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ABSTRACT: We discuss the emergence of giant components in two ran-
dom graph models (one directed, one undirected). Qur study of these models was
motivated by an interest in finding a random model of the Internet.

1 Introduction

The hyperlinks between the pages of the internet yield a directed graph whose
vertices are the web pages and whose arcs correspond to the hyperlinks themselves.

This directed graph and the undirected graph underlying it have been in-
tensely studied (see Adamic and Huberman 1999, Broder et al, 2000, Kleinberg et
al. 1999) as an understanding of its structure could be useful in designing searching
engines or identifying communities on the web. Researchers are also attempting
to build random models of the web (see Barabési Albert and Jeong 1999, Cooper
and Frieze 2001, Kumar et al. 1999).

As pointed out in (Kumar et al. 1999), standard random graph models do
not accurately represent the web for two reasons. The first is that the web has
more vertices of high degree than an average graph. The second is that the web
expands as pages get added over time, and a page is more likely to link to those
which were present when it was added.

Indeed, this expansion is to some extent responsible for the existence of high
degree vertices, as old pages tend to have high degree. However, the function a
page serves is also important in determining its degree. For example, the home
page for Google has very high degree.

Researchers (see Aiello Chung and Lu 2000, Strogatz and Watts 1999) have
applied the techniques of (Molloy and Reed 1995), to study the connectivity prop-
erties of graphs whose degree sequence is similar to that of the undirected graph
underlying the web. However, less attention has been devoted to developing mod-
els which reflect the time dependency inherent in the internet graph. In this paper
we study the threshold for the existence of a giant component in two expanding
graph processes.

Although the analysis of our processes was motivated by attempts to model
the internet, we present the results for their intrinsic interest. Indeed other time-
dependent random processes will obviously provide better models of the web graph,
yielding e.g. a degree sequence like that of the web graph (see Aiello Chung and
Lu 2002, Barabési Albert and Jeong 1999).

2 The Models

We are interested in the following random process UGROW with parameter a
constant p, with 0 < p < 1, for constructing an undirected graph.

0. Initialize with the single vertex 1.



1. For ¢ = 2,...,n add vertex ¢ and with probability p add an edge between ¢
and a vertex chosen uniformly at random from 1,...,4 — 1.

We are interested in the following random process DGROW for constructing
a directed graph. Again the parameters 0 < pgown, Peztra < 1 are constants, and
all choices are independent.

0. Initialize with the single vertex 1.

1. For i = 2,...,n add vertex ¢ and with probability pjow» add an arc from i to
a vertex chosen uniformly at random from 1,...,7 — 1.

2. For each ordered pair (i, j) of vertices, add an arc from i to j with probability

DPeztra
n—1 °

3 The Results

Obviously, if p = 1 in UGROW then the algorithm produces a spanning tree of G.
We prove:

Theorem 3.1 Let M, be the mazimum order (number of nodes) of a component of
the n-node graph constructed by UGROW. Then the expected value of M,, satisfies
E(M,) = O(nP); and for any € > O there are positive constants c1 and cy such
that

Pleyn? < M, <cenP)>1-—¢
for all n.

In the directed case, we are interested in whether or not there is a ‘giant’
strong component, that is one with (n) vertices.

Theorem 3.2 If piown + Pestra < 1 then the digraph constructed by DGROW

almost surely has no giant strong component.

Theorem 3.3 If piown + Pextra > 1 then the digraph constructed by DGROW
almost surely has a giant strong component.

Theorem 3.1 is a consequence of much finer results on the output of UGROW.
We discuss these results in the next section and then turn to the directed case.
We close the paper with some concluding remarks.

4 Analyzing UGROW

We orient each edge of the random graph we obtain to point to its endpoint
of smaller index. The directed graph obtained is a random forest, consisting of
a number of trees which is distributed like 1 + B(n — 1,1 — p), where B(n,p)
denotes a binomial random variable with parameters n and p. Let IN; denote the
order (number of vertices) of the subtree in the forest rooted at node ¢, and let
M, = max(Ny,...,N,) be the maximal order of a subtree. We will show the
following.



Lemma 4.1 For fized k,
N,
in distribution, and Z(k,p) is a random variable with £-th moment

T(¢+ 1)T (k)
“T(k+pl)

Note that for p = 1, these are the moments of the beta (1, k —1) distribution
when k> 1. For k=1, Z(k,1) = 1.

