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Abstract

We consider the HORTON-STRAHLER number S, for random equiprobable binary trees with n nodes.
We give a simple probabilistic proof of the well-known result that ES, = log,n + O(1) and show
that for every z > 0,

D
P{1S, ~logyn| > 2} < T
for some constant D > 0.

Keywords: analysis of algorithms; probabilistic analysis; HORTON-STRAHLER number; random bi-
nary trees

Introduction

Originally used to classify river systems [4, 12], the Horton-Strahler number has also been
applied to binary trees. Let 1" be a binary tree with n nodes such that each node has at
most one left and one right node. For example, with n = 3 there are exactly five different
trees. Let |T'| be the number of nodes in 7'. Similarly, let |u| be the number of nodes in the
subtree rooted at node w in T'. For a node u in the binary tree T, let the Horton-Strahler

number S(u) be defined as

0 if |u/=0,
S(u) = ¢ max(5(v), S(w)) + [[s()=s@w) il [u]>1 and

u has children v and w

where I4 is the indicator of the event A. We define S(7’) as the Horton-Strahler number of
the root of tree T'. For example, Figure 1 shows a tree with Horton-Strahler number three.
At times, we use S(u) and S(7') interchangeably, even though w is a node and 7" is a tree.

The two extreme values for the Horton-Strahler number are immediately apparent. At
the one extreme is a single chain of n nodes and Horton-Strahler number one (see Figure 2).
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Figure 1: A binary tree with Horton-Strahler number three.

This is sometimes called a “gourmand de la vigne” by Viennot [15], because when viewed
with its external nodes (O), the chain resembles the bottom part of a vine which is cut to
improve the quality and quantity of the wine.

Figure 2: A “gourmand de la vigne” with five nodes and Horton-Strahler number one.

At the other extreme is the complete tree with k levels, 2 — 1 nodes and Horton-Strahler
number k (see Figure 3). Generalizing this, it is clear that, for each binary tree 7" with n

nodes, S(7T") < logy,n + 1 [6].

Figure 3: A complete tree with seven nodes and Horton-Strahler number three.

The Horton-Strahler number arises in computer science because of its relationship to
expression evaluation. Often in a computer, an arithmetic expression is evaluated by micro-
operations using registers. To facilitate this process, the expression is stored as an expression
tree with the operators in the internal nodes and the operands in the external nodes. The
arithmetic expression is evaluated by traversing the corresponding tree. In 1958, Ershov
[1] showed that by always traversing the child node with the lower Horton-Strahler number
first, that the corresponding register use is minimal. Furthermore, the minimum number
of registers required to evaluate an expression tree 7" is exactly S(7) + 1. As expression



evaluation is a specialized type of postorder traversal, this can be generalized that the
minimum stack size required for a postorder traversal of binary tree T"is S(7) + 1 [3]. In
fact, the Horton-Strahler number occurs in almost every field involving some kind of natural
branching pattern. More recently, the Horton-Strahler number has been used to draw trees
[6, 16]. Viennot [15] provides a thorough overview. See also Vauchaussade de Chaumont
and Viennot [13, 14], and Viennot, Eyrolles, Janey, and Argues [16].

The Horton-Strahler number for equiprobable binary trees

Let an equiprobable binary tree (EBT) with n nodes be a binary tree with n nodes drawn
uniformly and at random from all possible binary trees with n nodes. Let 5, be the
Horton-Strahler number of a random EBT with n nodes so that ES,, and Vary§, are the
corresponding expected value and variance.

The result is well-known. Under the assumption that the corresponding expression trees
with n internal nodes and n 4+ 1 external nodes are equiprobable, the expected minimum
number of registers needed to evaluate an arithmetic expression with n operatorsis ES, + 1.

Based on exact computations of ES,, up to n = 100, Shreve [11] conjectured that
ES, ~ log,n. Flajolet, Raoult and Vuillemin [2], Kemp [5], and Meir, Moon and Pounder
[7, 8, 9] independently analysed S, via recurrences and generating functions. Flajolet,
Raoult and Vuillemin [2] showed that

ES, =logyn + D(logyn) + o(1)
where |D(z)| < 1 for z > 0. Kemp [5] showed that for all £ > 0,
ES, =logyn + C + F(n) + O(n™°%¢)

where C' = 0.82574 .. .1s a constant and #'(n) is a function with F(n) = F(4n) for all n > 0
and —0.574 < F(n) < —0.492. Meir, Moon and Pounder [8] showed that S, is very highly
concentrated about logy n. In fact, for any s > 0,

E|S, —log,n|° = O(1) .
The latter result implies that

ES, ~logyn and VarS, =0(1).

A Probabilistic Analysis

Almost everything with respect to the Horton-Strahler number for EBTs is known. Fur-
thermore by Chebyshev’s inequality, the Meir, Moon and Pounder result [8] implies that if
@, is a sequence tending to infinity, then

P{|S, — logyn| > a,} — 0,

as n — oo. Using probabilistic analysis, we present a stronger result.



Let T be a binary tree with n nodes. Let r be the reduction function from binary trees
to binary trees defined recursively as

r(o) = 0 (1)
r (EﬂJ) - o (2)

, (D/O\T) — (T/O‘\]) = r(1) (3)

o /
(o) = () () o

where () is the empty tree, O is an external node, O is an internal node, and 7', Ty, and Tx
are binary trees with at least one internal node each.
We note that

S(T)y=58(rT)+1.
We will show that each reduction reduces the size of the tree by a factor of about four and
increases the Horton-Strahler number by one. This observation explains why ES), is close
to logy n.
Let 7" = r(1'). The number of external nodes in 7" is equal to {(1), the number of
leaves in 7. The number of (internal) nodes in 7" is equal to the number of external nodes
in 7" minus one. Thus, |T’| = [(T") — 1. We note the following fact for reductions on EBTs.

