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ABSTRACT. We derive exponential inequalities for the oscillation of functions of random variables about

their mean. This is illustrated on the Kolmogorov-Smirnov statistic, the total variation distance for

empirical measures, the Vapnik-Chervonenkis distance, and various performance criteria in nonparametric

density estimation. We also derive bounds for the variances of these quantities.

1. Introduction.

Hoeffding (1963) showed that for independent random variables X1, X2, . . . , Xn with ai ≤ Xi ≤
bi,

P

{∣∣∣∣∣
n∑

i=1

(Xi − EXi)

∣∣∣∣∣ > t

}
≤ 2e−2t2

/∑n
i=1(bi−ai)2 , t > 0.

Perhaps the best known form of this inequality is obtained when the Xi’s are i.i.d. Bernoulli (p) ran-

dom variables. In that case, we obtain Chernoff’s bound (1952) for the binomial distribution: if X is

binomial (n, p), then

P {|X − np| > t} ≤ 2e−2t2/n , t > 0.

Various extensions of these inequalities have been developed over the years. The generalization to martin-

gales due to Hoeffding (1963) and Azuma (1967) has led to interesting applications in combinatorics and

the theory of random graphs (for a survey, see McDiarmid, 1989). We have used it in density estimation

(Devroye, 1988, 1989).

In this paper, we collect various extensions of Hoeffding’s inequality and highlight their applica-

tions in the nonparametric estimation of densities and distribution functions. For completeness, the proofs

of the inequalities are sketched as well. In the last section, we present new bounds for the variance of

functions of independent random variables. The inequalities are illustrated on examples in nonparametric

estimation, and are shown to be sharper than those obtained from the Efron-Stein inequality.
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2. Inequalities for martingale difference sequences.

Hoeffding (1963) mentioned that his inequalities would also be valid when applied to martingale

difference sequences. To make things a bit more precise, let us consider a probability space (Ω,F ,P), and

a nested sequence F0 = {∅,Ω} ⊆ F1 ⊆ · · · ⊆ F of sub-σ-fields of F . A sequence of integrable random

variables X0, X1, X2, . . . is a martingale if

E
{
Xn+1

∣∣ Fn
}

= Xn a.s. , each n ≥ 0.

A sequence of integrable random variables Y1, Y2, . . . is a martingale difference sequence if for every n ≥ 0,

E
{
Yn+1

∣∣ Fn
}

= 0 a.s. .

Note that any martingale X0, X1, X2, . . . leads to a natural martingale difference sequence by defining

Yn = Xn −Xn−1, n ≥ 1.

And any martingale difference sequence Y1, Y2, . . . in turn yields a natural martingale by defining X0 in

an arbitrary fashion and setting

Xn =
n∑

i=1

Yi +X0.

For any nested sequence of sub-σ-fileds F0 = {∅,Ω} ⊆ F1 ⊆ F2 · · · ⊆ F and any integrable

random variable X , we can define Doob’s martingale by setting

Xn = E
{
X
∣∣ Fn

}
, n ≥ 0.

Thus, X0 = EX , and if X is Fn-measurable, then Xn = X , and

X − EX =
n∑

i=1

(Xi −Xi−1) .

We begin with an inequality along the lines suggested by Hoeffding (1963) and Azuma (1967)

(see McDiarmid, 1989):

Theorem 1. Let F0 = {∅,Ω} ⊆ F1 ⊆ F2 · · · ⊆ Fn be a nested sequence of σ-fields. Let the integrable

random variable X be Fn-measurable, and define the Doob martingale Xk = E
{
X
∣∣ Fk

}
. Assume that

for k = 1, . . . n, there exist random variables Zk, Fk−1-measurable, and constants ck such that

Zk ≤ Xk ≤ Zk + ck.

Then for t > 0,

P {X − EX ≥ t} ≤ 2e−2t2
/∑n

i=1 c
2
i , t > 0,

P {X − EX ≤ −t} ≤ 2e−2t2
/∑n

i=1 c
2
i , t > 0.

This Theorem uses a simple Lemma due to Hoeffding (1963):
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Lemma 1. Let X be a random variable with EX = 0, a ≤ X ≤ b. Then for λ > 0,

E
{
eλX

}
≤ eλ2(b−a)2/8.

