VSP(ROUS) 2000/06/14 Prn:22/06/2000; 13:53 F:ROUSO8.tex; VTeX/D p. 1 (59-147)

Asymptotics in Statistics and Probabilipp. 1-22
M.L. Puri (Ed.)
2000 VSP

INEQUALITIES FOR A NEW DATA-BASED
METHOD FOR SELECTING NONPARAMETRIC
DENSITY ESTIMATES

LUC DEVROYE, GABOR LUGOSI and FREDERIC UDINA

School of Computer Science, McGill University,

Montreal, Canada H3A 2A7

Department of Economics and Bussiness, Universitat Pompeu Fabra,
Ramon Trias Fargas, 25-27,

08005 Barcelona, Spain

ABSTRACT

We develop a general method to select an estimate from any given family of (regular and
additive) nonparametric density estimates. We provide explicit non-asymptotic density-free
inequalities that relate thes error of the selected estimate with that of the best possible
estimate in the family, and study in particular the connection between the richness of the class
of density estimates and the performance bound. For example, our method allows one to pick
the bandwidth and kernel order in the kernel estimate simultaneously and still assure that for
all densities the L error of the corresponding kernel estimate is not larger than about three
times the error of the estimate with the optimal smoothing factor and kernel plus a constant
times./logn/n, wheren is the sample size, and the constant only depends on the complexity
of the family of kernels used in the estimate. Among many possible applications we include
here multivariate kernel estimates and transformed kernel estimates.

1. INTRODUCTION

We are given an i.i.d. samplg,, ..., X, drawn from an unknown density
f onR?. A density estimatef,(x) = f,(x, X1,...,X,) is a real-valued
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ER-0291. The work was supported by DGES Grant PB96-0300.
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measurable function of its arguments. Among others, we consider the
Akaike-Parzen-Rosenblatt density estimate

1 n
Fun () = = ; Kn(x — X;)

wherek : RY — Ris afixed kernel with K = 1, K (x) = (1/ h*)K (x/ h),
andh > 0O is the smoothing factor (Akaike, 1954; Parzen, 1962; Rosenblatt,
1956). Many data-dependent choices forhave been proposed in the
literature. Most perform well for restricted classes of densities. An exception
may be found in the recent work of Devroye and Lugosi (1996, 1997), where
data-dependent smoothing factéfsare introduced for which

E —
suplim sup- SV fur = f <3
f  n—oo mfh Ef |fnh - f|

whenever the kerneX is nonnegative, Lipschitz, and of a compact support.

In this paper, we continue the study and propose bandwidths for transformed
kernel estimates, variable kernel estimates, and kernel estimates with joint
choice of K and k. Explicit non-asymptotic performance guarantees are
provided that are uniform over afl. As the same principle may be applied to

a host of other estimators, including series estimates, partitioning estimates,
various brands of histograms, and tree-based methods, it is advantageous to
derive the theory in a general setting (as is done in the next section). To
keep the length of the paper reasonable, results on the other methods will be
reported elsewhere.

2. THE BASIC ESTIMATE

Let ® be an abstract set of parameters, and assume thatéeach®
determines a density estimafg, for eachn. The L; error of the estimate
fn.0 is denoted by

S = / = fuol:

Letm < n (tipically m <« n), and definedg as theYatracos classf subsets
of R (corresponding to the family of density estimatgs, 0 € ®) as the
class of all sets of the form

A@j_,@z = {X . fn—m,@l(-x) 2 fn—m,@g(x)} B 615 92 € 0.

We select a parametéy from © by minimizing the distance

sup
AeAp

/ fnfm,(-) - /Lm(A)
A
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over all & € ©, where u,, denotes the empirical measure defined by
the subsampleX, ,.11,..., X,. The class of parameters may include
bandwidths, but also kernels from a class of kernels, parameters in nonlinear
transformations, and so forth. There are no a priori restrictions on the size.

A density estimate, is calledadditiveif it is of the form

1 n
n = - K ’ Xi ’
) == Zl (x, X;)

wherekK : RY x RY — R is a measurable function such that for ale R?,
Jga K(x, y)dx = 1. We say that the additive estimagg is regular if for
eachx, EK (x, X) < oco.

