasingly clear that Bienaymé defined and derived the

main properties of these trees almost fifty years before Galton and Watson (see, e.g., Kendall, 1975).

We first review two natural attempts that have superlinear expected complexity. The final algo-

rithm uses ingredients from these simple methods, but adds a key ingredient—the multinomial method—,

which permits the problem to be split into one of generating a certain multinomial random vector, and

then applying a uniform random permutation. The first term (n) in the expected complexity of Theorem

1 comes from the uniform random permutation—it does not depend upon ξ. The τn/ϕn term in Theorem

1 comes from the multinomial part of the algorithm. Interestingly, if E{ξ2} < ∞, it is o(n). Therefore,

the speed of execution is basically determined by the uniform random permutation generator.

The naive method

A tree T can be traversed in dfs (depth first search) order. If we do so, we may keep a list of the

number of offspring, ξ1, ξ2, Vice versa, a tree T can be constructed from a sequence ξ1, ξ2, . . . in this

manner. The latter process can be viewed sequentially: start with a root node and put it in a queue. At

the i-th step, grab the first node from the queue, give it ξi children, and place these in the queue. The

process ends when the queue is empty. It ends with a tree T of correct size n when the queue becomes

empty for the first time after the n-th step.

Let T denote the tree generated by this process. From a sequence ξ1, ξ2, . . . , ξn, we can generate

T if |T | ≤ n and decide that |T | > n otherwise. Thus, stopping after the n-th step or when the queue

becomes empty for the first time has complexity min(|T |, n).

We can repeat the above procedure this until for the first time |T | = n. By Wald’s lemma, the

expected complexity is the expected number of iterations times E{min(|T |, n)}. The expected number of

iterations is 1/P{|T | = n}. We know (see, e.g., Kolchin, 1986) that

P{|T | = n} =
ϕn
n
.

And then,

E{min(|T |, n)} =
n∑

i=1

ϕi + nP{|T | > n}.

By Wald’s identity, the expected complexity is asymptotic to

E{min(|T |, n)}
P{|T | = n} = n

n∑

i=1

ϕi
ϕn

+ n2
∞∑

i=n+1

ϕi
iϕn

.

Under the condition 0 < σ < ∞, n ∈ N , it is easy to see that ϕn = Θ(1/
√
n), P{|T | = n} = Θ(n−3/2),

and thus that the expected complexity is Θ(n2).

4

Turning to random walks

The size of the queue after the t-th step above is denoted by St. Thus, S0 = 1, and

St = St−1 + (ξt − 1) = 1 +
t∑

i=1

(ξi − 1), t > 0.

This provides the well-known random walk construction of Galton-Watson trees. The size of the Galton-

Watson tree T generated in this manner is

|T | = min{t : St = 0}.
But T is, of course, an unconditional Galton-Watson tree. For a conditional tree, we are interested in

sequences ξ1, ξ2, . . . with |T | = n. A necessary condition for this is that

Ξ
def
= (ξ1, . . . , ξn)

has sum

S(Ξ)
def
=

n∑

i=1

ξi = n− 1.

This implies that |T | ≤ n. However, there is one and only one rotation of Ξ, i.e., a vector

Ξ(`)
def
= (ξ`, ξ`+1, . . . , ξn, ξ1, . . . , ξ`−1)

with the required property that |T | = n. This follows from the standard rotation argument for partial

sums, sometimes referred to as the Dvoretzky-Motzkin cycle lemma (see, e.g., Comtet (1994) or Der-

showitz and Zaks (1990)). Following Figure 1, ` is the smallest index in {1, . . . , n} at which St reaches

its minimum:

` = arg min{St : 1 ≤ t ≤ n}.
It is easy to verify that Ξ(`) has St ≥ 1 for 0 ≤ t < n and Sn = 0. Furthermore, |T | < n for all Ξ(s),

s 6= `.

