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ABSTRACT

We develop a general method to select an estimate from any given family of (regular and
additive) nonparametric density estimates. We provide explicit non-asymptotic density-free
inequalities that relate theL1 error of the selected estimate with that of the best possible
estimate in the family, and study in particular the connection between the richness of the class
of density estimates and the performance bound. For example, our method allows one to pick
the bandwidth and kernel order in the kernel estimate simultaneously and still assure that for
all densities, theL1 error of the corresponding kernel estimate is not larger than about three
times the error of the estimate with the optimal smoothing factor and kernel plus a constant
times

√
logn/n, wheren is the sample size, and the constant only depends on the complexity

of the family of kernels used in the estimate. Among many possible applications we include
here multivariate kernel estimates and transformed kernel estimates.

1. INTRODUCTION

We are given an i.i.d. sampleX1, . . . , Xn drawn from an unknown density
f on Rd . A density estimatefn(x) = fn(x,X1, . . . , Xn) is a real-valued

∗The first author’s work was supported by NSERC Grant A3456 and by FCAR Grant 90-
ER-0291. The work was supported by DGES Grant PB96-0300.
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measurable function of its arguments. Among others, we consider the
Akaike-Parzen-Rosenblatt density estimate

fnh(x) = 1

n

n∑
i=1

Kh(x − Xi)

whereK : Rd → R is a fixed kernel with
∫

K = 1,Kh(x) = (1/hd)K(x/h),
andh > 0 is the smoothing factor (Akaike, 1954; Parzen, 1962; Rosenblatt,
1956). Many data-dependent choices forh have been proposed in the
literature. Most perform well for restricted classes of densities. An exception
may be found in the recent work of Devroye and Lugosi (1996, 1997), where
data-dependent smoothing factorsH are introduced for which

sup
f

lim sup
n→∞

E
∫ |fnH − f |

infh E
∫ |fnh − f | 6 3,

whenever the kernelK is nonnegative, Lipschitz, and of a compact support.
In this paper, we continue the study and propose bandwidths for transformed
kernel estimates, variable kernel estimates, and kernel estimates with joint
choice ofK and h. Explicit non-asymptotic performance guarantees are
provided that are uniform over allf . As the same principle may be applied to
a host of other estimators, including series estimates, partitioning estimates,
various brands of histograms, and tree-based methods, it is advantageous to
derive the theory in a general setting (as is done in the next section). To
keep the length of the paper reasonable, results on the other methods will be
reported elsewhere.

2. THE BASIC ESTIMATE

Let 2 be an abstract set of parameters, and assume that eachθ ∈ 2

determines a density estimatefn,θ for eachn. TheL1 error of the estimate
fn,θ is denoted by

Jn,θ =
∫

|f − fn,θ |.
Let m < n (tipically m � n), and defineA2 as theYatracos classof subsets
of Rd (corresponding to the family of density estimatesfn,θ , θ ∈ 2) as the
class of all sets of the form

Aθ1,θ2 = {
x : fn−m,θ1(x) > fn−m,θ2(x)

}
, θ1, θ2 ∈ 2.

We select a parameterθn from 2 by minimizing the distance

sup
A∈A2

∣∣∣∣∫
A

fn−m,θ − µm(A)

∣∣∣∣
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over all θ ∈ 2, where µm denotes the empirical measure defined by
the subsampleXn−m+1, . . . , Xn. The class of parameters may include
bandwidths, but also kernels from a class of kernels, parameters in nonlinear
transformations, and so forth. There are no a priori restrictions on the size.

A density estimategn is calledadditiveif it is of the form

gn(x) = 1

n

n∑
i=1

K(x,Xi),

whereK : Rd × Rd → R is a measurable function such that for ally ∈ Rd ,∫
Rd K(x, y)dx = 1. We say that the additive estimategn is regular if for

eachx, EK(x,X) < ∞.
We will use the notion of shatter coefficient as in the work of Vapnik and

Chervonenkis (1971):

s(A2, `) = sup
y1,...,y`∈Rd

|{{y1, . . . , y`} ∩ A : A ∈ A2}| ,

the maximal number of different subsets of a set of` points which can be
intersected by sets inA2. This will be used to measure the richness of classes
of density estimates. The first result upon which many of the subsequent
results are built is the following non-asymptotic inequality:

THEOREM1. Let the set2 determine a class of regular additive density
estimates. Then for alln, m 6 n/2, 2, andf ,

E
∫

|fn−m,θn
− f | 6 3 inf

θ∈2
E

∫
|fn,θ − f |

(
1 + 2m

n − m
+ 8

√
m

n

)
+

√
8 log(4e8s(A2,m2))

m
.

Note that whevevers(A2, `) is bounded by a polynomialnk1`k2 of n and`,
we haves(A2,m2) 6 nk1m2k2 6 nk1+2k2, and consequently√

8 log(4e8s(A2,m2))

m
= O

(√
logn

m

)
.

In the examples below, all bounds fors(A2, `) will be polynomial inn and
`. Furthermore, in this case, ifm ∼ n/ logn, then

E
∫

|fn−m,θn
−f | 6 3 inf

θ∈2
E

∫
|fn,θ−f |

(
1 + O

(
1/

√
logn

))
+O

(
logn√

n

)
.