Proof. Note that by convexity,

eλx ≤ x− a
b− a e

λb +
b− x
b− ae

λa , a ≤ x ≤ b ,

EeλX ≤ b

b− ae
λa − a

b− ae
λb

= (1− p+ peλ(b−a))e−pλ(b−a) , where p =
a

a− b ∈ [0, 1]

def
= eϕ(u) ,

where u = λ(b− a), ϕ(u) = −pu+ log(1− p+ peu). But it is easy to see that

ϕ′(u) = −p+
p

p+ (1− p)e−u ,

ϕ′′(u) =
p(1− p)e−u

(p+ (1− p)e−u)2
≤ 1

4
,

ϕ(0) = ϕ′(0) = 0 ,

and by Taylor’s series expansion with remainder,

ϕ(u) ≤ u2

8
=
λ2(b− a)2

8
.

Proof. Set Yk = Xk −Xk−1, Sk =
∑k
i=1 Yi = Xk −X0. Note that Sn = Xn − EX = X − EX . Also,

P {X − EX ≥ t} = P {Sn ≥ t}
≤ e−λtE

{
eλSn

}
forλ > 0 (by Chernoff’s bounding method)

= e−λtE
{
eλSn−1E

{
eλYn

∣∣Fn−1

}}

≤ e−λtE
{
eλSn−1

}
eλ

2c2n/8 (Lemma 1)

≤ e−λte(λ2/8)
∑n
i=1 c

2
i (iterate previous argument)

= e−2t2/
∑n
i=1 c

2
i (take λ = 4t/

n∑

i=1

c2i ) .

The second inequality in Theorem 1 is obtained when we replace X by −X .
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3. McDiarmid’s extension of Hoeffding’s inequality.

The following extension of Hoeffding’s inequality is useful for random variables that are compli-

cated functions of independent random variables, and that are relatively robust to individual changes in

the values of the random variables.

Theorem 2. (McDiarmid, 1989) Let X1, . . . , Xn be independent random variables taking values in a set

A, and assume that f : An → R satisfies

sup
x1,...,xn

x′1,...,x
′
n∈A

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n .

Then

P {|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| ≥ t} ≤ 2e−2t2
/∑n

i=1 c
2
i .

Proof. Define Y = Yn = f(X1, . . . , Xn), and let Fn be the σ-field generated by X1, . . . , Xn. Define

Yk = E
{
Y
∣∣Fk
}
, Zk = ess inf

{
Yk
∣∣Fk−1

}
, Wk = ess sup

{
Yk
∣∣Fk−1

}
,

so that Zk ≤ Yk ≤Wk. We can apply Theorem 1 directly to Yn if we can show that Wk − Zk ≤ ck. But

this follows from

Wk = ess sup
{

E
{
f(X1, . . . , Xn)

∣∣Fk
} ∣∣Fk−1

}

≤ sup
x∈A

E
{
f(X1, . . . , Xk−1, x,Xk+1, . . . , Xn)

∣∣Fk
}

= sup
x∈A

E
{
f(X1, . . . , Xk−1, x,Xk+1, . . . , Xn)

∣∣Fk−1

}

≤ inf
x∈A

E
{
f(X1, . . . , Xk−1, x,Xk+1, . . . , Xn)

∣∣Fk−1

}
+ ck

≤ ess inf
{

E
{
f(X1, . . . , Xn)

∣∣Fk
} ∣∣Fk−1

}
+ ck

= Zk + ck .

4. Applications.

4.1. Chernoff’s bound. Let X1, . . . , Xn be Bernoulli (p1) , . . . , Bernoulli (pn) random variables, and

consider
∑n
i=1 Xi . Clearly, the conditions of Theorem 2 are fulfilled with ci ≡ 1. Thus,

P

{∣∣∣∣∣
n∑

i=1

(Xi − pi)
∣∣∣∣∣ ≥ t

}
≤ 2e−2t2/n .

As a special case, pi ≡ p for all i, we obtain Chernoff’s bound (1952) for a binomial (n, p) random variable

X :

P {|X − EX | ≥ t} ≤ 2e−2t2/n .
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4.2. The Kolmogorov-Smirnov statistic. Let Fn be the standard empirical distribution function

based upon an i.i.d. sample X1, . . . , Xn drawn from a distribution function F on the real line. The

Kolmogorov-Smirnov distance is

sup
x
|Fn(x) − F (x)| .

Note that changing one point Xi can increase or decrease Fn by at most 1/n over a certain interval. Thus

the condition of Theorem 2 is fulfilled with ci ≡ 1/n. We have

P
{∣∣∣∣sup

x
|Fn(x) − F (x)| − E sup

x
|Fn(x) − F (x)|

∣∣∣∣ ≥
t√
n

}
≤ 2e−2t2 .