Lemma 4.2 For oll £ >0, and all 1 <k <mn,

(€+1)
E{Ni(Ny +1)--- (Ni + )} < (£ +1)! (%)” eP(E+/k

Lemma 4.3 Fort >0,

P{% > t} < ['(2 +2/p)e’n?/6 ‘

nP 2/p

Note that Lemma 4.3 may be generalized to bounds of the form C(a,p)/t*
for any a > 0 and some constants C(a,p) > 0. The order n? for M, is actually
achieved in all cases in a probabilistic sense: for all ¢ > 0, we have,

P{% gt} SP{% gt} =P{Z(k,p) <t} +0(1)

But P{Z(k,p) < t} tends to zero as ¢ | 0:

Lemma 4.4 For all p € (0,1), and all k > 1, Z(k,p) is a continuous random
variable. In particular,
lim P{Z(k,p) <1} =0

The forest we are studying is somewhat related to uniform random recursive
trees. A uniform random recursive tree (or URRT) on n nodes is a tree recursively
constructed by letting the i-th node pick its parent uniformly and at random from
among the first i —1 nodes. This corresponds to p = 1 in our model. A uniform ran-
dom recursive dag (or URRD) on n nodes starts this process only at node m + 1, so
that the first m nodes are roots. Furthermore, the i-th node picks r nodes uniformly
from among the first i —1 nodes to be its “parents”, thus creating a directed acyclic
graph. Na and Rapoport (1970), Moon (1974), Gastwirth (1977), Meir and Moon
(1978), Najock and Heyde (1982), Dondajewski and Szymarniski (1982), Gastwirth
and Bhattacharya (1984), Devroye (1987, 1988), Szymariski (1987, 1990), Mah-
moud (1992), Mahmoud and Smythe (1991), Pittel (1994), and Devroye and Lu
(1995) have studied the URRT in some detail. A URRT of course is just a URRD
with m = 1. Dags model expression trees in which the symbols are the roots and
the mathematical operators correspond to internal nodes. They also model PERT
networks, and represent partial orders in general.

There is also a Pélya urn model view for our process. In Pélya urns (Pélya,
1931), one starts with a fixed finite number of urns, each having a given number



of balls. An urn is picked with probability proportional to the size of the urn, and
a ball is added to that urn. An urn in our setting is of course a tree in the forest.
It was shown by Pdélya and others (Defays, 1974, Athreya, 1969; for a survey, see
Johnson and Kotz, 1977) that the proportions of the balls in the urns tends almost
surely to a Dirichlet random vector. The urn occupancies are thus not concentrated
in the sense that the proportion of balls in the first urn does not tend in probability
to a constant. This lack of concentration is also apparent from the results below.
In fact, the moment method proof of Lemma 4.4 is mimicked after the standard
proof of the beta limit law for the proportion of balls in the first urn in Pélya’s
urn model. However, our limit law for each subtree size is not beta! In fact, the
subtrees have sizes that are roughly (n/k)?. Theorem 3.1 shows that the maximal
tree size is O(nP) in probability.

PROOF OF LEMMA 4.1.

Consider the following process started at node k. Let X = 1, and for j >
k, let X; denote the size of the subtree rooted at ¥ when j nodes have been
processed. When the j-th node is processed, note that that subtree grows by one
with probability pX; 1/(j — 1). Clearly, X,, = Nj. For fixed £ > 0, it takes a
moment to verify the following relationship for the (£ + 1)-st increasing factorial
moment:

E{Xjt1(Xjp1 +1) - (Xjp1 +£)}
= E{X;X;+1)---(X; + )}

+(€+1)E{(Xj+1)---(X,-+1z) x%}

E{X;(X;+1)- (X; + 0} x (1+@> .

i From this, we have without further work,

E{Xp(Xn+1)--- (X, + 0} (£ +1)! f[ (1+p(.£+1)>
j=k+1 i-1

Pin+p(l+1))T(k)

[(k+pl+1)'(n) -

= (L+1)

For fixed k and [, we note that the right-hand side is asymptotic to

P(EHD) T +2)T(k)
Lk + p(£ + 1))

Thus,

lim E{X, (X, +1)---(Xp+0}  T(+2)(k)

n—>00 np(t+H1) - T(k+pt+1))
The limit of E {(X,,/nP)(**1V} is identical. Carleman’s condition applied to the
limiting moments shows that these are the moments of a distribution that is
uniquely determined by its moments. We call the limiting distribution Z(k,p).
This proves Lemma 4.1.