We will use the notion of shatter coefficient as in the work of Vapnik and
Chervonenkis (1971):

s(Ae, ) = sup [{{yn,....,yJNA: A€ Ap}l,
V1o YeER?

the maximal number of different subsets of a set @ioints which can be
intersected by sets idg. This will be used to measure the richness of classes
of density estimates. The first result upon which many of the subsequent
results are built is the following non-asymptotic inequality:

THEOREML. Let the set® determine a class of regular additive density
estimates. Then for all, m < n/2, ®, and f,

. 2m
Ef|fnm,9,1 —fl1<3inf E/ oo — £ <1+— +8,/f)
0e® n—m n

N \/ 8log(4e8s( Ao, mz))‘

m

Note that whevevesr(Ag, £) is bounded by a polynomiafi¢*2 of n ande,
we haves(Ag, m?) < nftm?2 < n*1+22 and consequently

\/8Iog(4e8s(,4@, m?) 0 ( logn )

m m

In the examples below, all bounds fotAe, £) will be polynomial inn and
£. Furthermore, in this case,if ~ n/logn, then

. logn
e [ 1inar1<3inE [ 1011 (24 0 (1vi0gn) 0 (2.
Because in most cases of interest, the optifmakrror tends to zero much
slower than 1./n, this bound essentially says that for polynomial shatter
coefficients, we have asymptotically a performance that is guaranteed to be
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within a factor of 3 of the optimal performance, and this without placing any
restrictions on the density. The proof of Theorem 1 is a minor modification

of some arguments appearing in Devroye and Lugosi (1997). The details may
be found in the Appendix below.

3. STANDARD KERNEL ESTIMATE: RIEMANN KERNELS

A Borel setA of R? is called a star interval if for any € R?, {t € R :
ty € A} is aninterval. Thus, all convex sets are star intervals. A keknisl
said to be Riemann of ordérif there exist star intervald, ..., A; and real
numbersy; such that

k
K() =) aily (x),
i=1

wherel, denotes the indicator function of a sét We require furthermore
that [ K = 1. We will call the smallest such the Riemann order, which
should not be confused with the order of a kernel, which is the smallest
positive integes such that/ x* K (x)dx # 0, and is in this sense only defined
for univariate kernels.

The standard Akaike-Rosenblatt-Parzen kernel estimate is

1 n
Fakn () = fn(x) =~ ;jm, (x —X,).

When K is fixed andh is chosen by the method described above (so that
0 =hand® = {# € R : § > 0}), Theorem 1 applies with the following
shatter coefficient:

LEMMA 1(Devroye and Lugosi, 1997)or the kernel estimate with
Riemann kernel of ordsk,

s(Ag, £) < (£ + 1)(1+ 2kb(n — m))? < 18k°n?e°.

Let us now widen the scope a bit and pick a Riemann kernel from a finite
class of N Riemann kernelsiC = {K3, ..., Ky}, and choose the bandwidth
h simultaneously as well. This is done by formally putti®@g= {(%, j) :
h>0,j €{l,...,N}. Again, Theorem 1 aplies, but now with a slightly
larger shatter coefficient:

LEMMA 2.Consider the clas® in whichs > 0and K € K are the
free parameters, and assume that all kernel&iare Riemann of order not
exceeding.. Then

s(Ae, £) < 18k%n23N2.
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Proof. We generalize a proof from Devroye and Lugosi (1997). Set
r = n —m. We first considetV = 2, and let the kernels it be K and L,
and assume without loss of generality that their Riemann orders are exactly
k. Define the vector

2= (il{(yl;x’),...,il((yl;x")) e R
i=1 =1

Asu 1 oo, each component af, changes every timey; — X;)/u enters or
leaves aset;, 1 <[ < kforsomeX;, 1 <i < r, where thed,’s are the star
intervals in the definition ok’. Note that for fixed(y; — X;), the evolution

is along an infinite ray anchored at the origin. By our assumption on the
possible form of the setd;, the number of different values a component can
take in its history (as: 1 o0) is clearly bounded byi2. As there arel
components, the cardinality of the set of different values,d§ bounded by

Hz, :u > 0} <14 2ker.

If we definez;, similarly asz,, but replaceX in the definition byL, then we
have

(2] s u > O} < 1+ 2ker
as well. Therefore,
{(zur 2)) s u, v > 0} < (14 2ker)2.

and the same bound applies for the p&its z,), (z,. z,) and(z),, z,).

Let W = {(w,w) : (w,w") = (z4,2,) forsomeu,v > 0}. For
fixed (w, w’) € W, let Uy, .+, denote the collection of allu, v) such that
(Zus 7)) = (w, w'). For (u, v) € Uy, We have

. . u\9
yi € A,, ifandonlyif w; > <—> wi,
v

wherew, w" have components;, w; respectively, 1< i < £. Thus,
{n o yed N Ay = (1, 0) € Ugan ||
< H(Iw@cw;, . IWC,,);) o> OH <41
But then
{n el DAL, v) > 0| < (4D) [Ug,w)

The same bound applies for the three other types of paifsz,), (z,. z,)
and(z/, z,). Thus,

u’

s(Ag, £) < AL + 1)(1+ 2ktr)® < 80(3ker)? = 7203k%r2.