In this respect, we note that Dvoretzky, Kiefer and Wolfowitz (1956) showed that

P
{

sup
x
|Fn(x)− F (x)| ≥ t√

n

}
≤ Ce−2t2

for some C > 0, while Massart (1990) proved that one can take C = 2. Massart’s bound and the inequality

derived from Theorem 2 do not imply each other.

4.3. Nonparametric density estimation: the L1 norm. Let fn be the Parzen-Rosenblatt kernel

estimate of a density f based upon an i.i.d. sample X1, . . . , Xn drawn from f (Rosenblatt, 1956; Parzen,

1962):

fn(x) = fn(x;X1, . . . , Xn) =
1

n

n∑

i=1

Kh(x−Xi) .

Here K is a given function (the kernel) integrating to one, Kh(u) = 1
hK(uh ), and h > 0 is a smoothing

factor. An important criterion for evaluating the performance of a density estimate is
∫
|fn − f |. This

random variable satisfies the conditions of Theorem 2 with ci ≡ 2
∫ |K|/n as we will now see. Take any

numbers x1, . . . , xn and x′1, . . . , x
′
n with x′i = xi except for i = j. Then,

∣∣
∫
|fn(x;x1, . . . , xn)− f(x)| dx−

∫ ∣∣fn(x;x′1, . . . , x
′
n)− f(x)

∣∣ dx
∣∣

≤
∫ ∣∣fn(x;x1, . . . , xn)− fn(x;x′1, . . . , x

′
n)
∣∣ dx

≤ 1

n

∫ ∣∣∣Kh(x − xj)−Kh(x− x′j)
∣∣∣ dx

≤ 2
∫
|K|
n

.

Thus, dropping the (. ) and dx, we have

P
{∣∣∣∣
∫
|fn − f | − E

∫
|fn − f |

∣∣∣∣ > t

}
≤ 2e−nt

2/2
∫ 2|K| .

This inequality improves over one first published in Devroye (1988), where the exponent had the constant

32 instead of 2. The present improvement was independently pointed out to me by Pinelis (1990).
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Remark 1. We recall that
√
nE
∫
|fn − f | → ∞ for the kernel estimate when one of these conditions

holds:
(1) limn→∞ h = 0;

(2) The characteristic function for f has unbounded support;

(3)
∫ √

f =∞.

See e.g. Devroye and Györfi (1985) or Devroye (1988). When this is the case, a simple application of

Chebyshev’s inequality shows that
∫
|fn − f |

E
∫
|fn − f |

→ 1 in probability.

In other words, the L1 eror behaves asymptotically like a deterministic sequence, just as averages do

when the weak law of large numbers applies.

Remark 2. For the standard histogram estimate, regardless of the bin width, we have

P
{∣∣∣∣
∫
|fn − f | − E

∫
|fn − f |

∣∣∣∣ > t

}
≤ 2e−nt

2/2 .

Thus, just as for the kernel estimate, we have an inequality that is valid for all f and n, and for all

choices of the bin widths and the smoothing factors. The non-asymptotic character of the inequalities

will undoubtedly make them useful tools for further applications.

Remark 3. By the boundedness of
∫
|fn − f |, we note that

∫
|fn − f | → 0 in probability if and only

if E
∫
|fn − f | → 0. But if these quantities tend to zero in the indicated senses, by the results of this

section, for every ε > 0 and t > 0, it is possible to find n0 such that for n > n0,

P
{∫
|fn − f | > t

}
≤ 2e−n(1−ε)t2/2

∫ 2|K| .

Thus, weak convergence of the L1 error implies complete convergence. This observation is at the basis

of the equivalence results of Devroye (1983), but the present proof is much shorter. We note that a

sufficient condition for the weak (and thus complete) convergence for the kernel estimate is that h → 0

and nh → ∞ as n → ∞ (see Devroye, 1987, where a proof is given based upon results of Scheffé (1947)

and Glick (1974)). When the kernel K has at least one non-vanishing moment, then these conditions are

necessary as well.

