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§1. Random binary search trees

Binary search trees are almost as old as computer science: they are trees that we fre-

quently use to store data in situations when dictionary operations such as insert, delete,

search, and sort are often needed. Knuth (1973) gives a detailed account of the research that

has been done with regard to binary search trees. The purpose of this note is twofold: first, we

give a survey, with proofs, of the main results for many random variables defined on random

binary search trees. Based upon a simple representation given in (4), we can obtain limit laws

for sums of functions of subtrees using Stein’s theorem. The results given here improve on those

found in devroye (2002), and this was our second aim. There are sums of functions of subtree

sizes that cannot be dealt with by Stein’s method, most notably because the limit laws are not

normal. A convenient way of treating those is by the fixed-point method, which we survey at

the end of the paper.

Formally, a binary search tree for a sequence of real numbers x1, . . . , xn is a Cartesian tree

for the pairs (1, x1), (2, x2), . . . , (n, xn). The Cartesian tree for pairs (t1, x1), . . . , (tn, xn) (Françon,

Viennot and Vuillemin (1978) and Vuillemin (1978)) is recursively defined by letting

s = arg min{ti : 1 ≤ i ≤ n},
making (ts, xs) the root (with key xs), attaching as a left subtree the Cartesian tree for (ti, xi) :

ti > ts, xi < xs, and as a right subtree the Cartesian tree for (ti, xi) : ti > ts, xi > xs. We

assume that all ti’s and xi’s are distinct. Note that the ti’s play the role of time stamps, and

that the Cartesian tree is a heap with respect to the ti’s: along any path from the root down,

the ti’s increase. It is a search tree with respect to the keys, the xi’s. Observe also that the

Cartesian tree is unique, and invariant to permutations of the pairs (ti, xi).

2



15

5

3

25

9

6

28

16

11

20

2

1

18

23

30

26

17

19

12

10

4

13

27

8

22

14

24

7

29

21

tim
e of in

sertion

Figure 1. The binary search tree for the sequence 15, 5, 3, 25, 9, 6, 28, 16, 11, 20, 2, 1, 18, 23,
30, 26, 17, 19, 12, 10, 4, 13, 27, 8, 22, 14, 24, 7, 29, 21. The y-coordinates are the time stamps
(the y-axis is pointing down) and the x-coordinates are the keys.

The keys are fixed in a deterministic manner. When searching for an element, we travel

from the root down until the element is located. The complexity is equal to the length of

the path between the element and the root, also called the depth of a node or element. The

height of a tree is the maximal depth. Most papers on the subject deal with the choice of the

ti’s to make the height or average depth acceptably small. This can trivially be done in time

O(n logn) by sorting the xi’s, but one often wants to achieve this dynamically, by adding the
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xi’s, one at a time, insisting that the n-th addition can be performed in time O(logn). One

popular way of constructing a binary search tree is through randomization: first randomly and

uniformly permute the xi’s, using the permutation (σ1, . . . , σn), obtaining (xσ1
, . . . , xσn), and

then construct the Cartesian tree for

(1, xσ1
), (2, xσ2

), . . . , (n, xσn) (1)

incrementally. This is the classical random binary search tree. This tree is identical to

(t1, x1), (t2, x2), . . . , (tn, xn) (2)

where (t1, t2, . . . , tn) is the inverse random permutation, that is, ti = j if and only if σj = i.

Since (t1, t2, . . . , tn) itself is a uniform random permutation, we obtain yet another identically

distributed tree if we had considered

(U1, x1), (U2, x2), . . . , (Un, xn) (3)

where the Ui’s are i.i.d. uniform [0, 1] random variables. Proposal (3) avoids the (small) problem

of having to generate a random permutation, provided that we can easily add (Un, xn) to a

Cartesian tree of size n− 1. This is the methodology adopted in the treaps (Aragon and Seidel,

1989, 1996), in which the Ui’s are permanently attached to the xi’s.

But since the Cartesian tree is invariant to permutations of the pairs, we can assume

without loss of generality in all three representations above that

x1 < x2 < · · · < xn,

and even that xi = i. We will see that one of the simplest representations (or embeddings) is

the one that uses the model

(U1, 1), (U2, 2), . . . , (Un, n). (4)

Observe that neighboring pairs (Ui, i) and (Ui+1, i+1) are necessarily related as ancestor

and descendant, for if they are not, then there exists some node with key between i and i + 1

that is a common ancestor, but such a node does not exist. We write j ∼ i if (Uj , j) is an

ancestor of (Ui, i). Finally, note that in (1), only the relative ranks of the xσi variables matter,

so that we also obtain a random binary search tree as the Cartesian tree for

(1, U1), (2, U2), . . . , (n,Un). (5)
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§2. The depths of the nodes

Consider the depth Di of the node of rank i (i.e., of (Ui, i)). We have

Di =
∑

j<i

�
[j∼i] +

∑

j>i

�
[j∼i].

But for j < i, j ∼ i if and only if

Uj = min(Uj , Uj+1, . . . , Ui).

This happens with probability 1/(i− j + 1).

Ui

Uj

Figure 2. We show the time stamps Uj , Uj+1, . . . , Ui with the axis
pointing down. Note that in this set-up, the j-th node is an an-
cestor of the i-th node, as it has the smallest time stamp among
Uj , Uj+1, . . . , Ui.

Therefore,

� {Di} =
∑

j<i

1

i− j + 1
+
∑

j>i

1

j − i+ 1

=
i∑

j=2

1

j
+

n−i+1∑

j=2

1

j

= Hi +Hn−i+1 − 2

where Hn =
∑n

i=1(1/i) is the n-th harmonic number. Thus,

sup
1≤i≤n

| � {Di} − log(i(n− i+ 1))| ≤ 2.
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We expect the binary search tree to hang deeper in the middle. With α ∈ (0, 1), we have
� {Dαn} = 2 logn+ log(α(1− α)) +O(1).

Let us dig a little deeper and derive the limit law for Di. It is convenient to work with

the Cartesian tree in which Ui is replaced by 1. Then for j < i, j ∼ i if and only if

Uj = min(Uj , Uj+1, . . . , Ui−1),

which has probability 1/(i − j). Denoting the new depth by D′i, we have obviously D′i ≥ Di.

More importantly,
∑

j<i

�
[j∼i] is the number of records in an i.i.d. sequence of i − 1 uniform

[0, 1] random variables. It is well-known that the summands are independent (exercise!) and

therefore, we have

D′i =

i−1∑

k=1

B(1/k) +

n−i∑

k=1

B′(1/k)

where B(p) and B′(p) are Bernoulli (p) random variables, and all Bernoulli variables in the sum

are independent. We therefore have, first using linearity of expectation, and then independence,

� {D′i} = Hi−1 +Hn−i,

� {D′i} =
i−1∑

k=1

1

k

(
1− 1

k

)
+

n−i∑

k=1

1

k

(
1− 1

k

)

= Hi−1 +Hn−i − θ
where 0 ≤ θ ≤ π2/3. It is amusing to note that

0 ≤ � {D′i −Di} = 2 +Hi−1 +Hn−i −Hi −Hn−i+1 ≤ 2,

so the two random variables are not very different. In fact, by Markov’s inequality, for t > 0,

� {D′i −Di ≥ t} ≤
� {D′i −Di}

t
≤ 2

t
.