5

1

n

(0,0)

(0,1)

(n,0)

1

n

(0,0)

(0,1)

(n,0)

Figure 1. Top figure shows a random walk from (0, 1) to (n, 0). By starting the walk at the leftmost min-
imal node (blackened), the walk stays strictly positive until just before the last step, and thus corresponds
uniquely to an ordered (Galton-Watson) tree of size n.

6

This observation implies a routine strategy for simulation: keep generating random sequences Ξ

of length n until S(Ξ) = n − 1. Then rotate Ξ (in linear time) to get Ξ(`) with |T | = n. The tree that

corresponds to Ξ(`) is a conditional Galton-Watson tree of size n.

It is well-known that if ξ is not monoatomic, then

ϕn ≤ sup
x

P{Sn = x} ≤ c√
n
,

where c > 0 depends upon the distribution of ξ only. This follows, for example, from general upper

bounds for the concentration of mass of sums of independent random variables: see, e.g., Petrov (1975,

p. 49). When σ2 <∞, the order of this bound in n is correct, but for σ =∞, the upper bound is o(1/
√
n)

(Petrov, p. 46).

Thus, for any distribution, the procedure outlined here takes expected time

n

P{S(Ξ) = n− 1} =
n

ϕn
= Ω(n3/2).

Furthermore, since E{ξ = 1}, we have for increasing n drawn from N , whenever σ2 <∞, ϕn = Θ(1/
√
n)

(see, e.g., Kolchin, 1986), and thus the expected time is Θ(n3/2).

Remark: Dwass’s formula. This construction makes Dwass’s formula (Dwass, 1969) explicit:

P{S1 > 0, . . . , Sn−1 > 0, Sn = 0} = P{|T | = n} =
1

n
P{Sn = 0} =

1

n
P{ξ1 + · · ·+ ξn = n− 1} =

ϕn
n
.

Generating random samples conditional on the sum

The previous section points up the importance of a fast method for generating a sequence

Ξ
def
= (ξ1, . . . , ξn)

of i.i.d. integer-valued random variables distributed as ξ ≥ 0, conditional on

S(Ξ)
def
=

n∑

i=1

ξi = n− 1.

This is a probem of independent interest. In some cases, there are simple explicit solutions. For ex-

ample, when ξ is Poisson (λ) (for any fixed λ > 0), then the conditional law of Ξ is multinomial

(n − 1, 1/n, . . . , 1/n). This leads to an extremely simple procedure: generate n − 1 i.i.d. random in-

tegers Z1, . . . , Zn−1 uniformly drawn from {1, . . . , n}, Then set

ξi =
n−1∑

j=1

1[Zj=i], 1 ≤ i ≤ n.

This yields the vector Ξ. By the rotation method of the previous section, we thus have a very simple

linear time method for generating a random Cayley tree.

Let us concentrate however on generating S(Ξ). There is a literature on this, which was reviewed

and summarized in Devroye (1986, 1988). Under certain conditions, and for certain computational models,

7

one can generate S(Ξ) in expected time O(1). However, for the purpose of the present paper, and

this section, one simple paradigm stands out—the multinomial method. It provides a versatile tool for

generating S(Ξ) in sublinear time. For this method, still using pi = P{ξ = i}, i ≥ 0, we first generate the

multinomial random vector (N0, N1, N2, . . .) with parameter (n, p0, p1, p2, . . .), and the note that

S(Ξ)
L
=
∞∑

i=0

iNi.

We recall that a binomial (n, p) random variable can be generated in expected time bounded uniformly

over n and p by a constant, thanks to algorithms developed in the literature. See, e.g., Ahrens and

Dieter (1974, 1980), Devroye (1986, 1987), Hörmann (1993), Hörmann, Leydold and Derflinger (2004).

Kachitvichyanukul and Schmeiser (1988, 1989), Schmeiser and Babu (1980), Stadlober (1988, 1989, 1990).