Fact 1. If each binary lree T with n nodes is equally likely, then given |T'| = k < n, each
tree T' is equally likely.

Proof. For any tree 7', we examine the “expansion” of T’ back to T so that |T| = n and
r(1') = T’. The internal nodes of 7’ result from Case 4 of r. The external nodes of 1’
result from Case 2. Therefore, in any “expansion” each external node in 7"’ must expand

o
to a parent node of two external nodes (i.e. O — d Y ). The remaining n — (k+ k4 1)
internal nodes of 1" result from Case 3. These pairs of single-parents with only-children
o) o)
(external nodes) < ‘ﬁ \' or / E ) can be re-inserted anywhere in the expansion except

below the leaves of T. Each combination of insertions results in a different tree T. As
this argument is identical for all 77, we note that for all 77 with k& nodes there is an equal
number of expansions to trees with n nodes. m

Before we use reductions to derive the upper and lower converging bounds for ES,,, we
need the mean and variance of L,, the number of leaves in a random binary tree. By mim-
icking the argument in [10] for the average internal path length of a random equiprobable
binary tree, we set up the following double generating function

Q(’UJ,Z) = Z Z anwnzk )

n>0 k>0
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where (), is the number of trees with » nodes and & leaves. This, in turn, may be expressed
equivalently as

Qw,z) = E W T — 1—1—dwwz—w+1) '
all trees T 2w

From this, it is straightforward to derive E L,, = 272(22?1)) ~ Zand Var L, = % <
g, for n > 3 [6, 17].
We now can start with the upper bound.

Theorem 1. For a random EBT with n nodes and for every x > 0,

1
P{S, > [logyn+z]} < TR
Proof. Let T be a random EBT with n nodes. Let Ty = r(1p), let T3 = r(1}), et cetera.
Then,

E|Tel = E{U(TW) - DIz, n}
| Tk|(1T% + 1) ) }
ES{|—=—1]] b
Cp{l)
- 4
Therefore by this inequality and Fact 1, E {|T%|} < % = 4% - So by Markov’s inequality,

P{|Ty| > 1} < E[T}| < J& . Thus since [5, —k > 0] = [[Tx| > 0] , we have P{5, > k} =
P{|Ty| > 1} . Consequently, if k = [logyn + =] then P{S, >k} < ;% < . .

Theorem 2. For a random EBT with n nodes and for every x > 1,

P{S, < |loggn —z]|} < 4% ,

where C' > 0 is a suitable constant.

Proof. Let Ty,1y,15,... be a sequence of random binary trees obtained by successive
reductions and |Ty| = n. Then by Fact 1 and the bound on the variance of the leaves,

Var{|Tk_|_1| ‘Tk} < ¢|Ty| , where ¢ = 1/8. Also, E{|Tk_|_1| ‘Tk} < E—H . Therefore,

‘ 1
o 6Var|Tk| .

T
Var|Ti41| < E{C|Tk|}+Var{M} < W —|—1—

4
Iterating the preceding inequality, we have

cn 1
Var|lp| < — 4 —
ar| Tl < 4k+16(

cn

1
= + EVar|Tk_1|>



= 4_k(1 + Z) + 1—62V3_I'|Tk_1|
cn 1 1 1 1
< gt gt gt )+ g Varilol
4 g
= 3 Z—Z (since Var|Tp| =0) .
We note by inspection E|Tjyq1| > % — 1. Iterating this, we obtain
E|To| 1 1 n =1 n 4
E|Tk+1|Z4kT_1_Z_'”_4_kZ4k+l - : OE:W—g.
]:
We have
P{s, <k} = P{Ty =0}
= P{|Tk| - E|T}| < —E|T}[}
Var|T
EaQT;T| (by Chebyshev’s inequality)
k
4 cn 1
REEE
If £ = [logyn — x| then P{S5, <k} < % < gifm = # when z > 2.
3

We combine the upper and lower bounds.

Theorem 3. For a random EBT with n nodes and for every x > 0
P{IS, —logan| 20} < 2 .

for some constant D > 0.

Proof. This follows directly from Theorems 1 and 2. =

From this theorem, we have the following corollaries.
Corollary 1. For a random EBT with n nodes and for all s > 0,

E{|S, —log,nl*} = O(1) .

Corollary 2. For a random EBT with n nodes and for all A € (0,log4),

E{eMSﬂ_lOg‘* ”'} < 0 .



Furthermore, Corollary 1 implies that Var$, = O(1). In conclusion, we remark that
the results from Theorems 1, 2 and 3, and Corollaries 1 and 2 are all non-asymptotic in
nature. That is, the results hold for all n. Finally, we see that while the trivial upper
bound S5, < log,n + 1 assumed that every node in the tree successfully contributed to
the Horton-Strahler number, Theorem 3 implies that in EBTs only approximately half the
nodes actually do contribute.

Generalizations of the present results to suitably defined m-ary Horton-Strahler numbers
for random m-ary trees would be interesting. For tree-drawing purposes, it would also be
of interest to introduce new classes of random trees indexed by a real number ¢ € (0, 1],
such that ES, ~ clog, n. The EBT just corresponds to ¢ = 1/2.
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