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Introduction

Tries are efficient data structures that were initially developed and analyzed by Fredkin (1960)
and Knuth (1973). The tries considered here are constructed from n independent numbers X1, ..., Xp,
each drawn uniformly from [0,1]. The binary expansion of X; gives rise to an infinite binary string
(Xi1, X2, - - .) which in turn defines an infinite path in a binary tree. From the root, we take the Xj;i-st
child, then its X;o-nd child, and so forth. The collection of nodes and edges visited by the union of
the n paths is the infinite trie. If the X;’s are different, then each infinite path ends with a suffix path
that is traversed by that string only. If this suffix path for X; starts at node u, then we may trim it by
cutting away everything below node u. This node becomes the leaf representring X;. If this process is
repeated for each X;, we obtain a finite tree with n leaves, called the trie. PATRICIA is a space efficient
improvement of the classical trie discovered by Morrison (1968) and first studied by Knuth (1973). It is
simply obtained by removing from the trie all internal nodes with one child. Thus, it necessarily has n
leaves. Each non-leaf (or internal) node has two or more children.

The LC trie is a further compactification of the trie or the PATRICIA tree. The following operation
is repeated recursively: at the root of the trie or PATRICIA tree T', find the highest complete subtree C,
and let h be its height. (This means that all 2" nodes at distance h from the root exist in 7', but not all
2" +1 nodes at distance h + 1) Let T;,1 < < 2" be the subtrees rooted at the 2" nodes at distance h
from the root. Replace T by the root of T and 2" child subtrees, T;,1 < i < 2". Repeat the above path
compression procedure recursively to each T;. The resulting trie is called the LC trie. It is called an LC
trie if T is a trie, and an LC PATRICIA trie if T is a PATRICIA tree. Note that in LC tries, the number
of children of each node is a power of 2. For compact and simple array implementations, we refer to the
work of Andersson and Nilsson. The idea of level compression was proposed by Andersson and Nilsson
(1993). LC tries are first defined there, and an early average case analysis may be found in that paper
and in Andersson and Nilsson (1994). LC tries were suggested by Andersson and Nilsson (1995) for string
searching, as improvements of suffix trees. Nilsson and Karlsson (1998, 1999) noted their usefulness for
fast address look-up for internet routers and IP address look-up. Experimental comparisons can be found
in Iivonen, Nilsson and Tikkanen (1999) and Nilsson and Tikkanen (1998).

The purpose of this note is to analyze random LC tries under the uniform model of randomness:
Xi,...,Xp are i.i.d. and uniformly distributed on [0, 1], and consequently, the bits in the binary expan-
sions of each X; are i.i.d. Bernoulli (1/2) random variables. Other models of randomness, such as the
Bernoulli model (the bits in the binary expansion of X are i.i.d., taking the value 1 with probability p)
and the density model (X7 has a density f on [0, 1]) will be treated elsewhere.
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FIGURE 1. At the top, from left to right: a binary trie, and the
corresponding LC trie. At the bottom, left to right: the PATRICIA
trie, and the LC PATRICIA trie obtained by level compaction from the
PATRICIA trie. The compacted parts in the LC trie are highlighted.

The quantities of interest to us in a trie or LC trie are Dy, the depth of the n-th string (which
is thus also the depth of a typical string, as all tries considered here are permutation-invariant); Ay, the
average leaf depth, (1/n) Y7 | D;; and Hy, the height of the trie.

Andersson and Nilsson (1993) considered the LC PATRICIA tries and showed that for the uniform
model and for the density model with bounded density f, E{A,} = ©(log* n), where log*(n) is the log star
function, defined as the minimum positive integer ¢ such that log, log, - - -logg n < 1, where the logarithms
are iterated ¢ times. Also, in the Bernoulli model with p # 1/2,p € (0,1), E{Ap} = ©(loglogn). These
results confirm and strengthen the good experimental results obtained with the data structure, as the
expected height and expected average leaf depth for random tries and PATRICIA tries are ©(logn) for
these random models.