Now, N0 is binomial (n, p0). Conditional on N0, N1 is binomial (n−N0, p1/(1− p0)). Conditional on N0

and N1, N2 is binomial (n −N0 −N1, p2/(1− p0 − p1)), and so forth. In this manner, we can generate

the random multinomial vector (N0, . . . , NK), where K is the last populated (nonzero) component, i.e.,

Nj = 0 for j > K. The expected time for generating (N0, . . . , NK) is

E{1 +K} = 1 + E
{

max
1≤i≤n

ξi

}
= 1 + τn

It is a simple exercise to show that when E{ξ} <∞, then this is o(n). However, the situation is typically

much better. If ξ has compact support, then the expected time is O(1). A simple bound can be derived

in terms of the ρ-th moment, ρ > 1:

τn ≤ E






 ∑

1≤i≤n
ξρi




1/ρ




≤

E




∑

1≤i≤n
ξ
ρ
i








1/ρ

= (nE {ξρ})1/ρ

= O
(
n1/ρ

)

when E{ξρ} <∞. We leave it as an exercise to show that τn = o(
(
n1/ρ

)
under the latter condition.

Assume that we repeat the above procedure until for the first time S(Ξ) = n− 1. Then the sum

is correct, and we have, as a by-product, a random multinomial vector (N0, N1, . . . , NK). This vector has

the frequencies of occurrences of the ξi’s, i.e., there are N0 zeroes, N1 ones, and so forth. Note that

n∑

i=1

ξi =
K∑

j=0

jNj = n− 1,

as required. The remainder of the algorithm is trivial: just fill an array of length n with Nj values j,

0 ≤ j ≤ K, and randomly permute it. Random permutations of arrays are easy to implement in situ in

linear time—see, e.g., Knuth (1981). The permuted array contains the sought vector Ξ.

8

By Wald’s lemma, the expected time until we have S(Ξ) = n− 1 is bounded by

1 + τn
P{S(Ξ) = n− 1} =

1 + τn
ϕn

.

For example, if E{ξ2} < ∞, then ϕn = Θ(1/
√
n), and the numerator is O(

√
n), for a total of O(n).

However, if E{ξρ} < ∞ for fixed ρ > 2, then the numerator is O(n1/ρ) as pointed out above, and the

expected time bound becomes O(n1/2+1/ρ).

remark: infinite variance. The behavior of ϕn depends upon ξ. If the variance of ξ is infinite,

but Eξ = 1, the complexity of the algorithm is still acceptable. To get an idea of this, let φ be the

characteristic function of ξ− 1 (which is of mean zero). If d is the span of ξ, an inversion formula for the

characteristic function (see, e.g., Petrov, 1995, p. 15) shows that

ϕn =
d

2π

∫

|t|<π/d
eitφn(t) dt.

If ξ is in the domain of attraction of a stable of parameter α ∈ (1, 2], and in particular, if φ(t) =

exp(−|t|α(1 + o(1)), then standard calculations show that

ϕn = Θ
(
n−1/α

)
.

remark: infinite mean. If Eξ =∞, while the algorithm is still valid, the complexity becomes rather

unpleasant. To deal with this case, a lot more work is needed to deal with the efficient generation of

size-constrained Galton-Watson trees.

Generating random forests

Random forests can be defined in a number of ways, see, e.g., Pavlov (2000). In the context of

the present paper, the most important model is that of a random forest of k Galton-Watson trees of total

size n. Each tree has at least a root, and thus, n ≥ k is understood. If the span of ξ is d, then n − k is

necessarily a multiple of d. The set of all n that are possible, given the distribution of ξ, is N , and n ∈ N
is understood throughout.

The random forest of interest to us us a collection of non-empty independent Galton-Watson

trees T1, . . . , Tk conditional on |T1| + · · · + |Tk| = n. Here too we can make a unique connection with

sequences ξ1, . . . , ξn drawn independently from the distribution of ξ. Each such sequence corresponds to

such a random forest provided that
n∑

i=1

ξi = n− k.

The construction generalizes that for the random tree in a natural manner. Random walks are now

started with a queue having k elements: S0 = k. Then we proceed as before, and form

St = k +
t∑

i=1

(ξi − 1).