Because in most cases of interest, the optimalL1 error tends to zero much
slower than 1/

√
n, this bound essentially says that for polynomial shatter

coefficients, we have asymptotically a performance that is guaranteed to be
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within a factor of 3 of the optimal performance, and this without placing any
restrictions on the densityf . The proof of Theorem 1 is a minor modification
of some arguments appearing in Devroye and Lugosi (1997). The details may
be found in the Appendix below.

3. STANDARD KERNEL ESTIMATE: RIEMANN KERNELS

A Borel setA of Rd is called a star interval if for anyy ∈ Rd , {t ∈ R :
ty ∈ A} is an interval. Thus, all convex sets are star intervals. A kernelK is
said to be Riemann of orderk if there exist star intervalsA1, . . . , Ak and real
numbersai such that

K(x) =
k∑

i=1

aiIAi
(x),

whereIA denotes the indicator function of a setA. We require furthermore
that

∫
K = 1. We will call the smallest suchk the Riemann order, which

should not be confused with the order of a kernel, which is the smallest
positive integers such that

∫
xsK(x)dx 6= 0, and is in this sense only defined

for univariate kernels.
The standard Akaike-Rosenblatt-Parzen kernel estimate is

fn,K,h(x) = fn,h(x) = 1

n

n∑
i=1

Kh (x − Xi) .

WhenK is fixed andh is chosen by the method described above (so that
θ = h and2 = {θ ∈ R : θ > 0}), Theorem 1 applies with the following
shatter coefficient:

LEMMA 1(Devroye and Lugosi, 1997). For the kernel estimate with
Riemann kernel of orderk,

s(A2, `) 6 (` + 1)(1 + 2k`(n − m))2 6 18k2n2`3.

Let us now widen the scope a bit and pick a Riemann kernel from a finite
class ofN Riemann kernels,K = {K1, . . . ,KN }, and choose the bandwidth
h simultaneously as well. This is done by formally putting2 = {(h, j) :
h > 0, j ∈ {1, . . . , N}}. Again, Theorem 1 aplies, but now with a slightly
larger shatter coefficient:

LEMMA 2.Consider the class2 in which h > 0 and K ∈ K are the
free parameters, and assume that all kernels inK are Riemann of order not
exceedingk. Then

s(A2, `) 6 18k2n2`3N2.
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Proof. We generalize a proof from Devroye and Lugosi (1997). Set
r = n − m. We first considerN = 2, and let the kernels inK beK andL,
and assume without loss of generality that their Riemann orders are exactly
k. Define the vector

zu =
(

r∑
i=1

K

(
y1 − Xi

u

)
, . . . ,

r∑
i=1

K

(
y` − Xi

u

))
∈ R`.

As u ↑ ∞, each component ofzu changes every time(yj − Xi)/u enters or
leaves a setAl, 1 6 l 6 k for someXi , 1 6 i 6 r, where theAl ’s are the star
intervals in the definition ofK. Note that for fixed(yj − Xi), the evolution
is along an infinite ray anchored at the origin. By our assumption on the
possible form of the setsAl , the number of different values a component can
take in its history (asu ↑ ∞) is clearly bounded by 2kr. As there arè
components, the cardinality of the set of different values ofzu is bounded by

|{zu : u > 0}| 6 1 + 2k`r.

If we definez′
u similarly aszu, but replaceK in the definition byL, then we

have ∣∣{z′
u : u > 0}∣∣ 6 1 + 2k`r

as well. Therefore,∣∣{(zu, z
′
v) : u, v > 0}∣∣ 6 (1 + 2k`r)2.

and the same bound applies for the pairs(zu, zv), (z′
u, z

′
v) and(z′

u, zv).
Let W = {(w,w′) : (w,w′) = (zu, z

′
v) for someu, v > 0}. For

fixed (w,w′) ∈ W, let U(w,w′) denote the collection of all(u, v) such that
(zu, z

′
v) = (w,w′). For(u, v) ∈ U(w,w′), we have

yi ∈ Au,v if and only if wi >
(u

v

)d

w′
i ,

wherew,w′ have componentswi,w
′
i respectively, 16 i 6 `. Thus,∣∣{{y1, . . . , y`} ∩ Au,v : (u, v) ∈ U(w,w′)

}∣∣
6

∣∣∣{(
Iw1>cw′

1
, . . . , Iw`>cw′̀

)
: c > 0

}∣∣∣ 6 ` + 1.

But then∣∣{{y1, . . . , y`} ∩ Au,v : (u, v) > 0
}∣∣ 6 (`+1)

∣∣U(w,w′)
∣∣ 6 (`+1)(1+2k`r)2.

The same bound applies for the three other types of pairs,(zu, zv), (z′
u, z

′
v)

and(z′
u, zv). Thus,

s(A2, `) 6 4(` + 1)(1 + 2k`r)2 6 8`(3k`r)2 = 72̀ 3k2r2.



VSP(ROUS) 2000/06/14 Prn:22/06/2000; 13:53 F:ROUS08.tex; VTeX/D p. 6 (465-536)

6 L. Devroyeet al.

If we have a choice betweenN kernels, we apply the bound not 4 times, but
N2 times, for all possible pairings (with repetition), to obtain

s(A2, `) 6 N2(` + 1)(1 + 2k`r)2 6 2N2`(3k`r)2 = 18N2m3k2r2.