The Lindeberg-Feller version of the central limit theorem (Feller, 1968) applies to sums

of independent but not necessarily identically distributed random variables Xi. A particular

form of it, known as Lyapunov’s central limit theorem, states that for bounded random variables

(supi |Xi| ≤ c <∞), provided that
∑n

i=1

� {Xi} → ∞,
∑n

i=1 (Xi −
� {Xi})√∑n

i=1

� {Xi}
L→ normal(0, 1)

as n → ∞, where Zn
L→ Z denotes convergence in distribution of the random variables Zn to

the random variable Z, that is, for all points of continuity x of the distribution function F of

Z,

lim
n→∞

� {Zn ≤ x} = F (x) =
� {Z ≤ x}.
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The normal distribution function is denoted by Φ. Applied to D′i, we have to a bit careful,

because the dependence of i on n needs to be specified. While one can easily treat specific cases

of such dependence, it is perhaps more informative to treat all cases together! This can be done

by making use of the Berry-Esseen inequality (Esseen, 1945, see also Feller, 1968).

Lemma 1 (Berry-Esseen inequality). Let X1,X2, . . . ,Xn be independent random variables

with zero means and finite variances. Put

Sn =
n∑

i=1

Xi, Bn =

√√√√
n∑

i=1

� {X2
i }.

If
� {|Xi|3} <∞, then

sup
x

∣∣∣∣
�
{
Sn
Bn
≤ x

}
− Φ(x)

∣∣∣∣ ≤
C
∑n

i=1

� {|Xi|3}
B3
n

where C = 0.7655.

The constant C given in Lemma 1 is due to Shiganov (1986), who improved on Van

Beek’s constant 0.7975 (1972). If we apply this Lemma to

D′i −
� {D′i} =

i−1∑

k=1

(B(1/k)− (1/k)) +
n−i∑

k=1

(B′(1/k)− (1/k)),

then the the “Bn” in Lemma 1 is nothing but
√ � {D′i}, which we computed earlier: it is√

log(i(n− i+ 1)) + O(1) uniformly over all i. Its minimal value over all i is
√

logn − O(1).

Finally, recalling that

� {|B(p)− p|3} ≤ � {(B(p)− p)2} = p(1− p) ≤ p,
we note that

sup
x,i

∣∣∣∣∣
�

{
D′i −

� {D′i}√ � {D′i}
≤ x

}
− Φ(x)

∣∣∣∣∣ ≤ sup
i

C × 2Hn

(
� {D′i})3/2

=
C × 2Hn

(
√

logn− O(1))3

= O(1/
√

logn).

The uniformity both with respect to x and i is quite striking.
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2 log n

2 log n − O(log1/2n)

2 log n + O(log1/2n)

most nodes are in this strip

4.31107... log n
height of the tree

0.3711... log n
all levels full up to here

Figure 3. This figure illustrates the shape of a random binary search
tree. The root is at the top, while the horizontal width represents the
number of nodes at each level, also called the profile of a tree. Up to
0.3711 . . . logn, all levels are full with high probability. Also, the height
(maximal depth) is 4.31107 . . . logn+O(log logn) with high probability.
The limit law mentioned above implies that nearly all nodes are in a
strip of width O(

√
logn) about 2 logn. Finally, the profile around the

peak of the belly is gaussian.

Having obtained a limit law for D′i, it should now be possible to to the same for Di,

which of course has dependent summands. We observe that for fixed t,

�
{
Di −

� {Di} ≤ x
√ � {D′i}

}

≤ �
{
D′i −

� {D′i} ≤ x
√ � {D′i}+ t+ 2

}
+

� {|D′i −
� {D′i} − (Di −

� {Di})| ≥ t+ 2}
≤ Φ(x) + o(1) +

� {D′i −Di ≥ t}
≤ Φ(x) + o(1) +

2

t
,

which is as close to Φ(x) as desired by choice of t. A similar lower bound can be derived, and

therefore,

lim
n→∞

sup
x,i

∣∣∣∣∣
�

{
Di −

� {Di}√ � {D′i}
≤ x

}
− Φ(x)

∣∣∣∣∣ = 0.

One can even obtain a rate by choice of t that is marginally worse than O(1/
√

logn).
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The depth of the last node added (the one with the maximal time stamp) in the classical

random binary search tree (1) is distributed as D′N , where N is a uniform random index from

1, 2, . . . , n, is also asymptotically normal:

lim
n→∞

�
{
D′N −

� {D′N} ≤ x
√ � {D′N}

}
= Φ(x).

This follows from the estimates above with a little extra work (see Devroye (1988) for an

alternative proof). It is also known that
� {D′N} = 2(Hn−1) and that

� {D′N} =
� {D′N}−O(1).

We note here that the exact distribution of D′N has been known for some time (Lynch, 1965;

Knuth, 1973):
� {D′N = k} =

1

n!

[
n− 1

k

]
2k , 1 ≤ k < n ,

where [.] denotes the Stirling number of the first kind. In these references, we also find the weak

law of large numbers: D′N/(2 logn) → 1 in probability. The same law of large numbers also

holds for DN , the depth of a randomly selected node, and the limit law for DN is like that for

D′N (Louchard, 1987).

§3. The number of leaves

Some parameters of the random binary search tree are particularly easy to study. One

of those is the number of leaves, Ln. Using embedding (4) to study this, we note that (Ui, i) is

a leaf if and only if (Ui−1, i− 1) and (Ui+1, i + 1) are ancestors, that is, if and only if

Ui = max(Ui−1, Ui, Ui+1).

Thus,

Ln
L
=

�
[U1>U2] +

n−1∑

i=2

�
[Ui>max(Ui−1,Ui+1)] +

�
[Un>Un−1]

def
=

�
[U1>U2] + L′n +

�
[Un>Un−1].

This is an n-term sum of random variables that are 2-dependent, where we say that a se-

quence X1,X2, . . . ,Xn is k-dependent if X1, . . . ,X` is independent of X`+k+1, . . . ,Xn for all `.

0-dependence corresponds to independence.
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Un

U1

leaf

Figure 4. For a tree with these time stamps (small on top), the
leaves (marked) are those nodes whose stamps are larger than those
of their neighbors.

Let N (0, σ2) denote the normal distribution with mean 0 and variance σ2. We will use a simple

version of the central limit theorem for k-dependent stationary sequences due to Hoeffding and

Robbins (1949):

Lemma 2. Let Z1, . . . , Zn, . . . be a stationary sequence of random variables (i.e., for any `, the

distribution of (Zi, . . . , Zi+`) does not depend upon i), and let it also be k–dependent with k

held fixed. Then, if
� |Z1|3 <∞, the random variable

∑n

i=1(Zi −
� {Zi})√

n

L→ N (0, σ2)

where

σ2 =
� {Z1}+ 2

k+1∑

i=2

(
� {Z1Zi} −

� {Z1}
� {Zi}).

The standard central limit theorem for independent (or 0-dependent) random variables is ob-

tained as a special case. Subsequent generalizations of Lemma 1 were obtained by Brown (1971),

Dvoretzky (1972), McLeish (1974), Ibragimov (1975), Chen (1978), Hall and Heyde (1980) and

Bradley (1981), to name just a few.

Clearly,
� {Ln} =

2

2
+
n− 2

3
=
n+ 1

3
,
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a result first obtained by Mahmoud (1986). We study L′n as |Ln − L′n| ≤ 2. Its summands are

identically distributed and of mean 1/3. Thus,

L′n − (n− 2)/3√
n− 2

L→ N (0, σ2)

where

σ2 =
� {Z2}+ 2

4∑

i=3

(
� {Z2Zi} −

� {Z2}
� {Zi}).