< (C+D)(A+2ker)%.




VSP(ROUS) 2000/06/14 Prn:22/06/2000; 13:53 F:ROUSO8.tex; VTeX/D p. 6 (465-536)

6 L. Devroyeet al.

If we have a choice betweew kernels, we apply the bound not 4 times, but
N?times, for all possible pairings (with repetition), to obtain

s(Ag, £) < N2( + 1) (1 + 2ktr)? < 2N?¢(3ker)? = 18N?m3k%r2.
O

Lemma 2 permits us to obtain fine inequalities even when the kernel is
freely picked from a finite class. However, in all cases, the kernels have to be
Riemann of finite order. In the next section, we deal with the joint selection
of h andK for general (non-Riemanr®, and this could even include kernels
of infinite order.

4. STANDARD KERNEL ESTIMATES: GENERAL KERNELS

If K is not Riemann, we say that it is Riemann approximable if for each
there exists a finite numbérsuch that there exists a Riemann kerkélof

orderk with
, 1
K — K| < —.
n

Note that this is always possible ¥ is Riemann integrable. The smallest
suchk will be called thekernel complexity,. If there is a finite class of
kernelsk e I, then we need to find Riemann approximatidgfisor eachk
individually. A kernel estimate with Riemann kerriél is piecewise constant
and thus easy to work with in simulations.

Define the kernel estimates

l n—m )
Fom k() = —— le K;(x = X;)

forall h > 0 andK € K. Let the pair(H, K) (where K has Riemann
approximationk’) be selected fron® = (0, co) x K such that

sup
AeA

is minimal whereA is defined as the collection of all sets

{X : fnfm,L’,u(x) > fnfm,M’,U(x)}

with u, v > 0 andL’, M’ are Riemann approximations of kernélsM from

KC. After the selection, the Riemann kernels are no longer needed. Finally,
our estimate isf,,_,. x.z. We may also us¢, = f, x.x and refer to Devroye

and Lugosi (1996) for analysis of this situation. Sanchez-Sellero and de Uia
(Devroye, 1997) report good experimental results if all data are used and

/ fnfm,K/,h - /’Lm(A)‘
A



VSP(ROUS) 2000/06/14 Prn:22/06/2000; 13:53 F:ROUSO8.tex; VTeX/D p. 7 (536-605)

Selecting nonparametric density estimates 7

not just the firstn — m data points. For a practical implementation and
experimental comparison, we refer to Devroye (1997). Finally, one may
wonder if the derivation via Riemann kernels is really needed. It seems
that the combinatorial arguments that will follow may be made to work for
certain classes of kernels such as polynomials, but in any case, the generality
achieved here will be lost.

We offer the following non-asymptotic bound:

THEOREMZ2. Consider the kernel density estimate with joint choicé/of
and K as described above, whefe is taken from a clas&’ of N kernels
with kernel complexities uniformly bounded &y Then for alln, m < n/2,
d,andf,

E/lfn—m,K,H—f|<3h>(i)an /lfnLh_f|<1+—+8\/:)

+ \/8 log (72e8N2k2n®) /m + 27/n.

For n even andn = n/2, we thus have

E/mm,K,H—ﬂ < inf E/|ﬁl,L,h—f|(9+z4/ﬁ)

h>0,LekC

+/1610g(72:2N2c2nS) /n + 27/n.
Proof. Note that

1
Ef | fo—m .o — fI < E/ | foem k.0 — f1+ P

Furthermore,
1
inf E = fI< inf E — -
h>0,LekK flf”’L’h fl 30, LeK flfn,L,h f|+n

thus, a combination with Theorem 1 then vyields, with the appropriate
definition of®, and writingB,,, ,, for (14 -2 +8,/2),

1
E [ Urmin = 1<E [Uremaes = 114

< 3 inf Ef | fon — f1Bmn +\/8 Iog(468s(,4@,m2)) /m+1/n

h>0,Lek

<3 inf Ef | fozn — F1Bun +\/8 log (4¢8s (Ao, m?)) /m + 27/n

h>0,Lek

< i _ 818N 277,64 27,2
<3, 0 E [ 1fus— f1Bus +/Blog (4eFL1eN7mEzn?) /m

+27/n
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< i _ 8N2,-2,,8
< 3h>c|),anelCE/ | fo.o.n — f1Bmon +\/8 |Og(72e NZ?k?n )/m +27/n,

where we used Lemma 2. O

The above inequality is useful whew is finite. The other quantity of
interest isk,. We briefly recall some bounds from Devroye and Lugosi
(1997).