�
Lemma 2 permits us to obtain fine inequalities even when the kernel is

freely picked from a finite class. However, in all cases, the kernels have to be
Riemann of finite order. In the next section, we deal with the joint selection
of h andK for general (non-Riemann)K, and this could even include kernels
of infinite order.

4. STANDARD KERNEL ESTIMATES: GENERAL KERNELS

If K is not Riemann, we say that it is Riemann approximable if for eachn

there exists a finite numberk such that there exists a Riemann kernelK ′ of
orderk with ∫

|K − K ′| 6 1

n
.

Note that this is always possible ifK is Riemann integrable. The smallest
suchk will be called thekernel complexityκn. If there is a finite class of
kernelsK ∈ K, then we need to find Riemann approximationsK ′ for eachK
individually. A kernel estimate with Riemann kernelK ′ is piecewise constant
and thus easy to work with in simulations.

Define the kernel estimates

fn−m,K ′,h(x) = 1

n − m

n−m∑
i=1

K ′
h(x − Xi)

for all h > 0 andK ∈ K. Let the pair(H,K) (whereK has Riemann
approximationK ′) be selected from2 = (0,∞) ×K such that

sup
A∈A

∣∣∣∣∫
A

fn−m,K ′,h − µm(A)

∣∣∣∣
is minimal whereA is defined as the collection of all sets{

x : fn−m,L′,u(x) > fn−m,M ′,v(x)
}

with u, v > 0 andL′,M ′ are Riemann approximations of kernelsL,M from
K. After the selection, the Riemann kernels are no longer needed. Finally,
our estimate isfn−m,K,H . We may also usefn = fn,K,H and refer to Devroye
and Lugosi (1996) for analysis of this situation. Sánchez-Sellero and de Uña
(Devroye, 1997) report good experimental results if all data are used and
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not just the firstn − m data points. For a practical implementation and
experimental comparison, we refer to Devroye (1997). Finally, one may
wonder if the derivation via Riemann kernels is really needed. It seems
that the combinatorial arguments that will follow may be made to work for
certain classes of kernels such as polynomials, but in any case, the generality
achieved here will be lost.

We offer the following non-asymptotic bound:

THEOREM2. Consider the kernel density estimate with joint choice ofH

and K as described above, whereK is taken from a classK of N kernels
with kernel complexities uniformly bounded byκn. Then for alln, m 6 n/2,
d, andf ,

E
∫

|fn−m,K,H − f | 6 3 inf
h>0,L∈K

E
∫

|fn,L,h − f |
(

1 + 2m

n − m
+ 8

√
m

n

)
+

√
8 log

(
72e8N2κ2

nn
8
)
/m + 27/n.

For n even andm = n/2, we thus have

E
∫

|fn−m,K,H − f | 6 inf
h>0,L∈K

E
∫

|fn,L,h − f |
(
9 + 24/

√
2
)

+
√

16 log
(
72e8N2κ2

nn
8
)
/n + 27/n.

Proof. Note that

E
∫

|fn−m,K,H − f | 6 E
∫

|fn−m,K ′,H − f | + 1

n
.

Furthermore,

inf
h>0,L∈K

E
∫

|fn,L′,h − f | 6 inf
h>0,L∈K

E
∫

|fn,L,h − f | + 1

n
.

thus, a combination with Theorem 1 then yields, with the appropriate
definition of2, and writingBm,n for

(
1 + 2m

n−m
+ 8

√
m
n

)
,

E
∫

|fn−m,K,H − f | 6 E
∫

|fn−m,K ′,H − f | + 1

n

6 3 inf
h>0,L∈K

E
∫

|fn,L′,h − f |Bm,n +
√

8 log
(
4e8s(A2,m2)

)
/m + 1/n

6 3 inf
h>0,L∈K

E
∫

|fn,L,h − f |Bm,n +
√

8 log
(
4e8s(A2,m2)

)
/m + 27/n

6 3 inf
h>0,L∈K

E
∫

|fn,L,h − f |Bm,n +
√

8 log
(
4e818N2m6κ2

nn
2
)
/m

+ 27/n
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6 3 inf
h>0,L∈K

E
∫

|fn,L,h − f |Bm,n +
√

8 log
(
72e8N2κ2

nn
8
)
/m + 27/n,

where we used Lemma 2. �

The above inequality is useful whenN is finite. The other quantity of
interest isκn. We briefly recall some bounds from Devroye and Lugosi
(1997).

Kernels withκn = O(nb) for some finiteb are said to bepolynomially
Riemann approximable. All kernels of practical interest are in this class, as
we will see below. For fixedN , the last two terms in the upper bound of
Theorem 2 are thenO(

√
logn/m), just as in the case of Riemann kernels.

Obviously, if K is Riemann of orderk, thenκn 6 k. Symmetric unimodal
kernels on the real line haveκn 6 8nK(0)β + 10, whereβ is the last
positive value for which

∫ ∞
β

K 6 1/(4n). If K(x) 6 aI[−b,b](x) and
K is symmetric, nonnegative, and unimodal (such as the Epanechnikov-
Bartlett kernel), thenκn 6 8nab + 10. For the normal density, we have
κn 6 8n

√
logn√
π

+10. Products of polynomially approximable kernels inRd and
multivariate normal densities are also polynomially Riemann approximable.