9

Note that at t = n, we have precisely k trees in the forest if and only if St > 0 for all t < n and Sn = 0.

Since St decreases by at most one, this means that if this condition is satisfied, St passes through each

of the values k − 1, k − 2, . . ., 1 and 0 for the first time, say at t = tk−1, t = tk−2, . . ., t = t0. Each of

these integers wraps up the construction of one tree in the forest, so the tree sizes are tk−1, tk−2 − tk−1,

. . ., t0 − t1.

If Sn = 0, the condition St > 0 for all t < n may not be satisfied. When this happens, there

is one (and only one) rotation that insures that for the rotated sequence, St > 0 for all t < n. This is

illustrated in Figure 2: find the first t ≥ 0 for which St = min1≤i≤n Si. Then rotate by starting a new

random walk at t. This walk, and only this one among all rotated walks, has the desired property. It is

then easy to see that we can apply all algorithms of this paper towards random forest generation. For

the analysis, note that the crucial parameter ϕn now is

ϕn = P {ξ1 + · · ·+ ξn = n− k} .
It is well-known (see, e.g., Kolchin, 1986, or Petrov, 1975, 1995), that if 0 < σ <∞,

ϕn =
(d+ o(1))e−k

2/(2σ2n)1[n∈N]

σ
√

2πn
.

This behaves as the old ϕn when k = o(
√
n). Interestingly, the expected complexity for finite σ is O(n)

even if k varies with n such that k = o(
√
n).

10

k

n

(0,0)

(0,k)

(n,0)

k

n

(0,0)

(0,k)

(n,0)

Figure 2. Top figure shows a random walk from (0, k) to (n, 0). By starting the walk at the leftmost
minimal node (blackened), the walk results in a clean separation (bottom) into k trees. For each tree, as
we know, a walk started at (0, 1) ends when for the first time a node of height 0 is reached.

11

References

J. H. Ahrens and U. Dieter, “Computer methods for sampling from gamma, beta, Poisson and bino-

mial distributions,” Computing, vol. 12, pp. 223–246, 1974.

J. H. Ahrens and U. Dieter, “Sampling from binomial and Poisson distributions: a method with bounded

computation times,” Computing, vol. 25, pp. 193–208, 1980.

D. Aldous, “The random walk construction of uniform spanning trees and uniform labelled trees,” SIAM

Journal of Discrete Mathematics, vol. 3, pp. 450–465, 1990.

D. Aldous, “Asymptotic fringe distributions for general families of random trees,” The Annals of Ap-

plied Probability, vol. 1, pp. 228–266, 1991.

L. Alonso, “Structures arbortescentes, algorithmes de génération, problème d’inclusion, relations max-

imin,” Thèse de Ph.D., Université Paris-Sud, Orsay, 1992.

L. Alonso and R. Schott, Random Generation of Trees, Kluwer, Boston, 1995.

L. Alonso, J. L. Rémy, and R. Schott, “Uniform generation of a Schröder tree,” Information Process-

ing Letters, vol. 64, pp. 305–308, 1997.

L. Alonso, J. L. Rémy, and R. Schott, “A linear-time algorithm for the generation of trees,” Algorith-

mica, vol. 17, pp. 162–182, 1997.

D. B. Arnold and M. R. Sleep, “Uniform random number generation of n balanced parenthe-

sis strings,” ACM Transactions on Programming Languages and Systems, vol. 2, pp. 122–128, 1980.

K. B. Athreya and P. E. Ney, Branching Processes, Springer Verlag, Berlin, 1972.

C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, and D. Gouyou-Beauchamps, “Gen-

erating functions for generating trees,” Discrete Mathematics, vol. 246, pp. 29–55, 2002.

E. Barcucci, R. Pinzani, and R. Sprugnoli, “The random generation of directed animals,” Theoreti-

cal Computer Science, vol. 127, pp. 333–350, 1992.