Here Zi =
�

[Ui] = max(Ui−1, Ui, Ui+1). As Zi is Bernoulli (1/3), we have
� {Zi} = (1/3) · (2/3) =

2/9. Furthermore, Z2Z3 = 0 as neighboring nodes cannot both be leaves. Thus,

σ2 = 2(
� {Z2Z4} −

� {Z2}
� {Z4}).

We have
� {Z2Z4} =

2

15
by a quick combinatorial argument. Thus, σ2 = 2/45. It is then trivial to verify that

Ln − n/3√
n

L→ N
(

0,
2

45

)
.

Let On denote the number of nodes with one child and let Tn be the number of nodes

with two children. The quantities Ln, On and Tn are closely related, since

Ln +On + Tn = n,Ln = Tn + 1.

This implies that On = n+ 1− 2Ln, Tn = Ln − 1. Thus,
�
Ln ∼ n/3 implies the same thing for

�
On and

�
Ln. Furthermore,

�
(On) ∼ 4

�
(Ln) ∼ �

(Tn). Therefore, Tn follows the same limit

laws as Ln, while (On − n/3)/
√
n converges in distribution to a normal distribution with zero

mean and variance 8/45.

§4. Local counters

Next we consider parameters that describe the number of nodes having a certain “local”

property. The purpose of this section is to generalize the method of the previous section towards

all local parameters of a tree, also called local counters. Besides Ln, we may consider Vkn, the

number of nodes with k proper descendants, or Lkn: the number of nodes with k proper left

descendants. Aldous (1990) gives a general methodology based upon urn models and branching

processes for obtaining the first order behavior of the local quantities; his methods apply to a

wide variety of trees; for the binary search tree, he has shown, among other things, that Vkn/

n → 2/(k + 2)(k + 3) in probability as n → ∞. We will give a short proof of this, and obtain

the limit law for Vkn as well.
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We call a random variable Nn defined on a random binary search tree a local counter of

order k if in embedding (4) it can be written in the form

Nn =
n∑

i=1

f(Ui−k, . . . , Ui, . . . , Ui+k),

where k is a fixed constant, Ui = 0 if i ≤ 0 or i > n, and f is a {0, 1}-valued function that is

invariant under transformations of the Ui’s that keep the relative order of the arguments intact.

Clearly, Ln is a local counter of order one. Local counters have two key properties:

A. The i-th and j-th terms in the definition of Nn are independent whenever |i− j| > 2k.

B. The distribution of the i-th term is the same for all i ∈ {k + 1, . . . , n− k}. Thus, we

have the representation Nn = An +
∑n−k

i=k+1 Zi, where 0 ≤ An ≤ 2k, and where the Zi’s

are identically distributed and 2k-dependent.

As a corollary of Lemma 2, we have the following limit law.

Theorem 1 (devroye, 1991). Let Nn be a local counter for a random binary search tree,

with fixed parameter k. Define Zi = f(Ui, . . . , Ui+2k), where U1, U2, . . . is a sequence of i.i.d.

uniform [0, 1] random variables. Then

Nn − n
� {Z1}√
n

L→ N (0, σ2),

where

σ2 =
� {Z1}+ 2

2k+1∑

i=2

(
� {Z1Zi} −

� {Z1}
� {Zi}).

If
� {Z1} 6= 0, then Nn/n→

� {Z1} in probability and in the mean as n→∞.

Proof. The random variable Nn − 2k is distributed as
∑n−2k

i=1 Zi, and satisfies the conditions

of Lemma 2. Thus,
Nn − 2k − (n− 2k)

� {Z1}√
n

L→ N (0, σ2).

Here we used the fact that the Zi’s are 2k-dependent. But
∣∣∣∣
Nn − n

� {Z1}√
n

− Nn − 2k − (n− 2k)
� {Z1}√

n

∣∣∣∣ ≤
4k√
n

= o(1),

so that the first statement of Theorem 1 follows without work. The second statement follows

from the first one.

12



Let k be fixed, independent of n. Simple considerations show that Vkn, the number

of nodes with precisely k descendants, is indeed a local counter. Note that all the proper

descendants of a node (Ui, i) are found by finding the largest 0 ≤ j < i with Uj < Ui, and

the smallest ` greater than i and no more than n such that U` < Ui. All the nodes (Uj+1, j +

1), . . . , (U`−1, `− 1), (Ui, i) excluded, are proper descendants of (Ui, i). Thus, to decide whether

(Ui, i) has exactly k descendants, it suffices to look at (Ui−k−1, i− k− 1), . . . , (Ui+k+1, i+ k+ 1),

so that Vkn is a local counter with parameter k + 1.

Ui
U`

Uj

Figure 5. The subtree rooted at the i-th node consists of all
the nodes in the shaded area. To the left and right, the subtree is
“guarded” by nodes with smaller time stamps, Uj and U`.

Theorem 1 above implies the following (Devroye, 1991):

Theorem 2. Let Vkn be the number of nodes with k proper descendants. Then

Vkn
n
−→ pk

def
=

2

(k + 3)(k + 2)
in probability

and
Vkn − npk√

n
−→ N (0, σ2

k) in distribution

as n→∞, where

σ2
k

def
= pk(1− pk) + 2(k + 1)2ρk − 2(k + 2)p2

k

and

ρk
def
=

5k + 8

(k + 1)2(k + 2)2(2k + 5)(2k+ 3)
.
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Remark. The first part of this theorem is also implicit in Aldous (1990).

Remark. When k = 0, we get p0 = 1/3, ρ0 = 2/15, σ2
0 = 2/45. For k = 1, we obtain p1 = 1/6,

ρ1 = 13/1260 and σ2
1 = 23/420.

Proof. We have the representation

Vkn =

n∑

i=1

Zi ,

where

Zi
def
=

k∑

j=0

Zi(j, k − j) ,

and Zi(j, `) is the indicator of the event that (X(i), Ui) has j left descendants and ` right

descendants. Assume throughout that 1 ≤ i − k − 1, i + k + 1 ≤ n when we discuss Zi. The

values Z1, . . . , Zk+1 and Zn−k, . . . , Zn are all zero or one, and affect Vkn jointly by at most 2k+2

(which is a constant). We also have the representation, for 1 ≤ i− k − 1, i+ `+ 1 ≤ n:

Zi(j, `) =
�

[Ui−j−1 < Ui < min(Ui−1, . . . , Ui−j)]

× �

[Ui+`+1 < Ui < min(Ui+1, . . . , Ui+`)]
.

A simple argument shows that for i, j, ` as restricted above,

� {Zi(j, `)} =
2(j + `)!

(j + `+ 3)!
=

2

(j + `+ 3)(j + `+ 2)(j + `+ 1)
.

Thus, for 1 ≤ i− k − 1, i+ k + 1 ≤ n,

� {Zi(j, k − j)} =
2

(k + 3)(k + 2)(k+ 1)

def
= qk ,

and
� {Zi} =

k∑

j=0

� {Zi(j, k − j)} =
k∑

j=0

qk =
2

(k + 3)(k+ 2)
.

It is clear that Vkn is a local counter for a random binary search tree, so we may apply Theorem

1. To do so, we need to study
� {ZiZi+r}, where 1 ≤ i − k − 1, i + r + k + 1 ≤ n, 1 ≤ i ≤ n,

1 ≤ r. For 0 ≤ j ≤ k, 0 ≤ ` ≤ n, we claim the following:

� {Zi(j, k − j)Zi+r(`, k − `)} =





0 , if r < k − j + `+ 2;

ρk , if r = k − j + `+ 2;
� {Zi(j, k − j)}

� {Zi+r(`, k − `)} , if r > k − j + `+ 2,
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where

ρk
def
=

k!2

(2k + 5)!