We will first improve the Andersson-Nilsson result to E{A4,} ~ log*(n), and extend it to include
both LC tries and LC PATRICIA tries. We will also show that Dy, /log*(n) — 1 in probability, a law of large
numbers. We conclude with a study of Hj, which has escaped scrutiny in the literature of LC tries. In
particular, we note that the height and average depth in random LC tries are very different. For example,
for LC PATRICIA tries, Hy ~ \/@ in probability, which is much larger than the log* n average leaf
depth. All of the above is shown in this note for the uniform model. The density and Bernoulli models
will be treated elsewhere.



THE MAIN PARAMETERS FOR RANDOM TRIES. The asymptotic behavior of tries under the uniform
model is well-known. The height is studied by Régnier (1981), Mendelson (1982), Flajolet and Steyaert
(1982), Flajolet (1983), Devroye (1984), Pittel (1985, 1986), and Szpankowski (1988,1989). For the depth
of a node, see e.g. Pittel (1986), Jacquet and Régnier (1986), Flajolet and Sedgewick (1986), Kirschenhofer
and Prodinger (1986), and Szpankowski (1988). For example, it is known that

Hy/loggn — 2 in probability .

The limit law of Hj, was obtained in Devroye (1984), and laws of the iterated logarithm for the difference
H;, —2logy n can be found in Devroye (1990). For other models, we refer to Devroye (1982, 1984), Régnier
(1988), Szpankowski (1988) and Pittel (1985).

THE MAIN PARAMETERS FOR PATRICIA TRIES. As the PATRICIA trie is simply obtained by removing from
the trie all internal nodes with one child, it necessarily has n leaves and n—1 internal nodes. The trie from
which it is deduced is called the associated trie. All parameters of the PATRICIA trie such as H;, improve
over those for the associated trie: Pittel (1985) has shown that for the uniform model, Hy/logon — 1
in probability, which constitutes a 50% improvement over the trie. For other properties, see Knuth
(1973), Flajolet and Sedgewick (1986), Kirschenhofer and Prodinger (1986), Szpankowski (1988), and
Kirschenhofer, Prodinger and Szpankowski (1989). Pittel and Rubin (1990) and Pittel (1991) showed

that for the uniform model,
Hy, —loggn

v/2logsn
Aldous and Shields (1988) showed that the same property holds true for the digital search tree, another
modification of the trie with properties typically similar to those of PATRICIA trees. The following results

— 1 in probability.

will be required further on.

PROPOSITION 1 (DEVROYE, 1992A). For a PATRICIA trie under the uniform model,

H, -1
n — 108N 41
v/2logsn
in probability, and
F —
Fn—logen
logy log n

in probability, where F,, (the fill-up level) is the number of consecutive levels in the trie that are full.

VARIABLE FANOUT TRIES. Variable fanout tries are tries in which on level i, a fanout of size f; is used.
For example, if at level 0, a fanout of size fy = n is used, and similarly for all subtrees (fanout = subtree
size), then we obtain the so-called N-trees (Ehrlich, 1982; Tamminen, 1983). For f; = 2, we have classical
tries. It is easy to see that with f; depending upon ¢ and n in intricate ways, any structure interpolating
between hash structures and tries is obtainable. There are many disadvantages of such structures. First
of all, n must be known beforehand, so this requires some (modest) work to be made adaptive. Also, the
space requirements could become important, whereas LC PATRICIA tries have carefully controlled space
usage. With f1 = n/logyn, fi = logyn/logylogyn, fo = logylogy n/logslogylogyn and so forth, with
n referring to the total input size; or if f; =~ N/logy N, where N is the size of the subtree (varying from
point to point), we should expect to see properties similar to those of the LC tries studied here. We will
report on variable fanout tries elsewhere.



LC tries: depth for the uniform model

We introduce the notation
Li(n) =logy - - -loga(n) ,
where the logarithms are repeated ¢ times. For positive n, the smallest i such that £;(n) <1 is denoted
by log*(n), the log star function. Thus, for any k > 1,
Liogs(my(n) ST <2< Lywiy go(n) -

In this section, we prove the following result.