Remark 4. The condition in Theorem 2 demands that each individual sample point have a limited

influence on
∫
|fn − f |. This may not be the case for some data-based methods of choosing h.
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4.4. Lp norms. Define the Lp norm of g by ‖g‖p =
(∫
|g|p
)1/p

, where p ≥ 1 is fixed. If fn is shorthand

for fn(x;x1, . . . , xn), gn ≡ fn(x;x′1, . . . , x
′
n) and if x1, . . . , xn and x′1, . . . , x

′
n are sequences of numbers

with xi = x′i except for i = j, then
∣∣∣‖fn − f‖p − ‖gn − f‖p

∣∣∣ ≤ ‖fn − gn‖p

≤
∥∥∥∥

1

nh
Kh(x− xj)−

1

nh
Kh(x− x′j)

∥∥∥∥
p

≤ 2

nh1−1/p‖K‖p
by Minkowski’s inequality. From Theorem 2, we then deduce the following inequality:

P
{∣∣∣‖fn − f‖p − E ‖fn − f‖p

∣∣∣ ≥ t
}
≤ 2e−nt

2h2−2/p/(2‖K‖2p) .

The inequality remains formally valid even if p =∞, in which case we obtain the supremum norm.

Assume for the sake of simplicity that K is a bona fide density. We claim that the relative

stability result, i.e.,
‖fn − f‖p

E ‖fn − f‖p
→ 1 in probability,

holds whenever h → 0, nh → ∞ and 1 ≤ p < 2. Of course, for the norms to make sense, we have to

additionally assume that K, f ∈ Lp. Assume for simplicity that K ≥ 0. To prove the claim, we first

havve to establish that for any density f , there exists a constant c > 0 such that

E ‖fn − f‖p ≥ cmax
(
h2, 1/

√
nh
)
.

Under smoothness and tail conditions on f , this result is rather standard. The generalization to all f

requires some work. Back to the statement. It clearly suffices to show that the variance of ‖fn − f‖p
is o(E2 ‖fn − f‖p) by Chebyshev’s inequality. The variance is O(1/(

√
nh1−1/p)) — this follows from the

exponential bound shown above. If h ≤ n−1/5, then the statement is easily verified since h
1
2−

1
p →∞. If

h ≥ n−1/5, then we need only verify that
√
nh3−1/p →∞.

Interestingly, the first p for which the relative stability result fails is p = 2. We can only obtain

it from the inequality shown above when nh5 →∞, a condition that is known to yield suboptimal values

for h for all densities (not just all smooth ones!). However, this does not mean that the relative stability

result is not valid in L2 for h ∼ n−1/5. Indeed, Hall (1982) proved that

‖fn − f‖22
E ‖fn − f‖22

→ 1 in probability,

under certain conditions on f , h and K.
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4.5. Uniform deviation of empirical measures. An i.i.d. sampleX1, . . . , Xn with common proba-

bility measure µ on the Borel sets B of Rd induces an empirical probability measure µn by

µn(B) =
1

n

n∑

i=1

IB(Xi) ,

where I is the indicator function, and B ∈ B. The total variation distance between µn and µ is

Tn
def
= sup

B∈B
|µn(B) − µ(B)| .

Clearly, Tn ≡ 1 if µ is nonatomic, so the total variation distance is rather restrictive. Vapnik and

Chervonenkis (1971) considered instead

Vn
def
= sup

A∈A
|µn(B)− µ(B)|

where A is a suitable subclass of the Borel sets. For example, if A = {(−∞, x] : x ∈ R} and d = 1, then

Vn is the standard Kolmogorov-Smirnov distance discussed above. They showed in particular that

P {Vn ≥ t} ≤ 4s(A, 2n)e−nt
2/8 , nt2 ≥ 1,

where

s(A, n) = max
x1,...,xn)∈Rdn

NA(x1, . . . , xn)

and NA(x1, . . . , xn) is the number of different sets in
{
{x1, . . . , xn} ∩ A

∣∣ A ∈ A
}
.

For many families A that are not too rich, such as all halfspaces, all intersections of a finite number

of halfspaces, all balls, etc., s(A, n) ≤ nD for a finite D (the ”Vapnik-Chervonenkis dimension”), so

that the Vapnik-Chervonenkis bound decreases exponentially with n. For extensions and discussions, see

Devroye (1982), Gaenssler (1983), Pollard (1984) and Alexander (1984).

If we replace Xj in the sample by X ′j while holding all the other elements fixed, Vn changes by

at most 1/n, so that from Theorem 2,

P {|Vn − EVn| ≥ t} ≤ 2e−2nt2 .

This implies that
√
n(Vn − EVn) = O(1) in probability. For the limit law theory of

√
nVn, we refer to

Dudley (1978).

4.6. Variable kernel estimates. Breiman, Meisel and Purcell (1977) introduced the variable kernel

estimate

fn(x) =
1

n

n∑

i=1

KHi(x−Xi) ,

where Hi is a function of Xi and the data, X1, . . . , Xn. If Hi is a function of Xi and n only, then the

inequality of section 4.3 applies unaltered.