{(
2k + 4

k + 2

)
+ 2

(
2k + 3

k + 2

)
+ 2

(
2k + 2

k + 1

)}

=
5k + 8

(k + 1)2(k + 2)2(2k+ 5)(2k+ 3)
.

The last expression is obtained by noting that of the (2k+5)! possible permutations of Ui−j−1, . . . , Ui+r+k−`+1,

with r = k − j + `+ 2, only ρk(2k + 5)! are such that Zi(j, k − j)Zi+r(`, k − `) = 1. The three

terms in the expression of ρk are obtained by considering

A. Ui+k−j+1 is smaller than both Ui−j−1 and Ui+r+k−`+1.

B. Ui+k−j+1 is smaller than one of Ui−j−1 and Ui+r+k−`+1.

C. Ui+k−j+1 is larger than both Ui−j−1 and Ui+r+k−`+1.

If r > 2k+ 2, then Zi and Zi+r are independent. Thus, we need only consider the case 1 ≤ r ≤
2k + 2. Let L, J be independent random variables uniformly distributed on {0, . . . , k}.

� {ZiZi+r} =
�

{
k∑

j=0

Zi(j, k − j)
k∑

`=0

Zi+r(`, k − `)
}

=
k∑

j=0

k∑

`=0

ρk
�

[r = k − j + `+ 2] +
k∑

j=0

k∑

`=0

q2
k

�

[r > k − j + `+ 2]

= (k + 1)2ρk
� {r = k − J + L+ 2}+ (k + 1)2q2

k

� {r > k − J + L+ 2} .
Summing this gives

2k+2∑

r=1

(
� {ZiZi+r} −

� {Zi}
� {Zi+r})

= (k + 1)2ρk

2k+2∑

r=1

� {J − L = k + 2− r}

+ (k + 1)2q2
k

2k+2∑

r=1

� {J − L > k + 2− r} − (2k + 2)p2
k

= (k + 1)2ρk + p2
k

k+1∑

r=1

� {J − L > k + 2− r}

+ p2
k

2k+2∑

r=k+2

� {J − L > k + 2− r} − (2k + 2)p2
k

= (k + 1)2ρk + p2
k

k+1∑

r=1

� {J − L > r}
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+ p2
k

k∑

r=0

� {J − L > −r} − (2k + 2)p2
k

= (k + 1)2ρk + p2
k

k+2∑

r=2

� {J − L ≥ r}

+ p2
k

k∑

r=0

(1− � {J − L ≥ r})− (2k + 2)p2
k

= (k + 1)2ρk − p2
k

1∑

r=0

� {J − L ≥ r}+ p2
k(k + 1)− (2k + 2)p2

k

= (k + 1)2ρk − p2
k + p2

k(k + 1)− (2k + 2)p2
k

= (k + 1)2ρk − (k + 2)p2
k .

By Lemma 1, Vkn/n→ pk in probability as n→∞ and

Vkn − npk√
n

−→ N (0, σ2
k) in distribution,

where

σ2
k = pk(1− pk) + 2(k + 1)2ρk − 2(k + 2)p2

k .

§5. Urn models

The limit law for Ln can be obtained by several methods. For example, Poblete and

Munro (1985) use the properties of Pólya-Eggenberger urn models for the analysis of search

trees. Bagchi and Pal (1985) developed a limit law for general urn models and applied it in the

analysis of random 2-3 trees.

In a binary search tree with n nodes, letWn be the number of external nodes with another

sibling external node, and let Bn count the remaining external nodes. Clearly, Wn+Bn = n+1,

W0 = 0 and B0 = 1. When a random binary search tree is grown, each external node is

picked independently with equal probability (see, e.g., Knuth and Schönhage, 1978). Thus,

upon insertion of node n+ 1, we have:

(Wn+1, Bn+1) = (Wn, Bn) +

{
(0, 1) with probability Wn

Wn+Bn
;

(2,−1) with probability Bn
Wn+Bn

.

This is known as a generalized Pólya-Eggenberger urn model. The model is defined by the

matrix (
a b

c d

)
=

(
0 1

2 −1

)

For general values of a, b, c, d, the asymptotic behavior ofWn is governed by the following Lemma

(Bagchi and Pal, 1985) (for a special case, see e.g. Athreya and Ney, 1972):
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Lemma 3. Consider an urn model in which a + b = c + d
def
= s ≥ 1, W0 + B0 ≥ 1, 0 ≤ W0,

0 ≤ B0, a 6= c, b, c > 0, a− c ≤ s/2, and, if a < 0, then a divides both c and W0, and if d < 0,

then d divides both b and B0. Then

Wn

Wn +Bn
→ c

b+ c
almost surely,

and
Wn −

� {Wn}√
n

−→ N (0, σ2) in distribution,

where

σ2 =
bc

(b+ c)2

(s− b− c)2

2b+ 2c− s .

For Ln, we have σ2 = 8/45. Since Ln = Wn/2, the variance of Ln is one fourth that of Wn,

so Theorem 1 follows immediately from Lemma 3 as well. Additionally, Lemma 3 implies that

Wn/n→ 1/3 almost surely for our way of growing the tree.

§6. Berry-Esseen laws for k-dependent sequences

For local counters in which k grows with n, a normal limit law can be obtained by

any of a number of generalizations of the Berry-Esseen inequality to k-dependent sequences.

One of the most versatile ones, given for k-dependent random fields, is due to Chen and Shao

(2004). We say that a sequence of random variables X1, . . . ,Xn is k-dependent if {Xi : i ∈ A}
is independent of {Xi : i ∈ B} whenever min{|i− j| : i ∈ A, j ∈ B} > k.

Lemma 4. If X1,X2, . . . ,Xn is a k-dependent sequence with zero means and
� {|Xi|3} <∞ for

all i, then, setting

Sn =

n∑

i=1

Xi, Bn =
√ � {Sn},

we have

sup
x

∣∣∣∣
�
{
Sn
Bn
≤ x

}
− Φ(x)

∣∣∣∣ ≤
60(k + 1)2

∑n

i=1

� {|Xi|3}
B3
n

.

Shergin (1979) had previously obtained this result with a non-explicit constant. The

paper by Chen and Shao (2004) also offers a non-uniform bound in which the factor 60 is

replaced by C/(1 + |x|)3. Lemma 4 can be used to obtain limit laws for counters that have

k → ∞. In a further section, we give a related limit law, which, like Lemma 4, can be derived

from Stein’s method. We will describe its applications there.
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§7. Quicksort

Quicksort is a fast and simple sorting method in which we take a random element from

a set of n elements that need to be sorted, make it the pivot, and split the set of elements about

this pivot (see figure below) using n− 1 comparisons.

pivot

elements > pivotelements < pivot

Figure 6. Basic quicksort step: the pivot about which a set
of elements is split is the first element of the set.

It is well-known that the standard version of quicksort takes ∼ 2n logn comparisons on the av-

erage. A particular execution of quicksort can be pictured as a binary tree: the pivot determines

the root, and we apply the data splits recursively as in the construction of a binary search tree

from the same data. It is easy to see that the binary search tree that explains quicksort is in

fact a random binary search tree. We can count the number of comparisons by counting for

each element how often it is involved in a comparison as a non-pivot element. For an element

at depth Di in the binary search tree, this happens precisely Di times. Thus, the total number

of comparisons (Cn) is given by

Cn =
n∑

i=1

Di ,

where D1, . . . ,Dn is as for a random binary search tree. Therefore,

� {Cn} =
n∑

i=1

� {Di}

=
n∑

i=1

(Hi +Hn−i+1 − 2)

=

n∑

i=1

2(Hi − 1)

= 2nHn + 2Hn − 4n

∼ 2n logn .
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A problem occurs when we try looking at
� {Cn} because the Di’s are very dependent. Thus,

the variance of the sum no longer is the sum of the variances. If it were, we would obtain that
� {Cn} ∼ 2n logn. But other studies (e.g., Sedgewick, 1983; Sedgewick and Flajolet, 1986) tell

us that
� {Cn} ∼

(
7− 2π2

3

)
n2 .