THEOREM 1. For a random LC trie under the uniform model,

7400 log*(n) 1300 log*(n)

Before proceeding with the proof, we will give an intuitive explanation of the result. It is well
known (Devroye, 1992a) that the fill-up level (number of consecutive full levels starting at the root) in a
random PATRICIA trie and a random trie is about logs n — logs logo n + O(1) in probability (Proposition
1 above, Lemma 1 below). This means that, barring a multiplicative factor, the root of the LC trie has
about n/logy n children, each of which is the root of a new LC trie of size about logyn (because in the
uniform model, subtrees are again distributed as for the uniform model). The nodes in the LC trie at
distance one have fanout about logy n/logs logs n, and the subtrees at distance two in the LC trie have
sizes about logy logg n. If we repeat this argument until we run out of nodes, the number of levels in
the LC trie is about log*(n). The proof of Theorem 1 makes this argument more rigorous and attempts
to identify, in fact, the positions of the various levels of the LC trie in terms of depths of nodes in the
original trie.
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FIGURE 2. The left figure shows the top logs n levels of a random trie. Roughly speaking, such tries
get compacted to LC tries (on the right) in the manner shown, with only minor random variations. The
trie on the left has about log*(n) horizontal sections of nodes, each section corresponding to one level in
the random LC trie. Therefore, most nodes in the LC trie are at distance about log*(n) from the root.
However, the random fluctuations are such that the height of the LC trie is actually much larger.

PROOF OF THEOREM 1. We begin by simplifying matters greatly. Let = be a fixed infinite binary string,
and let Dy(z) denote the depth of the leaf for z in the LC trie for z,X1,...,X,. Then, under the
uniform model, we have E{D,(z)} is independent of z. Thus, in particular, E{Dy} = E{D,_1(x)} with
x arbitrary and fixed (like the string of all zeroes). We also have E{A4,} = E{D,}. For these reasons, we
study E{Dy(z)} for the zero-string z. We will write Dy, instead of Dy (x).

In what follows, € > 0 is always an arbitrary small positive number, and M = M(e) is a finite
positive integer depending upon e. Consider a path for z in a random trie for z, X1,...,Xn. On this
path, we define complete trees T, To, . .. with roots ui,us, . .., where u; is a leaf of T; 1 (see figure below).
Also, the depth of u; 1 is ¢;:

t = 1L1(n)] — [Lisi(m)] - M
for all 4 > 0. Since these numbers must be positive, we assume that n is so large that ¢; > 0. Further
on, we will use the inequalities

Li(n) = Liy1(n) =M —1<4; <Li(n) — Lipa(n) — M +1.



The height of tree T; is given by

hi =0; —£i_1 = [Li(n)] — [Liy1(n)] .
Uy

AAA

F1GURE 3. This figure illustrates the various quantities defined
above.

We first bound the height of the LC trie from above. We say that T; is busy if each of its 2" leaf nodes is
visited by at least two strings in the data (recalling that strings in the data correspond to infinite paths).
We define By, the depth of the leaf of z in the original trie beyond |logyn| — 2M (By, = 0 if this depth
does not extend past that point), and Cy, the depth in the LC trie of y, the unique node on the path of
x that is at distance |logyn| — 2M from the root in the original trie. The depth of z in the LC trie is
bounded from above by By + Cy,. Recall that all nodes on the path x get mapped to nodes in the LC trie
by the following mapping: mark on z all nodes that correspond to leaves of complete subtrees as they
are identified for LC trie compaction, and call them v1,v2,.... Let vy be the root. A node v between
v; (inclusive) and the next deeper node v; 1 (exclusive) is mapped to v;. Its depth in the LC trie is i.
If T; is busy then it contributes at most one to the depth of y in the LC trie. If T} is not busy, then it
contributes at most h;. In calculating a bound for the depth of y in the LC trie, we need to consider all
T;’s with £; < |loggn| — 2M. In other words, we consider all 4 with

b =[L1(n)] = [Lita(n)] = M < [£Ly(n)] —2M ,

or
[Lisi(n)] > M .
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Call this collection of positive integers i, Z. Note that |Z| < log*n, as M > 1. Thus,
Cn <Y 17y busy] + D M7 not busy] -
€T €T
Therefore,
E{Cn} < |Z| + ) _ hP{T; not busy} .
€L
Now,