Kernels withx, = O(n”) for some finiteb are said to bgolynomially
Riemann approximableAll kernels of practical interest are in this class, as
we will see below. For fixedV, the last two terms in the upper bound of
Theorem 2 are the® (y/logn/m), just as in the case of Riemann kernels.
Obviously, if K is Riemann of ordek, thenk, < k. Symmetric unimodal
kernels on the real line have, < 82K (0)8 + 10, whereg is the last
positive value for Whichf;oK < 1/(4n). If K(x) < ali_pp(x) and
K is symmetric, nonnegative, and unimodal (such as the Epanechnikov-
Bartlett kernel), thenc, < 8rnab + 10. For the normal density, we have
Ky < @JAO. Products of polynomially approximable kernelgthand
multivariate normal densities are also polynomially Riemann approximable.

We finish this section by noting the impact of Theorem 2 ifakernels are
of orders up to and including an even numbghat is, each of the kernels
is bounded, symmetric, and has finite nonzeth moment and at least one
kernel has zere-th moments for O< i < s. Then regardless of the density
and the choice of,

liminf n*/ @+ inf E/ [ fo.kn — f1 >0

n— 00 h

(Devroye, 1988, page 1173). For such higher order kernels; let o(n)
such thatn/(n®/>*+Vogn) — oo. Then ifk, = O(n%) for some finitew,
uniformly over theN kernels,

€ [ v = £1< @ o) 06 E [ 1fyr0 = Fl+007/®),
,Le

and therefore

E " —
suplim sup- S s = f1 <
f  n—o0 mfh Ef |fn,K,h - f|

Thus, Theorem 2 shows asymptotic optimality to within a factor of 3 for all
(finite collections of) kernels of finite order.
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5. MULTIPARAMETER KERNEL ESTIMATES — PRODUCT KERNELS

Consider the kernel estimate

1 n
Fro) == ;mx - X)),

whered = (h4, ..., hy) is a vector of positive smoothing factors, and
d .
1 x
o= 1m ().
Jj=1
whereKy, ..., K, are fixed one-dimensional kernels integrating to one, and

x) is the j-th component of. Thus, we let the smoothing factor vary in
each direction. The issue here is the data-based choice of the smoothing
factors. For brevity, we consider only the simplest possible kernels. The
bound of Theorem 1 is applicable if we can compute the shatter coefficient.

LEMMA 3. Assume that for each K; = I4,(x), whereA; = [a;, a; +1]
is an interval of unit length. Then fdn > 24 we have

tne\™
s(Ap, ) <L+ 1) (§> )

Lemma 3 shows that the shatter coefficient is polynomiak iand ¢.
Therefore, the same bounds apply as for the univariate or singlernel
estimates, with just a different coefficient in the additive term of the bound.
It is quite remarkable that adjustinf) parameters is not appreciably more
difficult than adjusting one parameter. For general products of Riemann
kernels, bounds similar to those of Lemma 3 may be obtained. For products
of polynomially Riemann approximable kernels, one needs to optimize a
criterion that involves the Riemann approximations, just as in the previous
two sections. The details are omitted.

Proof of Lemma 3Denote thej-th component of, by ", 1 < ¢, j < d,
and thej-th component ofX; by X\, i <n —m, j < d. For eachy € ©
define the vector

1
29 = <z§),---,zé@)

n—m d ) ) n—m d ) )
1—[ =X Z 1—[ v =X
» j » j
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Observe that for each< ¢ andi <n —m

d

X(])
1_[ =1 ifand only if y, — X; € Ry,

J=1

whereR, denotes the rectangfe;/ i1, (a1 + 1)/ hy] X -+ x [aq/ ha, (aq +

1)/ h,]. Since there aré(n — m) possible values fop, — X;, the number

of different values the vectar, can take a® varies through® is at most
s(B,(n — m)), where B is the class of all rectangles iRY. But it

is well-known (seege.g, Devroye, Gyorfi, and Lugosi (1996, p.220) that
for £(n — m) > 2d the shatter coefficients of this class are bounded as

2d
$(B, £n —m)) < (1)
It follows that

£(n — m)e)M

|{(Z917 Z@z) : 91, 02 € ®}| < ( >

The rest of the proof is now standard: Let
W= {(wv w/) : (wa w/) = (291’ Z92) for 50m691, 92 € ®}