E. Barcucci, A. Del Lungo, and E. Pergola, “Random generation of trees and other combinatorial ob-

jects,” Theoretical Computer Science, vol. 218, pp. 219–232, 1999.

A. Cayley, “A theorem on trees,” Quarterly Journal of Mathematics, vol. 23, pp. 376–378, 1889.

L. Chottin and R. Cori, “Une preuve combinatoire de la rationalité d’une série génératrice associée aux ar-

bres,” RAIRO Informatique Théorique, vol. 16, pp. 113–128, 1982.

L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1994.

N. G. de Bruijn, D. E. Knuth, and S. O. Rice, “The average height of planted plane trees,” in: Graph The-

ory and Computing, edited by R. C. Read, pp. 15–22, Academic Press, 1972.

A. Denise, “Méthodes de génération aléatoire d’objets combinatoires de grande taille et problèmes

d’énumération,” Thèse, Université Bordeaux I, France, 1994.

12

N. Dershowitz and S. Zaks, “The cycle lemma and some applications,” European Journal of Combina-

torics, vol. 11, pp. 35–40, 1990.

L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.

L. Devroye, “A simple generator for discrete log-concave distributions,” Computing, vol. 39, pp. 87–

91, 1987.

L. Devroye, “Generating sums in constant average time,” in: Proceedings of the 1988 Winter Simula-

tion Conference, edited by M. A. Abrams, P. L. Haigh and J. C. Comfort, pp. 425–431, IEEE, San Diego,

CA., 1988.

P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, “Random sampling from Boltzmann princi-

ples,” INRIA Technical Report ALCOMFT-TR-01-189, 2001.

P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, “Random sampling from Boltzmann princi-

ples,” in: Automata, Languages and Programming (ICALP 2002), edited by P. Widmayer, F. Triguero,

R. Morales, M. Hennessy, S. Eidenbenz and R. Conejo, vol. 2380, pp. 501–513, Lecture Notes in Com-

puter Science, Springer-Verlag, New York, 2002.

P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, “Boltzmann samplers for the random genera-

tion of combinatorial structures,” Combinatorics, Probability and Computing, vol. 13, pp. 577–625, 2004.

M. Dwass, “The total progeny in a branching process,” Journal of Applied probability, vol. 6, pp. 682–

686, 1969.

P. Flajolet, P. Zimmerman, and B. van Cutsem, “A calculus for the random generation of labelled com-

binatorial structures,” Theoretical Computer Science, vol. 132, pp. 1–35, 1994.

D. Gouyou-Beauchamps, Quelques exemples d’algorithmes de génération aléatoire, 1993.

D. Gouyou-Beauchamps, “Combinatorics and random generation,” in: Algorithms Seminar 2001-2002,

edited by F. Chyzak, pp. 177–182, INRIA, 2003.

C. C. Heyde and E. Seneta, I.J. Bienaymé: Statistical Theory Anticipated, Berlin, 1977.

T. Hickey and J. Cohen, “Uniform random generation of strings in a context-free language,” SIAM Jour-

nal on Computing, vol. 12, pp. 645–655, 1983.

W. Hörmann, “The generation of binomial random variates,” Journal of Statistical Computation and Sim-

ulation, vol. 46, pp. 101–110, 1993.

W. Hörmann, J. Leydold, and G. Derflinger, Automatic Nonuniform Random Variate Generation,

Springer-Verlag, Berlin, 2004.

S. Janson, T. Luczak, and A. Rucinski, Random Graphs, Wiley-Interscience, New York, 2000.

V. Kachitvichyanukul and B. W. Schmeiser, “Binomial random variate generation,” Communica-

tions of the ACM, vol. 31, pp. 216–222, 1988.

13

V. Kachitvichyanukul and B. W. Schmeiser, “Algorithm 678: BTPEC: sampling from the binomial dis-

tribution,” ACM Transactions on Mathematical Software, vol. 15, pp. 394–397, 1989.