P{T; not busy} < 2 P{there is at most one string visiting the leftmost leaf of T;}
h AP e\ ot
<2 i(1—1/2z') +2 i(1—1/2z') n /2t
h A% ¢
< ghi (1—1/2z') (1+n/2%)
£
< 2hi ! 1/27 (1 4 2k

Note that 2t < 2€i(n)+1 /25i+1(") =2L;_1(n)/L;(n). By using the inequalities on ¢; mentioned earlier,

we have
n

M-1p.

< 21+M£i(n) .
Thus, if M > 3,
2¢Liq(n)

L;(n)
< 2e(L; 1 ()" 2" /1084 (1 4+ 21V £,(n))
L 2e(1 427 ()
S L)

24+M

<
= (Li—1(n))?
24+M

h:P{T; not busy} < h; =2 L) (1 4 91 M £ ()

< — .
— 932M

94+M ot M
*
E{Cpn} < |T| x 1+232M <log*(n) x 1+W )

The last factor is less than 1 + € for any given € > 0 by choice of M. We now turn to By. The leaf for

We conclude that

x is at distance > k from the root of the trie if and only if there exists at least one other string in the
input whose first k bits coincide with those of z. By the union bound, the probability of this event is not
more than n/2¥. Thus, for k > 0,

n 2M+1
> k} = 2|_10g2 n|-M+k < ology n—M—1+k = ok

Thus, as EB, = Y 32 P{By > k}, we see that

P{B,

o0
1
EBnSM+1+Z2—k=M+2.
k=0



Putting everything together, we conclude that the expected depth of the leaf of z in the LC trie is not
larger than
(1+e)log*(n)+M+2.

This concludes the proof of the upper bound.
We now turn to the lower bound. This time, we define

ti=£L1(n)| = [Lix1(n)] + M .

Note the +M in this definition, as opposed to —M. The h;’s are not affected by this change. We mark
T; if h; > 0, if not all its 2" — 1 leaves, the leaf on the path of 2 excepted, are visited by an input string,
and if at least one of those leaves is visited. Observe that the depth of the leaf of x in the LC trie is
bounded from below by the number of marked T;’s. Let the set of ¢ with h; > 0 be called Z. Note that
|Z| = log*(n) — 1. Thus,

E{D,} > ) P{T; is marked} = |Z| — Y P{T; is not marked}
1€l 1€T
Let Nj, 1 <j < 2" — 1, be the number of data strings that visit the j-th leaf of T; (thus, for a given
leaf, all these N; input strings have identical prefixes of length £;). We have [T} is marked] = [max; N; >
l,minj Nj = 0]. Thus,

P{T; is not marked} = P{mJaxNj =0} + P{mjin N; > 1} .
By the union bound, since h; > 1,
P{mjaxNj = 0} = P{binomial(n, (2" — 1)/2"i2%) = 0}
< P{binomial(n, 2 %~1) = 0}
— (1 -ty
< exp (—n/2€i+1)
< oxp (2 22,(m)
< 2_2_M_2£z'(")
= (L) 2

Next, by Mallows’ inequality for the multinomial distribution (Mallows, 1968; see also Esary, Proschan
and Walkup, 1967 and Joag-Dev and Proschan, 1983),

P{minN; > 1} < J[[P{N; 2 1}
i
— (1= P{N; =0}
< exp (—(2’% — 1)P{N; = 0}) .
<exp (1-2MP{N; =0}) .