PROOF OF LEMMA 4.2.
From the proof of Lemma 4.1, we recall

E{Xn(Xn'i‘l)(Xn'i'e)}
— (+1) f[ (1+p(.€+1))

j=k+1 7-1

(£+1)!exp (ni I@)

IA

=k

IN

(£+1)'exp (p(£ + 1)(log(n/k) + 1/k))
(€ +1)! (%)WH) ePHD/k

IN

PROOF OF LEMMA 4.3.
For t < 1, there is nothing to prove, so assume ¢ > 1. Let X,, = N;. By
Markov’s inequality,

P{X, >t} < p{Xn(XnJrl)...(XnJrg)Zte+1np(e+1)}

E {Xn(Xn + 1) e (Xn + E)}
— tl-{—lnp(l—i—l)

el/k p(£+1)
|
()

uniformly over all n.
In particular, if we set £ = [2/p] — 1, then p(¢ + 1) > 2. Thus,

P [N}, > tn?} < (2 + 2/p) (tlfpk)z .

From this, we deduce by Boole’s inequality,

P{max(Ni,... . Np) > tn7} < S T@+2/p) (1)

(2 +2/p)e*n?/6
- t2/p ’

PROOF OF LEMMA 4.4.



The random variable Z(k, p) has characteristic function given by

o(t) = E{eitZ(k,p)}

- > D pize)

=0

B (i)
= I ; I'(k+ pr)

= T(k)Mpi(it) ,

where My, 1 (2) = Yoo, 2" /T (k+pr) is the Mittag-Leffler function with parameters
p and k. This function is of semiexponential type, analytic on the positive complex
halfspace (Henrici, 1986, p. 333), and thus, M, (2) — 0 if 2 — oo along the
imaginary axis. Thus, |p(t)] — 0 as |t| — oo, and thus, Z(k,p) is a continuous
random variable. As Z(k,p) has no atoms, it has no atom at zero, and thus,
P{Z(k,p) <t} =o0(1) ast ] 0.

5 Analyzing DGROW

We let D = D(n, paown, Pextra) be the random digraph constructed by DGROW.
For each vertex v, we let F(v) be the set of vertices which can be reached by a
directed path From v in D. We let T'(v) be the set of vertices from which there
is a directed path To v in D. We note that the strong component containing v is
exactly T'(v) N F(v). Our approach is to model the construction of F(v) for each
vertex using a branching process.

The expected number of arcs out of vertex i in D is essentially piown + Peztra-
(More precisely, for 4 > 1 this expected value is Paown + Pextra — Pie2Pztre whilst
for 4 = 1 it iS Pegtrq). If this value is at most 1 then it is not hard to show that
almost surely the maximum size of a strong component is o(n), as we now see.

Proof of Theorem 3.2 The outdegree of a node is stochastically at most
the sum of independent random variables B(n — 1, 222e) and B(1, pgown)- Let

Xn,XT(LI),Xg), ... be independent random variables with this distribution. Note
that X, is a sum of n Poisson trials, and E(X,,) = Piown + Pextra- We consider
a Galton-Watson branching process in which the family sizes are distributed like
Xn- Let R = R,, be the random tree constructed by this process. Clearly, for any
node v, P(IF(v)| > k) < P(IR| > k).

Consider first the case when pgown + Pestra = 1 — € for some € > 0, so that
the expected number of offspring in our branching process is 1 — e. Now

P(R| > k) = P(i(xﬁj)—l)zo Vi=1,...,k)

=1

k
P> x> k).
i=1

IA



But Zle Xr(f) is a sum of nk Poisson trials with (total) mean g = (pgown +
pemtra)k = (1 - €)k‘ Hence

€ k

%

k
P(R| > k) <PQ_ XD > 1+ —)u) <e”

— €
i=1

by standard bounds. But this last term is o(1/n) for k > (3/€*)logn, and so in
this case each component of D almost surely has O(logn) nodes.