For fixed(w, w) € W, let U, s, denote the collection of all;, 62) such
that (zg,, zs,) = (w, w'). For (61, 62) € Uy ), We have

d d
o1t o ol

= 2y, s
j= lh]’l j=1 h']’z

Vi € Agp, ifandonly if Zg,

whered; = (hy;, ..., hg;) fori = 1,2. Within the setU, ., z91 andz(’)
are fixed for all¢, and therefore

|{{)’17 DRI yf} mAu,v : (u7 U) € U(w,w’)}|
< H(Iwmw;, L IWC%) o> OH <O+1,

wherews, ..., w, andwy, ..., w, denote the components of the vectars
andw’, respectively. But then

e oy N AL s (w,v) > 0] <
<41 L(n —m)e ad
=L
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6. MULTIPARAMETER KERNEL ESTIMATES — ELLIPSOIDAL
KERNELS

Next we consider the kernel estimate
1 n
no(x) = — Ko(x — X;),
frox) =~ ; o )

whered = X, andX is a positive definite symmetri¢ x d matrix, and
Ko(x) = vgl(yr5-1,<1y-
Here vy is a normalizing factor such thdtKg = 1, andx” denotes the
transpose of the vectar. In this case, fof(n — m) > d? + d + 2, we have
0n —m)e d?+d+2
dZ/2+—d/2+1>

The proof is exactly the same as for the case of product kernels with the
only difference that the shatter coefficients of the class ellipsoids {.e.,
class of sets of the form, = {x : x” ¥ ~1x < 1}) is bounded by

s(Ap, ) < (L+1) (

L(n —m)e
d?/2+d/2+1

whenever(n — m) > d? + d + 2 (since thevc dimension of€ is bounded
by d?/2 + d/2 + 1, seee.g, Devroye, Gyorfi, and Lugosi (1996, p. 221).
Although it is computationally challenging to optimize zé‘[j) entries in a
matrix, at least in theory, we can set up a method (by pickifguch that
asymptotically, the performance is about three times or less times the best
possible performance over all such matrices. Again, no conditions are placed
on the density or the values of the entries in the matrix.

Similarly to the univariate case, the argument may be extended via Rie-
mann approximations to the class of estimates Witlix) = vgL(x” o ~x),
whereL : RT — R is a fixed function. The details are omitted.

d?/24d /2+1
S(5,€(n—m))<( )

7. THE TRANSFORMED KERNEL ESTIMATE

The transformed kernel estimate on the real line was introduced by Devroye
and Gyorfi (1985) in an attempt to reduce the error in a relatively
cheap manner. The data are transformed by a smooth monotone transform
y = T (x), the transformed density is estimated by the kernel estimate, and
the estimate is then subjected to the inverse transformation. As this leaves
the L1 error unaltered, it suffices to study tlig error in the transformed
space, and hence the interest of such estimates. In particular, it is known
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that heavy tails are to be avoided for kernel estimates (Devroye and Gyorfi,
1985). Thus, transforms that compact and compress the data are called for.
Ideally, the transformed density should be triangular. Thus, we consider the
joint optimization over(h, a), whereh is the smoothing factor, and is a
parameter of the transformation. For simplicity, we will consider the Box-
Cox transformations, with which statisticians and data analysts are familiar.
We will show that we can jointly pick anda in an asymptotically optimal
manner, still modulo a factor 3, without placing any restrictions on the density
or the parameters. The transformations considered here are only useful to
treat tail problems. A similar analysis may be carried out for piecewise
linear transformations, the transformation being restricted to consist of a fixed
number of segments, but otherwise arbitrary. Such estimators are close in
spirit to variable kernel estimators. For practical data-based versions of other
transformations, we refer to Wand, Marron and Ruppert (1991) and Ruppert
and Cline (1994).

In general, the transformed kernel estimate is

1< )
for(x) = - ;K(T(x) —T(X)T'(x),

where K is a kernel witth = 1, andT : R — R is a strictly
monotonically increasing almost everywhere differentiable transformation.
Clearly, [ fur = 1. If T = ax + b is linear, thenf, s is just the
ordinary kernel estimate with smoothing facter= 1/a. Here we are
concerned with the data-based choic& ofClearly, the collection of possible
transformations has to be restricted somehow. Among the many possiblitities,
we only consider two representative examples.