Observe that
2hi > 2Lim=1joLini() = £, (n)/2L4(n)



and that
P{N; = 0} > P{binomial(n, 1/2%) = 0}
= (1 - 1/2@')”
> exp ( fi - 1))
(use 1 —u > exp(—u/(l —u)),u € [0,1))
= exp ( n /2t ) xp( n/2% (2% — 1))
> exp ( n/2t ) exp ( on /22 )
( 2l-Mp )exp (_z(zlfM Ci(n))Q/n)
(£

i(n)/4) exp (—(£i(n))?/8n)
(if we take M = 3)
> 9—Li(n)/29—(L;(n))? /4n

> L o-(ogy(m)*/an
Li—1(n)

= exp

Thus,

| 9~ (loga(m)*/4n /7 ()
P{mijj > 1} <exp (1 B 2L4(n)

< exp (1_7M>

3L;(n)

for all n large enough. Putting things together, we have

E{Dn} > 7] = S (Lisi(m) /32 = S e ™

1€L 1€T
Split Z into Z7 (the collection of i’s for which £; > 1/e, with € > 0 arbitrary and given), and the
remainder, Zp. Clearly, |Zo| < 1+ log*(1/e). Note that log(u) < (4/e)ul/* for u > 1. Thus, on Z, we
have £;(n) < (4/elog2)(L;—1(n))L/4. Putting all this back into the bound, we have

E{Dy} > |T) = (14 €)[Tg = 3 e 1/32 = 3 el-(elo2/12)(Limy ()

1€y 1€y

> log*(n) — 1 — (1 + €)(1 + log*(1/e)) — o—1/32¢ log*(n) — el—(elog2/12)21/46 log*(n)

\/ z 1(”)

and this is greater than (1 — §)log*(n) for all n large enough by choice of e. This concludes the proof of
the lower bound. [

REMARK: RANDOM LC PATRICIA TRIES. Clearly, the upper bounds for depths in tries are upper bounds
for PATRICIA tries, so that limsup,,_, E{An}/log*(n) < 1, and similarly for D,. For matching lower
bounds, some additional work is needed that is not presented here. The LC PATRICIA trie typically has
smaller average depths for its leaves. However, the lower bound in the proof above in terms of the number
of marked subtrees is also valid as a lower bound in case of LC PATRICIA tries. The definition of a marked
T; refers to the original trie, and not the PATRICIA trie, so new bounds are needed in that section of the

10



proof. It is easy to see that P{max; N; = 0} is smaller for the PATRICIA trie than for the original trie, so
we need only bound P{min; N; > 1}.

A law of large numbers

THEOREM 2. For a random LC trie under the uniform model,

Dy

log*(n)
in probability. In fact, for § > 0, we show that
nllynéo P{D,, > log*(n) + (1 + §) logy logy log*(n)} =0 .

and
. * * * —_
nlgréo P{D, <log*(n) — (1 + 6)log*(log*(n))} =0.

Proor. Note that Dy, is distributed as Dj;, the depth of the zero string z in the LC trie or LC PATRICIA
trie formed by itself and the first n — 1 data points. The technique used here is the following: we find
random variables L, and Uy, (L for lower; U for upper) such that

Ly <Dy <Up.

We show that liminf,_,o P{L, < log*(n) — (1 + 6)log*(log*(n))} = 0, and that limsup,,_,,, P{U, >
log*(n) + (1 + 68) logy logs (log*(n))} = 0. These results together imply Theorem 2.
We inherit the notation of the proof of Theorem 1. Consider first Ly,:

Ln= Z 1[Ti is marked] °
1€y

The definition of Z; involves a parameter € which we define here as e = 1/321og*(n). One may verify in
the proof of Theorem 1 that |Z2| < 1 + log*(321og*(n)) = o(log*(n)). Clearly,

Ly > |T1] > log*(n) — 2 — log" (32 1og" (n))
if all T;’s with ¢ € 7; are marked. But as we showed in the proof of Theorem 1,
P{T; is not marked} < e~'/32¢ 4 ¢!—(elog 2/12)21/4¢
The upper bound reduces to
e7108" () 4 (1=(elog2/1212°°5° ) _ g 11000 ()
uniformly over all ¢ € Z;. Thus, by the union bound,

P{U;ez, [T; is not marked]} < Z P{T; is not marked} = o(1) .
1€y
Therefore, for any § > 0,
: * _ * * —
nlgrgoP{Ln <log*(n) — (1 + §)log*(log*(n))} = 0.