Furthermore, the asymptotic distribution of (Cn−2n logn)/n is not normal as one would expect

after seeing that Cn can be written as a simple sum. In other words, the study of Cn requires

another approach. We will tackle it by the contraction method in a future section, and show

that it is just beyond the area of application of Stein’s method. It is noteworthy that

Cn =
n∑

i=1

(Ni − 1),

where Ni is the size of the subtree rooted at the i-th node in the random binary search tree. In

other words, Cn is a special case of a toll function, a sum of functions of subtree sizes. These

parameters will be studied in the next few sections.

§8. Random binary search tree parameters

Most shape-related quantities of the random binary search tree have been well–studied,

including the expected depth and the exact distribution of the depth of the last inserted node

(Knuth, 1973; Lynch, 1965), the limit theory for the depth (Mahmoud and Pittel, 1984, Devroye,

1988), the first two moments of the internal path length (Sedgewick, 1983), the limit theory

for the height of the tree (Pittel, 1984; Devroye, 1986, 1987), and various connections with the

theory of random permutations (Sedgewick, 1983) and the theory of records (Devroye, 1988).

Surveys of known results can be found in Vitter and Flajolet (1990), Mahmoud (1992) and

Gonnet (1984).

Consider tree parameters for random binary search trees that can be written as

Xn =
∑

u

f(S(u)),

where f be a mapping from the space of all permutations to the real line, S(u) is the random

permutation associated with the subtree rooted at node u in the random binary search tree,

which is considered in format (4), and the summation is with respect to all nodes u in the tree.

The root of the binary search tree contains that pair (Ui, i) with smallest Ui value, the

left subtree contains all pairs (Uj , j) with j < i, and the right subtree contains those pairs with

j > i. Each node u can thus (recursively) be associated with a subset S(u) of (U1, 1), . . . , (Un, n),

namely that subset that correponds to nodes in its subtree.
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With this embedding and representation, Xn is a sum over all nodes of a certain function

of the permutation associated with each node. As each permutation uniquely determines subtree

shape, a special case includes the functions of subtree shapes.

Example 1: The toll functions. In the first class of applications, we let N(u) be the size

of the subtree rooted at u, and set f(S(u)) = g(|S(u)|):
Xn =

∑

u

g(N(u)) .

Examples of such tree parameters abound:

A. If g(n) ≡ 1 for n > 0, then Xn = n.

B. If g(n) =
�

[n=k] for fixed k > 0, then Xn counts the number of subtrees of size k.

C. If g(n) =
�

[n=1], then Xn counts the number of leaves.

D. If g(n) = n − 1 for n > 1, then Xn counts the number of comparisons in classical

quicksort.

E. If g(n) = log2 n for n > 0, then Xn is the logarithm base two of the product of all subtree

sizes.

F. If g(n) =
�

[n=1] −
�

[n=2] for n > 0, then Xn counts the number of nodes in the tree that

have two children, one of which is a leaf.

Example 2: Tree patterns. Fix a tree T . We write S(u) ≈ T if the subtree at u defined

by the permutation S(u) is equal to T , where equality of trees refers to shape only, not node

labeling. Note that at least one, and possibly many permutations with |S(u)| = |T |, may give

rise to T . If we set

Xn =
∑

u

�
[S(u)≈T ]

then Xn counts the number of subtrees precisely equal to T . Note that these subtrees are

necessarily disjoint. We are tempted to call them suffix tree patterns, as they hug the bottom

of the binary search tree.
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Example 3: Prefix tree patterns. Fix a tree T . We write S(u) ⊃ T if the subtree at

u defined by the permutation S(u) consists of T (rooted now at u) and possibly other nodes

obtained by replacing all external nodes of T by new subtrees. Define

Xn =
∑

u

�
[S(u)⊃T ]

For example, if T is a single node, then Xn counts the number of nodes, n. If T is a complete

subtree of size 2k+1−1 and height k, then Xn counts the number of occurrences of this complete

subtree pattern (as if we try and count by sliding the complete tree to all nodes in turn to find

a match). Matching complete subtrees can possibly overlap. If T consists of a single node and

a right child, then Xn counts the number of nodes in the tree with just one right child.

Example 4: Imabalance parameters. If we set f(S(u)) equal to 1 if and only if the sizes

of the left and right subtrees of u are equal, then Xn counts the number of nodes at which we

achieve a complete balance.

To study Xn, we first derive the mean and variance. This is followed by a weak law of

large numbers for Xn/n. Several interesting examples illustrate this universal law. A general

central limit theorem with normal limit is obtained for Xn using Stein’s method. Several specific

laws are obtained for particular choices of f . For example, for toll functions g as in Example 1,

with g(n) growing at a rate inferior to
√
n, a universal central limit theorem is established in

Theorem 3.

§9. Representation (4) again

We replace the sum over all nodes u in a random tree in the definition of Xn by a

sum over a deterministic set of index pairs, thereby greatly facilitating systematic analysis. We

denote by σ(i, k) the subset (i, Ui), . . . , (i + k − 1, Ui+k−1), so that |σ(i, k)| = k. We define

σ∗(i, k) = σ(i−1, k+ 1), with the convention that (0, U0) = (0, 0) and (n+ 1, Un+1) = (n+ 1, 0).

Define the event

Ai,k = [σ(i, k) defines a subtree] .

This event depends only on σ∗(i, k), as Ai,k happens if and only if among Ui−1, . . . , Ui+k, Ui−1

and Ui+k are the two smallest values. We will call these the “guards”: they cut off and protect

the subtree from the rest of the tree. We set Yi,k =
�
Ai,k . Note that if we include 0 and n+ 1 in

the summation, then
∑

i<k Yi,k = n, as we have exactly n subtrees. Rewrite our tree parameter

as follows:

Xn =
∑

u

f(S(u)) =
n∑

i=1

n−i+1∑

k=1

Yi,kf(σ(i, k)) .
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For example, in the example with toll function g, this yields

Xn =
∑

u

g(|S(u)|) =

n∑

i=1

n−i+1∑

k=1

Yi,kg(k) .

The interest in this formula is that the Yi,k are Bernoulli random variables with known mean:

� {Yi,k} =





1 if i = 1 and i+ k = n+ 1;
1

k+1
if i = 1 or i+ k = n+ 1 but not both;

2
(k+2)(k+1)

otherwise.

There are about n2 of them, and they are dependent, but at least, all the randomness is now

tightly controlled.

§10. Mean and variance for toll functions

Let σ be a uniform random permutation of size k. Then define

µk =
� {f(σ)} ,

τ 2
k =

� {f 2(σ)} ,
and

Mk = sup
σ:|σ|=k

|f(σ)| .

Note that |µk| ≤ τk ≤Mk. In the toll function example, we have µk = g(k) and τk = Mk = |g(k)|.
We opt to develop the theory below in terms of these parameters.

Lemma 5. Assume |µk| <∞ for all k, µk = o(k), and

∞∑

k=1

|µk|
k2

<∞ .