Box-Cox transformations. Consider now the family7, : a € [0, 1]} of
transformations defined, far > 0, by
x4—1 .
L= jfa>0
T, = .
) { Ioi;x if a =0.
These functions are often used to transform the (nonnegative) data so that
large tails become more manageable. We consider kernel estimates defined
on the transformed data. In particular, we study the joint data-based selection
of the tranformationi(e., the value ofz) and the bandwidth. For simplicity,
we again only consider the naive ker€l= I;_1,5 1,2;. Therefore, the class
of estimateq f, 4 : 0 € ®} is defined by

n

-1
fro(x) = nh 21: 17,0 -Tu X1 <2 XS
1=
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wheref = (a, h) and® = [0, 1] x (0, o). Note that we assume that all data
points are positive and, ,(x) is only defined forx > 0. Again, to see if the
proposed parameter selection method works, it suffices to baudgl, ¢).

LEMMA 4. Let Ag denote the Yatracos class corresponding to the family
of kernel estimates oj™ based on all Box-Cox transformatior, a €
[0, 1] and all smoothing factorg > 0. If £ > 2andn — m > 2, then

9
s(Ae, £) < 4—156(71 —m)*.

Proof. In the proof we use a simple lemma which is an easy modification
of Lemma 25.2 of Devroye, Gydrfi, and Lugosi (1996): O

LEMMA 5.1f by, ..., by, c1, ..., cx € R, then the function

k
gx) =) bie™
i=1

is either identically zero or takes the valQdor at most — 1 different places.

LEMMA 6 (Cover (1965)) Let A be the class of sets of the forfm :
a’x > b} C RY, wherea € R? andb € R are arbitrary. Then

d
s(A,n)gzz(”lfl) <2 =D +2< 2.

i=0
Proof of Lemma 4 Consider the x (n — m) matrix z, , with entries
Z;’fh = I{lefy,“\<ah} t=1,....¢,i=1,....n—m.

First we bound the number of possible different values of the matras
(a,h) € [0, 1] x (0, 00). Observe that in the s¢d, 1] x (0, o0), each pair
(t, i) defines a curve given by

u — vt —ah=0 where u = max(X;, y;) and v = min(X;, y;).

If two curvesu® — v* —ah = 0 andw® — z* — ah = 0 intersect at the point
(a, h), then

ealogu _ ealogv — logw L logz _ 0.

According to Lemma 5, this cannot happen at more than three points (unless
u = wandv = z). Next we argue that these curves partition the set
[0, 1]x (0, 0o) into at most(3¢2(n—m)?>—L(n—m)+4) /2 < (3/2)€%(n—m)?
connected regions. This may be easily seen by induction, singediénotes

the number of connected regions definedNdbysuch curves, then it is clear
thatS; = 2andSy,1 < Sy+3N+1, since any two curves intersect at at most
three points. The solution of this recursionSig = (3N2 — N + 4)/2. Since
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inside each region the value of the matzjx, is a constant(3/2)¢%(n — m)?
is an upper bound on the number of possible values of the matrix. Therefore,

9
H{(Zas zarw) s a,d’ €[0,1], h, b > 0}] < Zﬁ“(n —m)*.

Consider now a region in[0, 1] x (0, 00))? over which (z, 4, zo ) is
constant, with value, sayw, w’), and denote the set of such quadruples
(a,h,a’,h") by Ug, . Denotingd = (a, h) andd’ = (a’, h'),

a—1 n—m a/—1 n—m

Yi € Agr if and only if fT Z wtD > th’ Z w/ D,
i=1 i=1

or equivalently, if and only if

(a — 1)logy, — logh + log (Z w“’”)

i=1

> (@' — 1) logy, — logh’ + log (Z w’(t’i)> .

i=1

Therefore, denotingV, = 3"/~ w®) and W, = Y7-7" w'"", the maximal
number of different values of

<1A91,02 (yl)s sy IA91,€2 (W))
is at most the number of different values of the vector
(I(a—a’) logy1—log(h/h')+log(W1/W;)=>0 - - - » I(a—a’) |09)’1—|09(h/h’)+|09(wt/Wr/)>0>

takes asi, a’, h, b’ all vary throughR™. But this is not more than the max-
imal number of different ways of dichotomizingpoints by 2-dimensional
hyperplanes, which, by Lemma 6, is at mést(since¢ > 2). Collecting
bounds, the proof is finished. O

Having Lemma 4, Theorem 1 yields the following bound:

THEOREM3. Assume that the basic estimate of Section 2 is used to
simultaneously select the Box-Cox transformatign a < [0, 1] and the
smoothing factoh > 0 for the transformed kernel estimate

n

-1

fnan(x) = Py 21: 1, 00-Ta (X0 1<h/21 X
1=
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If £, denotes the obtained density estimate, then for,all < n/2, and each
density f overr™,

2m
Ef|ﬁ’_f|< OIT]th ‘/‘lfnah_fl(+—+8\/7)

+\/8 log(9e8m12(n — m)4).

m

For example, ifz is even and we take = n/2,
[logn
_ < — .