We finish this section by noting the impact of Theorem 2 if allN kernels are
of orders up to and including an even numbers, that is, each of the kernelsK
is bounded, symmetric, and has finite nonzeros-th moment and at least one
kernel has zeroi-th moments for 0< i < s. Then regardless of the density
and the choice ofh,

lim inf
n→∞ ns/(2s+1) inf

h
E

∫
|fn,K,h − f | > 0

(Devroye, 1988, page 1173). For such higher order kernels, letm = o(n)

such thatm/(n2s/(2s+1) logn) → ∞. Then ifκn = O(nα) for some finiteα,
uniformly over theN kernels,

E
∫

|fn,K,H − f | 6 (3 + o(1)) inf
h,L∈K

E
∫

|fn,L,h − f | + o(n−s/(2s+1)),

and therefore

sup
f

lim sup
n→∞

E
∫ |fn,K,H − f |

infh E
∫ |fn,K,h − f | 6 3.

Thus, Theorem 2 shows asymptotic optimality to within a factor of 3 for all
(finite collections of) kernels of finite order.
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5. MULTIPARAMETER KERNEL ESTIMATES – PRODUCT KERNELS

Consider the kernel estimate

fn,θ (x) = 1

n

n∑
i=1

Kθ(x − Xi),

whereθ = (h1, . . . , hd) is a vector of positive smoothing factors, and

Kθ(x) =
d∏

j=1

1

hj

Kj

(
x(j)

hj

)
,

whereK1, . . . ,Kd are fixed one-dimensional kernels integrating to one, and
x(j) is thej -th component ofx. Thus, we let the smoothing factor vary in
each direction. The issue here is the data-based choice of the smoothing
factors. For brevity, we consider only the simplest possible kernels. The
bound of Theorem 1 is applicable if we can compute the shatter coefficient.

LEMMA 3.Assume that for eachj , Kj = IAj
(x), whereAj = [aj , aj +1]

is an interval of unit length. Then for̀n > 2d we have

s(A2, `) 6 (` + 1)

(
`ne

2d

)4d

.

Lemma 3 shows that the shatter coefficient is polynomial inn and `.
Therefore, the same bounds apply as for the univariate or singleh kernel
estimates, with just a different coefficient in the additive term of the bound.
It is quite remarkable that adjustingd parameters is not appreciably more
difficult than adjusting one parameter. For general products of Riemann
kernels, bounds similar to those of Lemma 3 may be obtained. For products
of polynomially Riemann approximable kernels, one needs to optimize a
criterion that involves the Riemann approximations, just as in the previous
two sections. The details are omitted.

Proof of Lemma 3.Denote thej -th component ofyt byy
(j)
t , t 6 `, j 6 d,

and thej -th component ofXi by X
(j)

i , i 6 n − m, j 6 d. For eachθ ∈ 2

define the vector

zθ =
(
z
(1)
θ , . . . , z

(`)
θ

)
=

n−m∑
i=1

d∏
j=1

Kj

(
y

(j)

1 − X
(j)

i

hj

)
, . . . ,

n−m∑
i=1

d∏
j=1

Kj

(
y

(j)

` − X
(j)

i

hj

) .



VSP(ROUS) 2000/06/14 Prn:22/06/2000; 13:53 F:ROUS08.tex; VTeX/D p. 10 (742-806)

10 L. Devroyeet al.

Observe that for eacht 6 ` andi 6 n − m

d∏
j=1

Kj

(
y

(j)
t − X

(j)

i

hj

)
= 1 if and only if yt − Xi ∈ Rθ,

whereRθ denotes the rectangle[a1/h1, (a1 + 1)/h1] × · · · × [ad/hd, (ad +
1)/hd]. Since there arè(n − m) possible values foryt − Xi , the number
of different values the vectorzθ can take asθ varies through2 is at most
s(B, `(n − m)), where B is the class of all rectangles inRd . But it
is well-known (see,e.g., Devroye, Györfi, and Lugosi (1996, p.220) that
for `(n − m) > 2d the shatter coefficients of this class are bounded as

s(B, `(n − m)) 6
(

`(n−m)e

2d

)2d

.

It follows that

|{(zθ1, zθ2) : θ1, θ2 ∈ 2}| 6
(

`(n − m)e

2d

)4d

.

The rest of the proof is now standard: Let

W = {(w,w′) : (w,w′) = (zθ1, zθ2) for someθ1, θ2 ∈ 2}.
For fixed(w,w′) ∈ W, let U(w,w′) denote the collection of all(θ1, θ2) such
that(zθ1, zθ2) = (w,w′). For(θ1, θ2) ∈ U(w,w′), we have

yt ∈ Aθ1,θ2 if and only if z
(t)
θ1

d∏
j=1

1

hj,1
> z

(t)
θ2

d∏
j=1

1

hj,2
,

whereθi = (h1,i, . . . , hd,i) for i = 1, 2. Within the setU(w,w′), z
(t)
θ1

andz
(t)
θ2

are fixed for allt , and therefore∣∣{{y1, . . . , y`} ∩ Au,v : (u, v) ∈ U(w,w′)
}∣∣

6
∣∣∣{(

Iw1>cw′
1
, . . . , Iw`>cw′̀

)
: c > 0

}∣∣∣ 6 ` + 1,

wherew1, . . . , w` andw′
1, . . . , w

′
` denote the components of the vectorsw

andw′, respectively. But then∣∣{{y1, . . . , y`} ∩ Au,v : (u, v) > 0
}∣∣ 6 (` + 1)

∣∣U(w,w′)
∣∣

6 (` + 1)

(
`(n − m)e

2d

)4d

.