Define

µ =

∞∑

k=1

2µk
(k + 2)(k+ 1)

.

Then

lim
n→∞

� {Xn}
n

= µ .

If also |µk| = O(
√
k/ log k), then

� {Xn} − µn = o(
√
n).
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Proof. We have

� {Xn} =
n∑

i=1

n−i+1∑

k=1

� {Yi,k}µk

=
n∑

i=2

n−i∑

k=1

2

(k + 2)(k + 1)
µk +

n−1∑

k=1

1

k + 1
µk +

n∑

i=1

1

n− i+ 2
µn−i+1 + µn.

It is trivial to conclude the first part of Lemma 5. For the last part, we have:

| � {Xn − µn}|

≤
∞∑

k=1

2

(k + 2)(k+ 1)
|µk|+

n∑

i=2

∞∑

k=n−i+1

2

(k + 2)(k+ 1)
|µk|+ 2

n∑

k=1

|µk|
k + 1

+ |µn|

≤ O(1) +

∞∑

k=1

2 min(k, n)|µk|
(k + 2)(k+ 1)

+ 2

n∑

k=1

|µk|
k + 1

+ |µn|

≤ O(1) + 4
n∑

k=1

|µk|
k + 1

+ n
∞∑

k=n+1

|µk|
(k + 2)(k+ 1)

+ |µn| .

The expression for µ is quite natural, as the probability of guards at positions i− 1 and

i+ k is
� {Yi,k} = 2/((k+ 2)(k+ 1)). The following technical Lemma is due to Devroye (2002).

Lemma 6. Assume that Mn <∞ for all n and that f ≥ 0. Assume that for some b ≥ c ≥ a > 0,

we have µn = O(na), τn = O(nc), and Mn = O(nb). If a + b < 2, c < 1, then
� {Xn} = o(n2).

If a + b < 1, c < 1/2, then
� {Xn} = O(n). If f is a toll function and Mn = O(nb), then

� {Xn} = o(n2) if b < 1 and
� {Xn} = O(n) if b < 1/2.

Proof. Let Zα, α ∈ A, be a finite collection of random variables with finite second moments.

Let E denote the collection of all pairs (α, β) from A2 with α 6= β and Zα not independent of

Zβ. If S =
∑

α∈A Zα, then

� {S} =
∑

α∈A

� {Zα}+
∑

(α,β)∈E
(

� {ZαZβ} −
� {Zα}

� {Zβ}) .

We apply this fact with A being the collection of all pairs (i, k), with 1 ≤ i ≤ n and 1 ≤ k ≤
n− i+ 1. Let our collection of random variables be the products Yi,kf(σ(i, k)), (i, k) ∈ V . Note

that E consists only of pairs ((i, k), (j, `)) from A2 with i+ k ≥ j− 1 and j+ ` ≥ i. This means

that the intervals [i, i+k− 1] and [j, j+ `− 1] correspond to an element of E if and only if they
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overlap or are disjoint and separated by exactly zero or one integer m. But to bound
� {Xn}

from above, since f ≥ 0, we have

� {Xn} ≤
∑

(i,k)∈A

� {Yi,kf(σ(i, k))}+
∑

((i,k),(j,`))∈E

� {Yi,kf(σ(i, k))Yj,`f(σ(j, `))} = I + II .

By the independence of Yi,k and f(σ(i, k)), we have

� {Yi,kf(σ(i, k))} =
� {Yi,k}

� {f 2(σ(i, k))}+ (
� {Yi,k})2 � {f(σ(i, k))}

=
� {Yi,k}τ 2

k + (
� {Yi,k})2(τ 2

k − µ2
k)

≤ � {Yi,k}τ 2
k

and thus I = O(n) if τ 2
n = O(n),

∑n

k=1 τ
2
k/k = O(n) and

∑
k τ

2
k/k

2 <∞. These conditions hold

if c < 1/2. We have I = o(n2) if c < 1.

In II, we have Yi,kYj,` = 0 unless the intervals [i, i+ k− 1] and [j, j + `− 1] are disjoint

and precisely one integer apart, or nested. For disjoint intervals, we note the independence of

Yi,kYj,`, f(σ(i, k)) and f(σ(j, `)), so that

� {Yi,kf(σ(i, k))Yj,`f(σ(j, `))} =
� {Yi,kYj,`}µkµ` .

If none of the intervals contains 1 or n, then a brief argument shows that

� {Yi,kYj,`} ≤
4

(k + `+ 3)(k+ 1)(`+ 1)
.

If one interval covers 1 and the other n, then k+ ` = n− 1, and
� {Yi,kYj,`} = 1/n. In the other

cases, the expected value is bounded by 2/(k+ `+ 2)(k+ 1) or 2/(k+ `+ 2)(`+ 1), depending

upon which interval covers 1 or n. Thus, the sum in II limited to disjoint intervals is bounded

by

n
n∑

k=1

n∑

`=1

4µkµ`
(k + `+ 3)(k+ 1)(`+ 1)

+ 1 +
n∑

k=1

n∑

`=1

4µkµ`
(k + `+ 2)(k + 1)

≤ 2n
n∑

k=1

k∑

`=1

4µkµ`
(k + 3)(k + 1)(`+ 1)

+ 1 + 2
n∑

k=1

k∑

`=1

4µkµ`
(k + 2)(k+ 1)

.

If µn = O(na) for a > 0, then it is easy to see that the three sums taken together are O(n2a).

We next consider nested intervals. For properly nested intervals, with [i, i+ k− 1] being

the bigger one, we have

� {Yi,kf(σ(i, k))Yj,`f(σ(j, `))} =
� {Yi,k}

� {f(σ(i, k))Yj,`f(σ(j, `))}

≤ 2Mk

� {Yi,k}µ`
(`+ 2)(`+ 1)

.
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Summed over all allowable pairs (i, k), (j, `) with the outer interval not covering 1 or n, and

noting that in all cases considered, a < 1, this yields a quantity not exceeding

n
n∑

k=1

k
k∑

`=1

4Mkµ`
(`+ 2)(`+ 1)(k + 2)(k + 1)

≤ n
n∑

k=1

MkO(ka−2) =

{
O(nb+a) if b+ a 6= 1 ,

O(n logn) if b+ a = 1.

The contribution of the border effect is of the same order. This is o(n2) if a+ b < 2. It is O(n)

if a+ b ≤ 1.

Finally, we consider nested intervals with i = j and ` < k. Then

� {Yi,kf(σ(i, k))Yj,`f(σ(j, `))} ≤ � {Yi,k}Mk

µ`
`+ 1

.

Summed over all appropriate (i, k, `) such that the outer interval does not cover 1 or n, we

obtain a bound of

n
n∑

k=1

k∑

`=1

2Mkµ`
(k + 2)(k+ 1)(`+ 1)

= O(na+b +
�

[a+b=1]n logn) .

The border cases do not alter this bound. Thus, the contribution to II for these nested intervals

is o(n2) if a+ b < 2 and is O(n) if a+ b < 1.

§11. A law of large numbers

The estimates of the previous section permit us to obtain a law of large numbers for Xn,

which was defined at the top of section 8.

Theorem 3. Assume that Mn < ∞ for all n and that f ≥ 0. Assume that for some b ≥ c ≥
a > 0, we have µn = O(na), τn = O(nc), and Mn = O(nb). If a+ b < 2, c < 1, then

Xn

n
→ µ

in probability. If f is a toll function and Mn = O(nb), then Xn/n → µ in probability when

b < 1.
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Proof. Note that a < 1. By Lemma 1, we have
� {Xn}/n→ µ. Choose ε > 0. By Chebyshev’s

inequality and Lemma 1,

� {|Xn −
� {Xn}| > εn} ≤

� {Xn}
ε2n2

= o(1) .