Eflfn f|\ Oliﬂth /|fnah f|+1 n

8. MONTE CARLO SIMULATIONS

For testing the behavior of the proposed parameter selectors we have con-
ducted a series of Monte Carlo simulations. We describe here its graphical
and numerical results.

Example 1: Pareto density with transformed kernel

First we consider as target a Pareto density and we use the Box-Cox family of
transformations as described in Section 7. To avoid the problem of selecting
among infinite sets of parameters, we take only some values of the parameter
a € [0, 1] and some bandwidth values.

Consider the Paretd, 1) density f(x) = 1/x?, x > 1, and let the sample
size beN = 1000. The number of samplesBs= 1000. For every sample,
we select among three values of the Box-Cox parameter (0, 0.35, 0.70) and
three bandwidths 0.010, 0.084, and 0.700 in geometric sequence. This gives
a total of 9 estimators, and we select the one that minimizes the distance
described in Section 2 for the given sample and the nine-element parameter
set. 539 times out of 1000 the selected estimator wasdhé one, the one

Table 1.
Performance of transformed kernel estimators selection for examples 1
and 2. Relative error idAE; — IAE})/IAE, as described in the text

Example 1 Example 2
Average error 0.196 0.0307
Average relative error 0.0563 0.097
Worst relative error 0.7716 0.7746
prob(rel. error> 10%) 0.218 0.328

prob(rel. error= 50%) 0.002 0.018
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Figure 1. Some of the estimators in competition shown for a particular sample. Upper part
is for bandwidth 0.08, lower part for 0.7. In each figure, three Box-Cox parameter values
are used: 0, 0.35, and 0.7. Note that horizontal scale is logarithmic and that left tail of the
estimators in the lower graphs is not shown.

that minimized the IAE (integrated absolute errorLgmorm) for the sample.
A summary of results is given in Table 1. The average error,|ARAE, is
quite large due to the use of very few bandwidth values, but note that the
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average relative error (average over sample8AE, — IAE,)/IAE,, where
s subscript denotes the selected estimatoriatige bes) is small.

In Figure 1 we show six of the nine involved estimators in a particular
sample run (to simplify the figure we don’t show the ones with bandwidth
0.01). As expected, it can be seen that bigger bandwidths yield better
performance in the tails but are worse in the infinite peak. This shows the
convenience of calibrating the transformation to use.

Example 2: Transformed triangular densities

To see how our method can detect tlght transformation to use, we take a
triangular density

1(x) =1 —|x =14

and we back-transform it using the inverse of a Box-@yx(ansformation.
So, we consider as target density

B _
fp(x) = x(ﬁ—l)t(%‘).

If this density is transformed by a Box-C@¥ transformation, the result-
ing density will be triangular whea = 8. Given that (see Wand-Devroye
(1993)) the triangular density is the easiest to estimate using the Epanech-
nikov kernel, a good selector might chogéevhen given several possibili-
ties.

We takep = 0.5 and we consider five values for the Box-Cox parameter
(0, 0.250, 0500, @750, 1000) and seven bandwidth values fron@Dto 2
in geometric steps. Note that = 1 gives no transformation at all. For
N = 15000 we obtained 1000 simulation samples and selected a parameter
pair as before. The third column in Table 1 summarizes kheerror

Table 2.
In the back-transformed triangular density example, number of times (out of 1000) each
parameter pair was the optimal one and the number of these times it was selected

Bandwidth Box-Cox parameter

0 0.250 0.500 0.750 1.00
0.010 0/0 0/0 0/0 0/0 0/0
0.024 0/0 0/0 0/0 0/0 0/0
0.058 26/6 2/1 0/0 0/0 0/0
0.141 2716 232/59 476/120 200/30 26/5
0.342 0/0 0/0 0/0 0/0 11/2
0.827 0/0 0/0 0/0 0/0 0/0

2.000 0/0 0/0 0/0 0/0 0/0
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0,x) —
thttdens5(0.25,x) -~~~

thttdens5(1.0,x) ———

0.8 |

0.6 |

04 |

0.2 |

[

Figure 2. Density fg (8 = 0.5) transformed by Box-Cox transformations with parameters
« =0, 0250, 0500, 0750, 1000. See Example 2.

performance. In Table 2 we collect for each parameter pair the number of
times it was the optimal one and the number of times it was selected when at
the same time that pair was the optimal one. The figures show that the selector
picked up the right pair in 23% of the runs, 52% of them corresponding to
the theoretically best transformation.