A more interesting choice of Hi is that in which it becomes a function of the distance between

Xi and its k-th nearest neighbor among the data. Replacing Xi by X ′i affects at most ck of the Hj ’s,

where c is some universal constant depending upon the dimension only. This is seen by noting that Xi
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can be among the k nearest neighbors of at most c′k of the Xj ’s, where c′ depends upon d only (Devroye

and Penrod, 1986). Thus,
∫
|fn − f | changes by at most ck/n. Hence,

P
{∣∣∣∣
∫
|fn − f | − E

∫
|fn − f |

∣∣∣∣ > t

}
≤ 2e−2nt2/(c2k2) .

Thus, V
{∫
|fn − f |

}
= O(k2/n). Depending upon the choice of k, this can be used to establish the

relative stability of the estimate.

4.7. Recursive kernel density estimates. The bound of section 4.2 remains valid for density estimates

of the form

fn(x) =
1

n

n∑

i=1

Khi
(x −Xi) ,

where hi depends upon i only; this is an estimate attributed to Wolverton and Wagner (1969). Consider

estimates of the form

fn(x) =
n∑

i=1

piKhi(x −Xi) ,

where (p1, . . . , pn) is a probability weight vector, and both pi and hi depend upon i and possibly n.

This general form of estimate goes back to Deheuvels (1973). The condition of Theorem 2 holds with

ci ≡ 2pi
∫
|K|. Clearly,

n∑

i=1

c2i = 4
n∑

i=1

p2
i

(∫
|K|
)2

≤ 4 max
1≤i≤n

pi

(∫
|K|
)2

.

This in turn can be used in the upper bound of Theorem 2.

Deheuvels (1973) proposed the latter estimate, based upon a fixed sequence h1, h2, . . ., with

pj = hj/
∑n
i=1 hi. Assume furthermore that hn oscillates so slightly that

∑n
i=1 h

2
i ≤ Anh2

n and
∑n
i=1 hi ≥

Bnhn for some positive constants A,B. Then we see that upon proper substitution of the various bounds,

P
{∣∣∣∣
∫
|fn − f | − E

∫
|fn − f |

∣∣∣∣ > t

}
≤ 2e−Bnt

2/(2A
∫ 2 |K|) .

Deheuvels’ estimate is relatively stable for all f , whenever h → 0, nh → ∞, K has at least one non-

vanishing moment, and h satisfies the regularity condition mentioned above.

5. Inequalities for the variance.

In many applications, one would like to obtain information about the variance, or the oscillation,

of a random variable of the form f(X1, . . . , Xn) where X1, . . . , Xn are i.i.d. random vectors. Often, f(· )
is a rather complicated function of the data (see the examples in the previous section). One of the first

general tools in this respect is the Efron-Stein inequality (Efron and Stein, 1981; see also Vitale, 1984).
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The Efron-Stein inequality. Let f be a symmetric function of its n arguments, and let X1, . . . , Xn+1

be i.i.d. random vectors. Define

Si = f(X1, . . . , Xi−1, Xi+1, . . . , Xn+1) ,

S = Sn+1 = f(X1, . . . , Xn) ,

and

S =
1

n+ 1

n+1∑

i=1

Si .

Then

V{S} ≤
n+1∑

i=1

E
{(
Si − S

)2}
= (n+ 1)E

{(
S − S

)2}
.

When the right-hand-side of the inequality is worked out, and some further bounding is used, we

obtain the following result:

V{S} ≤ (n+ 1)E





(
1

n+ 1

)2
(
n+1∑

i=1

(S − Si)
)2




≤ 1

n+ 1
E

{
(n+ 1)

n+1∑

i=1

(S − Si)2

}

=
n+1∑

i=1

E
{

(S − Si)2
}

=
n∑

i=1

E
{

(S − Si)2
}

= nE
{

(S2 − S1)2
}
.

Assume next that a condition similar to that of Theorem 2 holds:

sup
x1,...,xn

x′1,...,x
′
n∈A

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ c , 1 ≤ i ≤ n . (∗)

Then |S2 − S1| ≤ c, and thus, V{S} ≤ nc2.

The derivation given here is that of Devroye (1987), where it was used to show that for the kernel

estimate, regardless of the choice of h or the nature of f ,

V
{∫
|fn − f |

}
≤ 4

∫ 2 |K|
n

.