Now consider the case Pgown + Peztra = 1, when the expected number of
offspring in our process equals 1. We need to be a little more careful. Note first
that, if v is in a strong component of D with at least k nodes then |F(v)| > k.
Thus,

P(some strong component has > k nodes)

< E(# of strong components with > k nodes)

1
< z E(# of nodes in strong components with > k nodes)
<

n
— > k).
"~ P(RI 2 k)

We may assume that pgown < 1, since otherwise peyirq = 0 and D has only trivial
strong components. Note that

Deztra

-1

as n — oo, and E(]X,, — 1|*) = O(1). Hence by the Berry-Esseen theorem, there
is a constant ¢ such that for all n and £ we have

PXW 4 4 X = k1) < ck—*.

It follows (see Dwass (1969)) that, for the tree R corresponding to the X, distri-
bution, we have

PR =k) =P(XV + -+ X =k —1)/k < ek 3,
and so P(|R| > k) = O(k~2). Thus

’UCLT(Xn - 1) = pemtra(l ) +pdown(1 - pdown) —1- Pﬁown >0

P(|R| > k) = O(nk™%),

P(some strong component has > k nodes) < %
and this last term is o(1) if k¥ = w(n)n?. Thus each component of D almost surely
has O(w(n)n?) vertices. This completes the proof of Theorem 3.2.

Conversely, if pgown + Pestra > 1 then we almost surely have a giant strong
component, as we now show.

Proof of Theorem 3.3

For our branching process analysis to work, we need a final ‘post-processing’
stage. We will reserve a constant proportion of the extra arcs to be added in this
stage. That is, for some constant pfinas > 0, we add an arc from ¢ to j with

ey (Pestra—Prinal)(1—Linaly=1 :
probability 7 in step 2 (which completes the first stage),
Prinal

and then with probability =f=¢ in the new final stage. We use our branching
process analysis to show that before this final stage we have:



Proposition 5.1 For some € = €(Pdown, Pextra) > 0 there are almost surely at
least en vertices in the set Ac = {v : |F(v)| > en}.

Proposition 5.2 For some & = 6(Pdown, Pextra) > 0 there are almost surely at
least dn vertices in the set Bs = {v : |T'(v)| > dén}.

It is an easy matter to show that

Proposition 5.3 For any d,¢ > 0, almost surely for every u € A, and v € B;

2
there are at least *ZLine™ yertices w for which we add both an arc from F(u) to

w and an arc from w to T'(v) in the final stage.

Proposition 5.4 If |A.||Bs| > nlogn holds for some ,e¢ > 0, then almost surely
there is an arc xy with x € Bs and y € A..

Combining these last two results we see that if |A||Bs| > nlogn holds for
some 4, € > 0, then almost surely there is an x € By such that the strong component

o . SepGina
containing = has at least —Z~2—

prove Propositions 5.1 and 5.2.
Now, since the sum of the sizes of the F(v) equals the sum of the sizes of
the T'(v), if Proposition 5.1 holds for some € > 0 then an easy averaging argu-

vertices. So to prove the theorem we need only

ment shows that Proposition 5.2 holds for § = % So, in fact we need only prove
Proposition 5.1.
Before doing so, we specify our choice of pfing. We recall that in step 2,

instead of adding an arc from i to j with probability =2tze we add the arc with

probability 2 ;‘;f_“i“ for plira = Pewtra — Prinat) (1 — %)*1. Now, no matter how
small we make p¢inqi, Propositions 5.3 and 5.4 will still hold so by decreasing ptinai

we can make p',_, . arbitrarily close to peytrq. In particular, we want to ensure that
Pdown + DPhgtre > 1. It turns out that choosing prine = W ensures this
is true.

Thus, the expected number of arcs out of a vertex in step 2 exceeds 1. From
now on then, we may ignore prina and the final stage, and just assume that
Pdown + Peztre > 1. It remains to prove (the cleaned-up version of) Proposition 5.1.
However, if we try to analyze growing F'(v) using a simple branching process we
soon run into difficulties because the ‘down’ arcs make it highly likely we pick
vertices with low indices and so the expected outdegree of a low index vertex
outside of the already picked vertices rapidly becomes less than 1.

Instead, we will think of a step in the branching process as consisting of
starting with a vertex i , exposing all the ‘extra’ arcs out of ¢ and then exposing
the set of vertices reachable from these vertices by ‘down’ arcs. Now clearly, the
expected number of vertices reachable from j by down arcs is essentially 1+ pgown+

DPowon tPoown- = m (this isn’t quite true if j is small e.g. if j = 1 this value
will be 0 but if e.g. j > +/n then this value will be 1_p2 —o0(1)). So, the expected

number of vertices reachable from 7 in a step is essentially &%, which exceeds
one.