�
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6. MULTIPARAMETER KERNEL ESTIMATES – ELLIPSOIDAL
KERNELS

Next we consider the kernel estimate

fn,θ (x) = 1

n

n∑
i=1

Kθ(x − Xi),

whereθ = 6, and6 is a positive definite symmetricd × d matrix, and

Kθ(x) = vθI{xT 6−1x61}.

Here vθ is a normalizing factor such that
∫

Kθ = 1, andxT denotes the
transpose of the vectorx. In this case, for̀ (n − m) > d2 + d + 2, we have

s(A2, `) 6 (` + 1)

(
`(n − m)e

d2/2 + d/2 + 1

)d2+d+2

.

The proof is exactly the same as for the case of product kernels with the
only difference that the shatter coefficients of the classE of ellipsoids (i.e.,
class of sets of the formEθ = {x : xT 6−1x 6 1}) is bounded by

s(E, `(n − m)) 6
(

`(n − m)e

d2/2 + d/2 + 1

)d2/2+d/2+1

.

whenever̀ (n − m) > d2 + d + 2 (since theVC dimension ofE is bounded
by d2/2 + d/2 + 1, see,e.g., Devroye, Györfi, and Lugosi (1996, p. 221).
Although it is computationally challenging to optimize all

(
d

2

)
entries in a

matrix, at least in theory, we can set up a method (by pickingm) such that
asymptotically, the performance is about three times or less times the best
possible performance over all such matrices. Again, no conditions are placed
on the density or the values of the entries in the matrix.

Similarly to the univariate case, the argument may be extended via Rie-
mann approximations to the class of estimates withKθ(x) = vθL(xT σ−1x),
whereL : R+ → R is a fixed function. The details are omitted.

7. THE TRANSFORMED KERNEL ESTIMATE

The transformed kernel estimate on the real line was introduced by Devroye
and Györfi (1985) in an attempt to reduce theL1 error in a relatively
cheap manner. The data are transformed by a smooth monotone transform
y = T (x), the transformed density is estimated by the kernel estimate, and
the estimate is then subjected to the inverse transformation. As this leaves
the L1 error unaltered, it suffices to study theL1 error in the transformed
space, and hence the interest of such estimates. In particular, it is known
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that heavy tails are to be avoided for kernel estimates (Devroye and Györfi,
1985). Thus, transforms that compact and compress the data are called for.
Ideally, the transformed density should be triangular. Thus, we consider the
joint optimization over(h, a), whereh is the smoothing factor, anda is a
parameter of the transformation. For simplicity, we will consider the Box-
Cox transformations, with which statisticians and data analysts are familiar.
We will show that we can jointly pickh anda in an asymptotically optimal
manner, still modulo a factor 3, without placing any restrictions on the density
or the parameters. The transformations considered here are only useful to
treat tail problems. A similar analysis may be carried out for piecewise
linear transformations, the transformation being restricted to consist of a fixed
number of segments, but otherwise arbitrary. Such estimators are close in
spirit to variable kernel estimators. For practical data-based versions of other
transformations, we refer to Wand, Marron and Ruppert (1991) and Ruppert
and Cline (1994).

In general, the transformed kernel estimate is

fn,T (x) = 1

n

n∑
i=1

K(T (x) − T (Xi))T
′(x),

where K is a kernel with
∫

K = 1, and T : R → R is a strictly
monotonically increasing almost everywhere differentiable transformation.
Clearly,

∫
fn,T = 1. If T = ax + b is linear, thenfn,T is just the

ordinary kernel estimate with smoothing factorh = 1/a. Here we are
concerned with the data-based choice ofT . Clearly, the collection of possible
transformations has to be restricted somehow. Among the many possiblitities,
we only consider two representative examples.

Box-Cox transformations. Consider now the family{Ta : a ∈ [0, 1]} of
transformations defined, forx > 0, by

Ta(x) =
{

xa−1
a

if a > 0
logx if a = 0.

These functions are often used to transform the (nonnegative) data so that
large tails become more manageable. We consider kernel estimates defined
on the transformed data. In particular, we study the joint data-based selection
of the tranformation (i.e., the value ofa) and the bandwidth. For simplicity,
we again only consider the naive kernelK = I[−1/2,1/2]. Therefore, the class
of estimates{fn,θ : θ ∈ 2} is defined by

fn,θ (x) = 1

nh

n∑
i=1

I{|Ta(x)−Ta(Xi)|6h/2}xa−1,
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whereθ = (a, h) and2 = [0, 1]× (0,∞). Note that we assume that all data
points are positive andfn,θ (x) is only defined forx > 0. Again, to see if the
proposed parameter selection method works, it suffices to bounds(A2, `).