Note that in this example the sample size must be large because the
differences between the estimators involved are very small, as can be
appreciated in Figure 2 where we show the five densities resulting from
applying the Box-Cox transformation (parameters as abovg) tg = 0.5.

A. PROOF OF THEOREM 1
LEMMA 7.

/mm,en 1< 3inf / oo — F1+4 sup
0e®

AcAp

Af - Mm(A)'-

Proof. Fix ane > 0, and letf be an estimatg,_,, o such that

f|f—f| </|fnm,9—f|+6

forall @ € ®. Then

[ 1o = 1

< /!f—f\+[\fn_m,e,,—f|

/f,,m,gn—/f' (by Scheffé’s theorem)
A A

=/|f—f|+2 sup

AeAp
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AcAg AcAp

fm(A) — f f‘
A
(by the triangle inequality)
< /!f—f\ +4 sup um(A)—/f" (by the definition 0#,)
A

S /‘f—f‘ +2 sup /Afn—m,e,, _Mm(A)‘ +2 sup

AeAp

< /!f—f\+4 sup /f—/f'+4 sup um(A)—/f‘
AcAg A A AcAp A

(by the triangle inequality)
<3 [ |f=f|+4 sup |um(A) — / f‘ (by Scheffé’s theorem)
AeAp A
<3I0f [ i = f14+ 3 +4 sup /f—um(A)'-
He® AcAo |J A
Sincee is arbitrary, Lemma 7 is proved. O

The following simple lemmas are used in the proof:

LEMMA 8.LetX andY be independent random variables, andHat =
0. ThenE|X + Y| > E|X].

LEmMMA 9 (Devroye and Gyorfi, 1985, page 13ZgtYy,..., Y, bei.i.d.
zero mean random variables. Then

>
i=1
LEMMA 10.Let® be a class of parameters, and assume that each density
estimatef, , is additive and regular. If= > Ois a positive integer such that

2m < n, then
infoco EJ 2m /
: He® 0 <1+ 48 ﬂ‘
|nf9€(.) EJn’g n—m n

Proof. The proof uses additivity in an essential manner, but otherwise
follows the outlines of Devroye and Lugosi (1997). Note the following:

' ) EJ,_
inf EJ, ,,0 < inf EJ, s x Sup< . mﬁ)
0e® ’ 0e® ’ 0e® EJue

. E‘Infm 0 — EJn 0
= inf EJ, 1+ su . — ).
gop M0 X ( +9€@p EJ,o

The supremum is rewritten as follows:

EJy o —EJ, E (1 fos— foold
Sup .60 .0 < Sup f |f1 m,0 fz,(-)l X
) EJuo ) EJue
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E n—-m,0 — Jn d
< 2sup S fuzmo — fuol x’
He® Ef | fn6 — Efn,9|dx

where we used a simple bound from page 23 of Devroye and Gyorfi (1985).
Fix x andé for now. Introduce

Yi = Ko(x, X;) — EKp(x, X),

and denote the partial sums Bfs by S; = Y1 + --- + Y;. By assumption,
for fixed x and @, the first absolute moment df, exists. Then observe the
following:

m
nlfnfm,G - fn@l = m(yl"i_ oo+ Ynfm) - (Yn7m+l+ et Yn)

so that
m

E{n|fnfm,(-)_fn,9|} < E|Sn7m|+E|Sm|~

n—m

Also, 1l fno — Efuol = |S,I, which impliesE {n|f, o — Efusl} = EIS,I.
Still holding x and6 fixed, we bound the following ratio:

Elfn—m,@ - fn,Gl < nTmElsnfml + E|Sm|

Elfoo — Efael E[S,
E|S,,
<4 ZPl (pecausls, | > EIS, )
n—m E|S,]
E|S,,
< " + [l (by Lemmas 8 and 9)

" +4ﬁ (if 2m < n).
n—m n

This implies that for any fixed,

E/|fn_m,9—fn,9|dx << " +4ﬁ) E/Ifn,e—Efn,eldX~
n—m n

The lemma now follows without work. O

<

We now note the following: a variant of the Vapnik-Chervonenkis inequal-
ity (Vapnik and Chervonenkis (1971); see Devroye (1982)) states that for
e >0,

M (A) — / fl=> e‘Xl, e X,,m} < 485 (Ao, mde 2"
A

P{ sup

AeAp
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This implies by standard bounding that

\/ log(4e8s(Ae, m2))

E
sup .

AeAg

Mm(A)_ff“Xlstn—m <
A

(see Devroye, Gyorfi, and Lugosi (1996, page 208)). Theorem 1 now follows
from this estimate, Lemma 7 and Lemma 10.
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