Thus, Xn/n−
� {Xn}/n→ 0 in probability.

The result does not apply to the number of comparisons in quicksort as a = b = 1, a

border case just outside the conditions. In fact, for quicksort, we have Xn/(2n logn) → 1 in

probability. For nearly all “smaller” toll functions and tree parameters, Theorem 3 is applicable.

Three examples will illustrate this.

Example 1. We let f be the indicator function of anything, and note that the law of large

numbers holds. For example, let T be a possibly infinite collection of possible tree patterns,

and let Xn count the number of subtrees in a random binary search tree that match a tree from

T . Then, as shown below, the law of large numbers holds. There is no inherent limitation to

T , which, in fact, might be the collection of all trees whose size is a perfect square and whose

height is a prime number at the same time. Let Xn be the number of subtrees in a random

binary search tree that match a given prefix tree pattern T , with |T | = k fixed.

Theorem 4. For any non-empty tree pattern collection T , we have

Xn

n
→ µ

in probability, and
� {Xn}/n→ µ, where

µ =
∞∑

n=1

2µn
(n+ 2)(n+ 1)

and µn is the probability that a random binary search tree of size n matches an element of T .

Proof. Theorem 3 applies since f is an indicator function. By Lemma 5, we obtain the limit

µ for
� {Xn}/n.

Note that Theorem 4 remains valid if we replace the phrase “matches an element of T ”

by the phrase “matches an element of T at its root”, so that T is a collection of what we called

earlier prefix tree patterns.

Example 2. Perhaps more instructive is the example of the sumheight Sn, the sum of the

heights of all subtrees in a random binary search tree on n nodes.
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Theorem 5. For a random binary search tree, the sumheight satisfies

Sn
� {Sn}

→ 1

in probability. Here
� {Sn} ∼ n

∞∑

k=1

2hk
(k + 2)(k + 1)

,

where hk is the expected height of a random binary search tree on k nodes.

Proof. The statement about the expected height follows from Lemma 5 without work. As

the height of a subtree of size k is at most k − 1, we see that we may apply Theorem 3 with

Mk = k − 1. By well-known results (Robson, 1977; Pittel, 1984; Devroye, 1986, 1987), we have
� {H2

n} = O(log2 n) where Hn is the height of a random binary search tree. Thus, we may

formally take a and c arbitrarily small but positive, and b = 1.

Example 3. Consider Xn =
∑

u(N(u))β, 0 < β < 1. Recall that
∑

uN(u) is the number

of comparisons in quicksort, plus n. Thus, Xn is a discounted parameter with respect to the

number of quicksort comparisons. Clearly, Theorem 3 applies with a = b = c = β, and

thus, Xn/n → µ in probability, and
� {Xn}/n tends to the same constant µ. In a sense, this

application is near the limit of the range for Theorem 3. For example, it is known that with

Xn =
∑

u(N(u))1+ε, ε > 0, there is no asymptotic concentration, and thus, Xn/g(n) does not

converge to a constant for any choice of g(n). Also, for Xn =
∑

uN(u), the quicksort example,

we have Xn/2n logn→ 1 in probability (Sedgewick, 1983), so that once again Theorem 3 is not

applicable.

§12. Dependence graph

We will require the notion of a dependency graph for a collection of random variables

(Zα)α∈V , where V is a set of vertices. Let the edge set E be such that for all disjoint subsets A

and B of V that are not connected by an edge, (Zα)α∈A and (Zα)α∈B are mutually independent.
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A B

Figure 7. The dependence graph is
such that any disjoint subsets that have
no edges connecting them correspond to
collections of random variables that are
independent.

Clearly, the complete graph is a dependency graph for any set of random variables, but

this is useless. One usually takes the minimal graph (V,E) that has the above property, or

one tries to keep |E| as small as possible. Note that necessarily, Zα and Zβ are independent if

(α, β) 6∈ E, but to have a dependency graph requires much more than just checking pairwise

independence. We call the neighborhood of N(α) of vertex α ∈ V the collection of vertices β

such that (α, β) ∈ E or α = β. We define the neighborhood N(α1, . . . , αr) as ∪rj=1N(αj).

A. Consider now for V the pairs (i, k) with 1 ≤ i ≤ n and 1 ≤ k ≤ n − i + 1. Let our

collection of random variables be the permutations σ(i, k), (i, k) ∈ V . Let us connect

(i, k) to (j, `) when i+k ≥ j−1 and j+` ≥ i. This means that the intervals (i, i+k−1)

and (j, j + `− 1) correspond to an edge in E if and only if they overlap or are disjoint

and separated by exactly zero or one integer m. We claim that (V,E) is a dependency

graph. Indeed, if we consider disjoint subsets A and B of vertices with no edges between

them, then these vertices correspond to intervals that are pairwise separated by at least

two integers, and thus, (σ(i, k))(i,k)∈A and (σ(j, `))(j,`)∈B are mutually independent.

B. Consider next the collection of random variables Yi,kg(k). For this collection, we can

make a smaller dependency graph. Eliminate all edges from the graph of the previous

paragraph if the intervals defined by the endpoints of the edges are properly nested. For

example, if i < j < j + `− 1 < i+ k, then the edge between (i, k) and (j, `) is removed.

The graph thus obtained is still a dependency graph. This observation repeatedly uses

the fact that if one considers a sequence Z1, . . . , Zn of i.i.d. random variables with a

uniform [0, 1] distribution, then given that Z1 and Zn are the two largest values, then

Z2, . . . , Zn−1 are i.i.d. and uniform on [0,min(Z1, Zn)]. the permutation of Z2, . . . , Zn−1
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are all independent. Thus, for properly nested intervals as above, Yi,kg(k) is independent

of Yj,`g(`).

§13. Stein’s method

Stein’s method (Stein, 1972) allows one to deduce a normal limit law for certain sums of

random variables while only computing first and second order moments and verifying a certain

dependence condition. Many variants have seen the light of day in recent years, and we will

simply employ the following version derived in Janson,  Luczak and Ruciński (2000, Theorem

6.21):

Lemma 7. Suppose that (Sn)∞1 is a sequence of random variables such that Sn =
∑

α∈Vn Znα,

where for each n, {Znα}α is a family of random variables with dependency graph (Vn, En). Let

N(.) denote the neighborhood of a vertex or vertices. Suppose further that there exist numbers

Mn and Qn such that ∑

α∈Vn

� {|Znα|} ≤Mn,

and for every n and r ≥ 1,

sup
α1,α2,...,αr∈Vn

∑

β∈N(α1,α2,...,αr)

� {|Znβ||Znα1
, Znα2

, . . . , Znαr} ≤ BrQn

for some number Br depending upon r only. Let σ2
n =

� {Sn}. Then

Sn −
� {Sn}√ � {Sn}

L→ N (0, 1)

if for some real s > 2,

lim
n→∞

MnQ
s−1
n

σsn
= 0 .
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Lemma 8 (devroye, 2002). Define Xn =
∑

u g(|S(u)|) for a random binary search tree on n

nodes. The following statements are equivalent:

A.
� {Xn} = Ω(n), i.e., there are positive numbers a,N , such at

� {Xn} ≥ an for all n ≥ N .

B.
� {Xk} > 0 for some k > 0.

C. The function g is not constant on {1, 2, . . .}.

To study

Xn =
∑

u

g(|S(u)|)

we define G(n) = max1≤i≤n |g(i)|. The next theorem imporoves on the result of Devroye (2002).