D. G. Kendall, “The genealogy of branching processes before (and after) 1873,” Bulletin of the Lon-

don Mathematical Society, vol. 7, pp. 225–254, 1975.

D. P. Kennedy, “The Galton-Watson process conditioned on the total progeny,” Journal of Applied Prob-

ability, vol. 12, pp. 800–806, 1975.

D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading, Mass., 1981. 2nd

Ed..

D. E. Knuth, The Art of Computer Programming. Vol. 1, Fundamental Algorithms, Third Edi-

tion, Addison-Wesley, Reading, MA, 1997.

V. F. Kolchin, Random Mappings, Optimization Software Inc., New York, 1986.

M. Lothaire, “Combinatorics on Words,” vol. 17, Encyclopedia of Mathematics and its Applica-

tions, Addison-Wesley, 1983.

M. Luczak and P. Winkler, “Building uniformly random subtrees,” Random Structures and Algo-

rithms, vol. 27, pp. 420–443, 2004.

E. Mäkinen, “Generating random binary trees—a survey,” Information Sciences, vol. 115, pp. 123–

136, 1999.

E. Mäkinen and J. Siltaneva, “A note on Rémy’s algorithm for generating random binary trees,” Tech-

nical Report, Department of Computer and Information Sciences , University of Tampere, Fin-

land, 1999.

U. Manber, Introduction to Algorithms: A Creative Approach, Addison-Wesley,, Reading, MA, 1989.

A. Meir and J. W. Moon, “The distance between points in random trees,” Journal of Combinatorial The-

ory, vol. 8, pp. 99–103, 1970.

A. Meir and J. W. Moon, “On the altitude of nodes in random trees,” Canadian Journal of Mathemat-

ics, vol. 30, pp. 997–1015, 1978.

J. W. Moon, Counting Labelled Trees, Canadian Mathematical Congress, Montreal, 1970.

A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, 2nd edition, Academic Press, New York, 1978.

Yu. L. Pavlov, Random Forests, VSP, Utrecht, 2000.

V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin, 1975.

V. V. Petrov, Limit Theorems of Probability Theory, Oxford Science Publications, Clarendon Press, Ox-

ford, 1995.

A. Prüfer, “Neuer Beweis eines Satzes über Permutationen,” Archiv der Mathematik und Physik, vol. 3,

pp. 142–144, 1918.

14

J. L. Rémy, “Un procédé itératif de dénombrement d’arbres binaires et son application à leur génération

aléatoire,” RAIRO Theoretical Informatics and Applications, vol. 19, pp. 179–195, 1985.

C. Savage, “A survey of combinatorial Gray codes,” Society of Industrial and Applied Mathematics Re-

view, vol. 39, pp. 605–629, 1997.

B. W. Schmeiser and A. J. G. Babu, “Beta variate generation via exponential majorizing functions,” Op-

erations Research, vol. 28, pp. 917–926, 1980.

J. Siltaneva, “Random Generation of Binary Trees (In Finnish),” Master’s Thesis, Department of Com-

puter and Information Sciences, University of Tampere, Finland, 2000.

E. Stadlober, “Sampling from Poisson, binomial and hypergeometric distributions: ratio of uniforms as

a simple fast alternative,” Habilitationsschrift, Institute of Statistics, Technical University of Graz, Aus-

tria, 1988.

E. Stadlober, “Binomial random variate generation: a method based on ratio of uniforms,” American Jour-

nal of Mathematical and Management Sciences, vol. 9, pp. 1–20, 1989.

E. Stadlober, “The ratio of uniforms approach for generating discrete random variates,” Journal of Com-

putational and Applied Mathematics, vol. 31, pp. 181–189, 1990.

J. S. Vitter and P. Flajolet, “Analysis of algorithms and data structures,” in: Handbook of Theoreti-

cal Computer Science, edited by J. van Leeuwen, pp. 431–524, North Holland, 1990.

H. S. Wilf, Combinatorial Algorithms: an Update, SIAM, Philadelphia, PA, 1989.

15