In 1986, Steele obtained a related inequality:
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Steele’s inequality. Let f be an arbitrary function of its n arguments, and let X1, . . . , Xn,X
′
1, . . . , X

′
n

be i.i.d. random vectors. Define

Si = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) ,

and

S = f(X1, . . . , Xn) .

Then

V{S} ≤ 1

2

n∑

i=1

E
{

(S − Si)2
}
.

Note that the symmetry of f is no longer a requirement. Also, under condition (*), V{S} ≤ nc2/2.

This yields an improvement by a factor of 2 over the Efron-Stein based bound. It is possible to improve

these results even further, as in Theorem 3 below.

Theorem 3. Let X1, . . . , Xn be independent random variables taking values in a set A, and assume that

f : An → R satisfies

sup
x1,...,xn

x′1,...,x
′
n∈A

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n .

Then

V{f(X1, . . . , Xn)} ≤ 1

4

n∑

i=1

c2i .

Proof. Let Fi be the σ-algebra generated by X1, . . . , Xi. Let Y = Yn = f(X1, . . . , Xn). Then Yi =

E
{
Y
∣∣ Fi

}
forms a Doob martingale process. We formally set, as usual, F0 = {∅,Ω}, so that Y0 = EY .

Thus,

V{Y } = E
{

(Y − Y0)2
}

= E





(
n∑

i=1

(Yi − Yi−1)

)2




= E

{
n∑

i=1

(Yi − Yi−1)2

}
+ 2

∑

1≤i<j≤n
E
{

(Yi − Yi−1)(Yj − Yj−1)
}

= E

{
n∑

i=1

(Yi − Yi−1)2

}
,

where we used the martingale property to show that the cross product terms are zero: for i < j, we have

E
{

(Yi − Yi−1)(Yj − Yj−1)
∣∣ Fj−1

}

= (Yi − Yi−1)
(
E
{
Yj |Fj−1

}
− Yj−1

)
= 0 almost surely.
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Theorem 3 follows from the above result if we can show that

E
{

(Yi − Yi−1)2|Fi−1

}
≤ c2i /4 .

To see this, we observe that if

Zi = ess inf
{
Yi − Yi−1

∣∣Fi−1
}
, Wi = ess sup

{
Yi − Yi−1

∣∣Fi−1
}
,

then, as shown in the proof of Theorem 2, Wi ≤ Zi + ci, and thus, given Fi−1, Yi − Yi−1 is a zero mean

random variable taking values in the set [Zi, Zi + ci]. But an arbitary random variable X taking values

in a set [a, b] has variance not exceeding E(X − (a+ b)/2)2 ≤ (b− a)2/4, so that

E
{

(Yi − Yi−1)2|Fi−1

}
≤ c2i /4 .

This concludes the proof of Theorem 3.

Remark 1. For the kernel estimate, we obtain

V
{∫
|fn − f |

}
≤
∫ 2 |K|
n

,

which is an improvement by a factor of 4 over the inequality shown in Devroye (1987), which was based

upon the Efron-Stein bound. This improvement was suggested to me by Pinelis (1990), who mentions a

range of inequalities in a much more general framework.

Remark 2. For the histogram estimate, we obtain

V
{∫
|fn − f |

}
≤ 1

n
,

Remark 3. Without further work, we also have

V
{

sup
x
|Fn(x)− F (x)|

}
≤ 1

4n

for the Kolmogorov-Smirnov distance. Similarly, borrowing the notation of section 4.5, we have

V
{

sup
A∈A
|µn(A)− µ(A)|

}
≤ 1

4n
.

6. Acknowledgements.

The author’s research was supported by NSERC grant A3456.

7. References.

12



K. S. Alexander, “Probability inequalities for empirical processes and a law of the iterated logarithm ,” An-

nals of Probability , vol. 12, pp. 1041–1067, 1984.

K. Azuma, “Weighted sums of certain dependent random variables,” Tohoku Mathematical Jour-

nal, vol. 37, pp. 357–367, 1967.

L. Breiman, W. Meisel, and E. Purcell, “Variable kernel estimates of multivariate densities,” Technomet-

rics, vol. 19, pp. 135–144, 1977.

H. Chernoff, “A measure of asymptotic efficiency of tests of a hypothesis based on the sum of observa-

tions ,” Annals of Mathematical Statistics, vol. 23, pp. 493–507, 1952.

P. Deheuvels, “Sur une famille d’estimateurs de la densité d’une variable aléatoire,” Comptes Ren-
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