LEMMA 4. LetA2 denote the Yatracos class corresponding to the family
of kernel estimates onR+ based on all Box-Cox transformationsTa, a ∈
[0, 1] and all smoothing factorsh > 0. If ` > 2 andn − m > 2, then

s(A2, `) 6 9

4
`6(n − m)4.

Proof. In the proof we use a simple lemma which is an easy modification
of Lemma 25.2 of Devroye, Györfi, and Lugosi (1996): �

LEMMA 5. If b1, . . . , bk, c1, . . . , ck ∈ R, then the function

g(x) =
k∑

i=1

bie
cix

is either identically zero or takes the value0 for at mostk−1 different places.

LEMMA 6(Cover (1965)). Let A be the class of sets of the form{x :
aT x > b} ⊂ Rd , wherea ∈ Rd andb ∈ R are arbitrary. Then

s(A, n) 6 2
d∑

i=0

(
n − 1

i

)
6 2(n − 1)d + 2 6 2nd.

Proof of Lemma 4.Consider thè × (n − m) matrix za,h with entries

z
t,i
a,h = I{|Xa

i −ya
t |<ah} t = 1, . . . , `, i = 1, . . . , n − m.

First we bound the number of possible different values of the matrixza,h as
(a, h) ∈ [0, 1] × (0,∞). Observe that in the set[0, 1] × (0,∞), each pair
(t, i) defines a curve given by

ua − va − ah = 0 where u = max(Xi, yt ) and v = min(Xi, yt ).

If two curvesua − va − ah = 0 andwa − za − ah = 0 intersect at the point
(a, h), then

ea logu − ea logv − ea logw + ea logz = 0.

According to Lemma 5, this cannot happen at more than three points (unless
u = w and v = z). Next we argue that these curves partition the set
[0, 1]×(0,∞) into at most(3`2(n−m)2−`(n−m)+4)/2 6 (3/2)`2(n−m)2

connected regions. This may be easily seen by induction, since ifsN denotes
the number of connected regions defined byN such curves, then it is clear
thatS1 = 2 andSN+1 6 SN+3N+1, since any two curves intersect at at most
three points. The solution of this recursion isSN = (3N2 − N + 4)/2. Since
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inside each region the value of the matrixza,h is a constant,(3/2)`2(n − m)2

is an upper bound on the number of possible values of the matrix. Therefore,

|{(za,h, za′,h′) : a, a′ ∈ [0, 1], h, h′ > 0}| 6 9

4
`4(n − m)4.

Consider now a region in([0, 1] × (0,∞))2 over which (za,h, za′,h′) is
constant, with value, say,(w,w′), and denote the set of such quadruples
(a, h, a′, h′) by U(w,w′). Denotingθ = (a, h) andθ ′ = (a′, h′),

yi ∈ Aθ,θ ′ if and only if
ya−1

t

h

n−m∑
i=1

w(t,i) > ya′−1
t

h′

n−m∑
i=1

w′(t,i),

or equivalently, if and only if

(a − 1) logyt − logh + log

(
n−m∑
i=1

w(t,i)

)

> (a′ − 1) logyt − logh′ + log

(
n−m∑
i=1

w′(t,i)
)

.

Therefore, denotingWt = ∑n−m
i=1 w(t,i) andW ′

t = ∑n−m
i=1 w′(t,i), the maximal

number of different values of(
IAθ1,θ2

(y1), . . . , IAθ1,θ2
(y`)

)
is at most the number of different values of the vector(

I(a−a′) logy1−log(h/h′)+log(W1/W ′
1)>0 . . . , I(a−a′) logyt−log(h/h′)+log(Wt /W ′

t )>0

)
takes asa, a′, h, h′ all vary throughR+. But this is not more than the max-
imal number of different ways of dichotomizing̀points by 2-dimensional
hyperplanes, which, by Lemma 6, is at most`2 (since` > 2). Collecting
bounds, the proof is finished. �

Having Lemma 4, Theorem 1 yields the following bound:

THEOREM3. Assume that the basic estimate of Section 2 is used to
simultaneously select the Box-Cox transformationTa, a ∈ [0, 1] and the
smoothing factorh > 0 for the transformed kernel estimate

fn,a,h(x) = 1

nh

n∑
i=1

I{|Ta(x)−Ta(Xi)|6h/2}xa−1.
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If fn denotes the obtained density estimate, then for alln,m 6 n/2, and each
densityf overR+,

E
∫

|fn − f | 6 3 inf
a∈[0,1],h>0

E
∫

|fn,a,h − f |
(

1 + 2m

n − m
+ 8

√
m

n

)
+

√
8 log(9e8m12(n − m)4)

m
.

For example, ifn is even and we takem = n/2,

E
∫

|fn − f | 6 26 inf
a∈[0,1],h>0

E
∫

|fn,a,h − f | + 16

√
logn

n
.

8. MONTE CARLO SIMULATIONS

For testing the behavior of the proposed parameter selectors we have con-
ducted a series of Monte Carlo simulations. We describe here its graphical
and numerical results.

Example 1: Pareto density with transformed kernel

First we consider as target a Pareto density and we use the Box-Cox family of
transformations as described in Section 7. To avoid the problem of selecting
among infinite sets of parameters, we take only some values of the parameter
a ∈ [0, 1] and some bandwidth values.