In order to avoid the complications due to low index vertices, we actually
only consider arcs which go to vertices of reasonably high index. Furthermore,
we only consider arcs from ¢ added in Step 1 which go to vertices whose index is
reasonably high in terms of i. Forthwith the details.



For a given (Pestra;Pdown), We choose €1,e2 > 0 and C' > 1 so that setting
c .
p* = Zizo((l - 62)pdown)l we have:

(]- - 6l)pemtra, P* > 1.

This is possible since the inequality holds if ¢ = e2 = 0 and C = oo (in which
case we have p* = (1 — pgown) '), and we are free to choose the €’s as small as we
like and C as large as we like.

We set €3 = €1 — % and ¢4 = 63(%)0"'2. We will restrict our attention to the
subgraph D' of D consisting of those arcs (4, ) with j > e4n.

To begin, we obtain for each node v, a lower bound on the size of the random
set F'(v), consisting of those vertices which can be reached from v along a path
P which satisfies:

(a) for any ‘extra’ arc (i,j) of P added in Step 2 we have j > <&,
(b) for any ‘down’ arc (i,j) of P added in Step 1 we have j > %i, and

(c) any set of C' +1 consecutive arcs of P contains at least one which was added
in Step 2.

We will grow F'(v) iteratively. In each iteration we will explore from some
vertex ¢ in F'(v) by exposing all the extra arcs out of i which satisfy (a) and
go to new vertices, and then exposing the set of new vertices reachable from
these vertices by paths of up to C' down arcs which satisfy (b). We begin with
F'(v) = {v}, and continue until either there are no unexplored vertices of F”'(v)
or |F'(v)| > e4n. Thus throughout the process, there are at most (e3 + €4)n < e1n
vertices which are either already known to be in F'(v) or which have indices less

than ezn. In the same vein, from any vertex 4, there are at most %* + e4n vertices

which have indices less than ¢ or are already in F'(v). If i > (£2)%e3n then this
is less than eai.

Consider the corresponding search tree, while it contains less than e4n nodes.
The distribution of the number of (new) children of a node v is stochastically at
least the distribution D, defined as follows. Take a sum of B((1 — €;)n, Pe=tze)
independent random variables Y, where each of these random variables Y takes
values in {0,1,...,C} and satisfies:

for 0<i<C, P >1i)>((1—€e)pdown)"

Further, our choices of €1,€; and C ensure that (for n sufficiently large) this dis-
tribution is stochastically at least a fixed distribution D* taking a bounded set
of values {0,1,...,b} and having mean > 1, where we take a sum of a truncated
Poisson number of independent random variables like Y above.

Thus the probability that |F'(v)| > esn is at least the probability that the
Galton Watson branching process with family size distribution D* constructs a
tree with at least e4n nodes.

Consider such a Galton Watson branching process. Let its generation sizes
be Zyg = 1,Z>,... and let |R| be the total number of descendants. We need two
facts:

P(|R| = 00) = €5 > 0,



and

P(|R| = oo[ | > wlogn) = 1~ o( ).

Let S be the set of nodes v such that |F'(v)| > esn, and let S’ be the set
of nodes v such that |F'(v)| > w(n)logn. Then S C A,, and from the above we
have S’ C S a.s., and E(|S|) > esn.

To complete the proof we show that |S’| is concentrated around its expected
value, using the second moment method. Having exposed the set W of the first
up to w(n)logn vertices of F'(u) we explore, it is quite likely that for some other
vertex v, when we expose the first up to w(n)logn vertices of F’(v) we will not
touch W. Thus, P(v € S'|u € §') = P(v € S")(1+0(1)), which is enough to apply
the second moment method. Thus |S’| > Lesn a.s., and hence |A¢| > en a.s., where
€ = min(es, 2€5). Thus the proof is complete.

6 Concluding Remarks

We could attempt to compute the probability that D has no giant component when
Pdown + Pextra > 1: we believe it is exponentially small in n and our technique may
perhaps be pushed to yield this.

We could also imagine a random process where each vertex throws up to &
edges back according to probabilities p1, ..., pg.-

Finally, in Kim et al. 2002, results are given for the undirected model in which
at iteration ¢, we add one of the (;) possible edges with endpoints in {1,..,4} with
probability p. The authors show that the threshold for having a giant component is
p= % and determine bounds on the size of the largest component in the subcritical
case.
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