This is more than we needed to show.

11



We now turn to the upper bound. Recall the definitions from the first part of the proof of
Theorem 1, where we will make one change: M will be chosen as an appropriate positive integer-valued
function of n. We set

Un = Bn + |I| + Z hil[Ti not busy| *
1€L
That this bounds D}, | | was established in the proof of Theorem 1. Recall |Z| < log* n. Also, for positive
integer k,
P{B, >k} < 2M+1-k
Finally, we recall that for M > 3,

44+M

P{T; not busy} S W .

This suggests the following choice:
M = |logy(logy(log™(n)))] -

Thus, U, > log*(n) + k implies that either B, > k or that one of the T;’s, i € Z, is not busy. By the
union bound, we have

P{Uy > log*(n) + k} < P{U;ez[T; not busy|} + P{B, > k}

25 Mlog*(n) | a1k
S —pre o T2

Thus, P{Up, > log*(n) + M + w(1)} — 0, where w(1) represents any sequency diverging however slowly
to oo. This concludes the proof of Theorem 2. []

LC tries: the height for the uniform model

We show here that, remarkably, level compaction does not alter the height a lot—it improves
over the ordinary random trie by about 50 percent. First, we establish a bound on the fill-up level of an
ordinary trie:

LEMMA 1. Let 2K be the fanout of the root in an LC trie for the uniform model. Then

nlgrolo P{K <logs(n/logn)} =0.

PROOF. If all 2% possible binary prefixes occur among X1, ..., Xy, then clearly, K > k. Thus, by the
union bound,
k
P{K < k} < 2F(1 — 1/2%) < 2ke—m/2"
Now, take k = [logy(n/logn)]| and conclude. []

12



THEOREM 3. For a random LC trie under the uniform model,
Hy

-1
logg n

in probability.

PRrOOF. Group the n data strings by their first & bits. The number of groups of strings is thus 2%, one
for each possible combination of k bits. Observe that H, > £ if there is a group of cardinality two in
which both strings in that group have their first k + £ bits coincide. We call such a group “good”. The
reason is that the LC trie will have an appendage of length at least £ rooted at a node at some distance
to the root, this distance being an integer between 1 and k. Conditional on two strings in a group, the
probability of a match of the last £ bits of the first k + £ bits is 1/ 2¢. Let N be the number of groups of
cardinality two, when k = |logy n]. Define £ = | (1 — €) logy n| for some € € (0,1). Thus, by conditioning
on N,

P{H, < (} < E{(1 - 1/2Z)N} < E{exp (_N/zf)} =0

if N/2¢ - oo in probability, by the dominated convergence theorem. But N/2¢ > N/nl~¢ = n¢(N/n).
Clearly,

E{N} =2 (Z) (1/2%)2(1 = 1/25)" 2 = C(n)n

where 0 < a < C(n) < b < oo for some positive constants a,b. Also, if we replace one input string by
another one, N changes by at most one. By McDiarmid’s version of the bounded difference inequality
(McDiarmid, 1989),
P{|N —E{N}| >t} <et'/2
Thus, N/E{N} — 1 in probability, and N/2¢ — oo in probability.
For the upper bound, we note that the height of the LC trie is at most hy, — K, where K is the
fill-up level of the ordinary trie (see Lemma 1) and hy, is the height of the ordinary trie. Thus, for € > 0,

P{H, > (1+¢€)logagn} <P{hp, > (2+¢/2)loggn} +P{K < (1 —€/2)logyn} .