Consider the Pareto(1, 1) densityf (x) = 1/x2, x > 1, and let the sample
size beN = 1000. The number of samples isB = 1000. For every sample,
we select among three values of the Box-Cox parameter (0, 0.35, 0.70) and
three bandwidths 0.010, 0.084, and 0.700 in geometric sequence. This gives
a total of 9 estimators, and we select the one that minimizes the distance
described in Section 2 for the given sample and the nine-element parameter
set. 539 times out of 1000 the selected estimator was theright one, the one

Table 1.
Performance of transformed kernel estimators selection for examples 1
and 2. Relative error is(IAEs − IAEb)/IAEb as described in the text

Example 1 Example 2

Average error 0.196 0.0307
Average relative error 0.0563 0.097
Worst relative error 0.7716 0.7746
prob(rel. error> 10%) 0.218 0.328
prob(rel. error> 50%) 0.002 0.018
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Figure 1. Some of the estimators in competition shown for a particular sample. Upper part
is for bandwidth 0.08, lower part for 0.7. In each figure, three Box-Cox parameter values
are used: 0, 0.35, and 0.7. Note that horizontal scale is logarithmic and that left tail of the
estimators in the lower graphs is not shown.

that minimized the IAE (integrated absolute error, orL1 norm) for the sample.
A summary of results is given in Table 1. The average error IAEs − IAEb is
quite large due to the use of very few bandwidth values, but note that the
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average relative error (average over samples of(IAEs − IAEb)/IAEb, where
s subscript denotes the selected estimator andb thebest) is small.

In Figure 1 we show six of the nine involved estimators in a particular
sample run (to simplify the figure we don’t show the ones with bandwidth
0.01). As expected, it can be seen that bigger bandwidths yield better
performance in the tails but are worse in the infinite peak. This shows the
convenience of calibrating the transformation to use.

Example 2: Transformed triangular densities

To see how our method can detect theright transformation to use, we take a
triangular density

t (x) = (1 − |x − 1|)+

and we back-transform it using the inverse of a Box-Cox(β) transformation.
So, we consider as target density

fβ(x) = x(β−1)t

(
xβ − 1

β

)
.

If this density is transformed by a Box-Cox(α) transformation, the result-
ing density will be triangular whenα = β. Given that (see Wand-Devroye
(1993)) the triangular density is the easiest to estimate using the Epanech-
nikov kernel, a good selector might chooseβ when given several possibili-
ties.

We takeβ = 0.5 and we consider five values for the Box-Cox parameter
(0, 0.250, 0.500, 0.750, 1.000) and seven bandwidth values from 0.01 to 2
in geometric steps. Note thatα = 1 gives no transformation at all. For
N = 15000 we obtained 1000 simulation samples and selected a parameter
pair as before. The third column in Table 1 summarizes theL1 error

Table 2.
In the back-transformed triangular density example, number of times (out of 1000) each
parameter pair was the optimal one and the number of these times it was selected

Bandwidth Box-Cox parameter

0 0.250 0.500 0.750 1.00

0.010 0/0 0/0 0/0 0/0 0/0
0.024 0/0 0/0 0/0 0/0 0/0
0.058 26/6 2/1 0/0 0/0 0/0
0.141 27/6 232/59 476/120 200/30 26/5
0.342 0/0 0/0 0/0 0/0 11/2
0.827 0/0 0/0 0/0 0/0 0/0
2.000 0/0 0/0 0/0 0/0 0/0



VSP(ROUS) 2000/06/14 Prn:22/06/2000; 13:53 F:ROUS08.tex; VTeX/D p. 18 (1233-1309)

18 L. Devroyeet al.

Figure 2. Densityfβ (β = 0.5) transformed by Box-Cox transformations with parameters
α = 0, 0.250, 0.500, 0.750, 1.000. See Example 2.

performance. In Table 2 we collect for each parameter pair the number of
times it was the optimal one and the number of times it was selected when at
the same time that pair was the optimal one. The figures show that the selector
picked up the right pair in 23% of the runs, 52% of them corresponding to
the theoretically best transformation.

Note that in this example the sample size must be large because the
differences between the estimators involved are very small, as can be
appreciated in Figure 2 where we show the five densities resulting from
applying the Box-Cox transformation (parameters as above) tofβ , β = 0.5.

A. PROOF OF THEOREM 1

LEMMA 7.∫
|fn−m,θn

− f | 6 3 inf
θ∈2

∫
|fn−m,θ − f | + 4 sup

A∈A2

∣∣∣∣∫
A

f − µm(A)

∣∣∣∣ .
Proof. Fix anε > 0, and letf̄ be an estimatefn−m,θ such that∫

|f̄ − f | 6
∫

|fn−m,θ − f | + ε

for all θ ∈ 2. Then∫ ∣∣fn−m,θn
− f

∣∣
6

∫ ∣∣f̄ − f
∣∣ +

∫ ∣∣fn−m,θn
− f̄

∣∣
=

∫ ∣∣f̄ − f
∣∣ + 2 sup

A∈A2

∣∣∣∣∫
A

fn−m,θn
−

∫
A

f̄

∣∣∣∣ (by Scheffé’s theorem),
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6
∫ ∣∣f̄ − f