The first term on the right-hand side is o(1) as pointed out earlier. The last term is o(1) by Lemma 1.
This concludes the proof of Theorem 4. []

LC PATRICIA tries: the height under the uniform model

THEOREM 4. For a random LC PATRICIA trie, under the uniform model,
H,
_—n -1
v/2loggn

in probability, i.e., for all € > 0,
lim P {Hn ¢ [\/(2 ~ ) logyn, /(2 + €) logy n]} 0.

n—00
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ProOOF. A lower bound for the height is obtained by the following simple argument. We pick ¢ =
|\/(2 =€) logy n], for arbitrary e > 0. Consider the original trie (before compacting it into a PATRICIA
tree), and take the nodes at distance k = |logyn| from the root. We color such a node black if it has £
strings visiting it (thus, £ of the X;’s have their first k bits agreeing with those for the node), and if these
£ strings have the following property: all agree in bit k + 1 except one; of those agreeing, all agree in bit
k + 2 except one; and so forth. Given that there are £ strings, the probability of such a configuration is
1 1 1 1 def

901 " 9r2 Xl T e
For a black node, the trie and PATRICIA subtrees are identical as each internal node has degree two. If
there is a black node, then the level compaction of the LC trie can at best make the root disappear and
its two children become children of the root of the LC trie. Thus, the height of the LC trie is at least
£ —1. We have

P{H, < £ —1} < P{no node at distance k is black} .

Let Y; be the indicator that the j-th of the 2% possible nodes at distance k from the root in the original
trie exists and is black. Let N = Zj Y; be the number of black nodes. We will apply a version of the
second moment method given, e.g., in Alon, Spencer and Erdds, 1992: limy 0o P{N =0} =0 if

A. limp 300 E{N} = o0;

B. (Y},Y) are identically distributed for all j # m, and limy, 00 pn = 1, where p,, = E{Y1Y2}/E{Y1}E{Y>}.
But P{H, < { -1} < P{N =0} — 0 as n — oo, and we are done. To verify condition A, note that
E{N} = 2kpP{N; = ¢}, where N; is the number of strings starting with & zeroes, a binomial (n,1/2F)
random variable. Note that if £ = o(y/n), then

n nt 1
P = = () /2 -1/ G apmta -t
as n — co. Then pP{Ny = £} = Q(n/?~1) and E{N} = npP{N; = £} = Q(n/?), which tends to infinity.
Let No denote the number of data strings whose first k bits are k — 1 zeroes followed by one 1

(we could have taken any k-string that is not all zero). To verify condition B, we see that as n — oo,

pn = E{¥1Y32}
= p’P{N; = Ny = (}
= p’P{N1 = }P{N = {| N, = {}
~ (pP{Ny = £})?
= E{Y1 }E{Y>}
provided that P{Ns = ¢|N1 = £}/P{N; = £} — 1 as n — 0o. As n — oo, we have,
P{Ny = {|N; = £}
P{N; = ¢}
_ ("Ha/ek-)

(
- () (1/2k)E(

- (/@ 1))
1—1/2kyn=¢

_ (n—E)!Q 1 .y

=m0 @1z 4 /" 1) x ((2k "Dk -1
(n — @)!2 (n — E)Zn—ﬂ

- nl(n — 2¢)! - nn(n — 20)n—2¢
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(1 _ g/n)anﬂ (1 _ E/n)Zn 6722
T =22 T (1 —2u/n)r " e 2
This concludes the proof of the lower bound for H,.
For the upper bound, note that the height H, of the LC PATRICIA trie is bounded from above by
P, — F,, where Fj, is the number of full levels of the PATRICIA trie, and P, is the height of the PATRICIA
tree. From proposition 4 of Devroye (1992a), we have for all € > 0,

P{P, >logon + /(2 + €)logy n} < e”?n(n — 1)~ 2+I/2 L, ¢ .

From Proposition 1, for all € > 0,

=1.

P{F, <logon — (1 +¢€)logylogn} =o(1) .
Combining these results shows that
P{Hp, > /(24 €)logan + (1 +¢€)logglogn} — 0.

This concludes the proof of Theorem 4. []

Conclusion

In future work, we intend to look at the density model, when the input strings are the bits in the
binary expansions of random variables drawn independently from a given density f on [0,1]. The first
term asymptotic behavior should be as for the model studied in this paper.

The asymmetric bit model (when the bits are independent but zeroes occur with probability
p > 1/2) yields dramatically different behavior. The depth of a typical node is of the order of loglogn.
That behavior will be explored elsewhere.
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