∣∣ + 2 sup
A∈A2

∣∣∣∣∫
A

fn−m,θn
− µm(A)

∣∣∣∣ + 2 sup
A∈A2

∣∣∣∣µm(A) −
∫

A

f̄

∣∣∣∣
(by the triangle inequality)

6
∫ ∣∣f̄ − f

∣∣ + 4 sup
A∈A2

∣∣∣∣µm(A) −
∫

A

f̄

∣∣∣∣ (by the definition ofθn)

6
∫ ∣∣f̄ − f

∣∣ + 4 sup
A∈A2

∣∣∣∣∫
A

f −
∫

A

f̄

∣∣∣∣ + 4 sup
A∈A2

∣∣∣∣µm(A) −
∫

A

f

∣∣∣∣
(by the triangle inequality)

6 3
∫ ∣∣f̄ − f

∣∣ + 4 sup
A∈A2

∣∣∣∣µm(A) −
∫

A

f

∣∣∣∣ (by Scheffé’s theorem),

6 3 inf
θ∈2

∫
|fn−m,θ − f | + 3ε + 4 sup

A∈A2

∣∣∣∣∫
A

f − µm(A)

∣∣∣∣ .
Sinceε is arbitrary, Lemma 7 is proved. �
The following simple lemmas are used in the proof:

LEMMA 8. LetX andY be independent random variables, and letEY =
0. ThenE|X + Y | > E|X|.

LEMMA 9(Devroye and Györfi, 1985, page 137). LetY1, . . . , Yn be i.i.d.
zero mean random variables. Then

E

{∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣
}

>
√

n

8
E|Y1|.

LEMMA 10. Let2 be a class of parameters, and assume that each density
estimatefn,θ is additive and regular. Ifm > 0 is a positive integer such that
2m 6 n, then

infθ∈2 EJn−m,θ

infθ∈2 EJn,θ

6 1 + 2m

n − m
+ 8

√
m

n
.

Proof. The proof uses additivity in an essential manner, but otherwise
follows the outlines of Devroye and Lugosi (1997). Note the following:

inf
θ∈2

EJn−m,θ 6 inf
θ∈2

EJn,θ × sup
θ∈2

(
EJn−m,θ

EJn,θ

)
= inf

θ∈2
EJn,θ ×

(
1 + sup

θ∈2

EJn−m,θ − EJn,θ

EJn,θ

)
.

The supremum is rewritten as follows:

sup
θ∈2

EJn−m,θ − EJn,θ

EJn,θ

6 sup
θ∈2

E
∫ |fn−m,θ − fn,θ | dx

EJn,θ
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6 2 sup
θ∈2

E
∫ |fn−m,θ − fn,θ | dx

E
∫ |fn,θ − Efn,θ | dx

,

where we used a simple bound from page 23 of Devroye and Györfi (1985).
Fix x andθ for now. Introduce

Yi = Kθ(x,Xi) − EKθ(x,X),

and denote the partial sums ofYi ’s by Sj = Y1 + · · · + Yj . By assumption,
for fixed x andθ , the first absolute moment ofY1 exists. Then observe the
following:

n|fn−m,θ − fn,θ | =
∣∣∣∣ m

n − m
(Y1 + · · · + Yn−m) − (Yn−m+1 + · · · + Yn)

∣∣∣∣
so that

E
{
n|fn−m,θ − fn,θ |

}
6 m

n − m
E|Sn−m| + E|Sm|.

Also, n|fn,θ − Efn,θ | = |Sn|, which impliesE
{
n|fn,θ − Efn,θ |

} = E|Sn|.
Still holding x andθ fixed, we bound the following ratio:

E|fn−m,θ − fn,θ |
E|fn,θ − Efn,θ | 6

m
n−m

E|Sn−m| + E|Sm|
E|Sn|

6 m

n − m
+ E|Sm|

E|Sn| (becauseE|Sn| > E|Sn−m|)

6 m

n − m
+ E|Sm|√

bn/mc
8 E|Sm|

(by Lemmas 8 and 9)

6 m

n − m
+ 4

√
m

n
(if 2m 6 n).

This implies that for any fixedθ ,

E
∫

|fn−m,θ − fn,θ | dx 6
(

m

n − m
+ 4

√
m

n

)
E

∫
|fn,θ − Efn,θ | dx.

The lemma now follows without work. �

We now note the following: a variant of the Vapnik-Chervonenkis inequal-
ity (Vapnik and Chervonenkis (1971); see Devroye (1982)) states that for
ε > 0,

P

{
sup

A∈A2

∣∣∣∣µm(A) −
∫

A

f

∣∣∣∣ > ε

∣∣∣X1, . . . , Xn−m

}
6 4e8s(A2,m2)e−2mε2

.
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This implies by standard bounding that

E

{
sup

A∈A2

∣∣∣∣µm(A) −
∫

A

f

∣∣∣∣ ∣∣∣X1, . . . , Xn−m

}
6

√
log(4e8s(A2,m2))

2m

(see Devroye, Györfi, and Lugosi (1996, page 208)). Theorem 1 now follows
from this estimate, Lemma 7 and Lemma 10.
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