Theorem 6. Assume that g is not constant on {1, 2, . . .}. If G(n) = O(n1/2−ε) for some ε > 0,

then
Xn −

� {Xn}√ � {Xn}
L→ N (0, 1) .

Proof. We apply Lemma 7 to the basic collection of random variables Yi,kg(k), (i, k) ∈ Vn,

where Vn is the set {(i, k) : 1 ≤ i ≤ n, 1 ≤ k ≤ n− i+ 1}, and Yi,k are the indicator variables of

section 9. Let En be the edges in the dependency graph Ln defined by connecting (i, k) to (j, `)

if the respective intervals are overlapping without being properly nested, or if the respective

intervals are disjoint with zero or one integers separating them. We note that
∑

(i,k)∈Vn

� {Yi,k|g(k)|} ≤ (ν + o(1))n

by computations not unlike those for the mean done in Lemma 5, where

ν =
∞∑

n=1

2|g(n)|
(n+ 2)(n+ 1)

.

To apply Lemma 7, we note that we may thus take Mn = O(n). We also note that σ2
n = Ω(n),

by Lemma 8, since g is not constant on {1, 2, . . .}. Since we can choose s in Stein’s theorem

after having seen ε, it suffices thus to show that Qn = O(n1/2−ε) for some ε > 0. Note that

conditioning on Yi,kg(k) is equivalent to conditioning on Yi,k. For the bound on Qn, we need to

consider any finite collection of random variables Yi,k. We will give the bound in the case of just

two such random variables, and leave it to the reader to verify the easy extension to any finite
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number, noting that the quantity Br in Lemma 7 can absorb the bigger proportional constant

one would obtain then. We may bound Qn by

Qn ≤ G(n) sup
(i,k),(j,`)∈Vn

∑

(p,r)∈N((i,k),(j,`))

� {Yp,r|Yi,k, Yj,`} .

We show that the sum above is uniformly bounded over all choices of (i, k), (j, `) by O(log2 n).

Consider the set S = {0, 1, . . . , n, n+ 1} and mark 0, n+ 1, i− 1, i+k, j − 1, j+ ` (where

duplications may occur). The last four marked points are neighbors of the intervals represented

by (i, k) and (j, `). Mark also all integers in S that are neighbors of these marked numbers. The

total number of marked places does not exceed 3× 4 + 2× 2 = 16. The set S, when traversed

from small to large, can be described by consecutive intervals of marked and unmarked integers.

The number of unmarked integer intervals is at most five. We call these intervals H1, . . . ,H5,

from left to right, with some of these possibly empty.

i i+k−1

j j+`+1

0 i−1 i+kj−1 j+` n+1

0 i−1 i+kj−1 j+` n+1

1 i−2 i j−2 j i+k−1
i+k+1

j+`−1
j+`+1

n

H1 H2 H3 H4 H5

Figure 8. The marking of cells is illustrated. The top two lines show the original
intervals. In the first round, we mark (in black) the immediate neighbors of these
intervals, as well as cells 0 and n + 1. In the second round, all neighbors (shown in
gray) of already marked cells are also marked. The intervals of contiguous unmarked
cells are called Hi. There are not more than five of these.

Set H = ∪iHi. Define Hc = S − H. Consider Yp,r for r ≤ n fixed. Let s = p + r − 1 be the

endpoint of the interval on which Yp,r sits. Note that Yp,r depends upon {Ui}p−1≤i≤s+1. We note

four situations:
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A. If p, s ∈ Hi for a given i, then Yp,r is clearly independent of Yi,k, Yj,`. In fact, then,

(p, r) 6∈ N((i, k), (j, `)).

B. If p, s ∈ Hc, then we bound
� {Yp,r|Yi,k, Yj,`} by one.

C. If p or s is in Hc and the other endpoint is in Hi, then we bound as follows:

� {Yp,r|Yi,k, Yj,`} ≤
1

1 + |Hi ∩ {p, . . . , s}|
because we can only be sure about the i.i.d. nature of the Ui’s in Hi∩{p, . . . , s} together

with the two immediate neighbors of this set.

D. If p ∈ Hi, s ∈ Hj , i < j, then we argue as in case C twice, and obtain the following

bound:
� {Yp,r|Yi,k, Yj,`} ≤

1

1 + |Hi ∩ {p, . . . , s}|
× 1

1 + |Hj ∩ {p, . . . , s}|
.

The above considerations permit us to obtain a bound for Qn by summing over all (p, r) ∈
N((i, k), (j, `)). The sum for all cases (A) is zero. The sum for case (B) is at most 162 = 256.

The sum over all (p, r) as in (C) is at most

2× 16× 5×
n∑

r=1

1

r + 1
≤ 160 log(n+ 1) .

Finally, the sum over all (p, r) described by (D) is at most

(
5

2

)( n∑

r=1

1

r + 1

)2

≤ 10 log2(n+ 1) .

The grand total is O(log2 n), as required. This argument can be repeated for conditioning on

finite sets larger than two, as required by Stein’s theorem. We leave that as an exercise (see

also Devroye, 2002).

§14. Sums of indicator functions

In this section, we take a simple example, in which

Xn =
∑

u

�
[S(u)∈An] ,

where An is a non-empty collection of permutations of length k, with k possibly depending upon

n. We denote pn,k = |An|/k!, the probability that a randomly picked permutation of length k is

in the collection An. Particular examples include sets An that correspond to a particular tree

pattern, in which case Xn counts the number of occurrences of a given tree pattern of size k (a
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“terminal pattern”) in a random binary search tree. The interest here is in the case of varying

k. As we will see below, for a central limit law, k has to be severely restricted.

Theorem 7. We have
� {Xn} =

2npn,k
(k + 2)(k+ 1)

+O(1)

regardless of how k varies with n. If k = o(logn/ log logn), then
� {Xn} → ∞, Xn/

� {Xn} → 1

in probability, and
Xn −

� {Xn}√ � {Xn}
L→ N (0, 1) .

Proof. Observe that

Xn =
n−k+1∑

i=1

Yi,kZi .

where Zi =
�

[σ(i,k)∈An ], Thus,

� {Xn} =
n−k∑

i=2

2

(k + 2)(k + 1)

� {Z1}+ 2× 1

k + 1

� {Z1} =
2(n− k − 1)pn,k
(k + 2)(k+ 1)

+
2pn,k
k + 1

.

This proves the first part of the theorem.

The computation of the variance is slightly more involved. However, it is simplified by

considering the variance of

Yn =

n−k∑

i=2

Yi,kZi ,

and noting that |Xn − Yn| ≤ 2. This eliminates the border effect. We note that Yi,kYj,k = 0 if

i < j ≤ i+ k. Thus,

� {Y 2
n } =

n−k∑

i=2

� {Yi,kZi}+ 2
∑

2≤i<j≤n−k

� {Yi,kZiYj,kZj}

=
� {Yn}+ 2

∑

2≤i,i+k+1≤n−k

� {Yi,kZiYi+k+1,kZi+k+1}+ 2
∑

2≤i,i+k+1<j≤n−k

� {Yi,kZi}
� {Yj,kZj}

= (n− k − 1)β + 2(n− 2k − 2)α+ (n− 2k)2β2 + (10k+ 6− 5n)β2

where α =
� {Y2,kZ2Y3+k,kZ3+k}, and β =

� {Y2,kZ2}. Also,

(
� {Yn})2 = ((n− k − 1)β)

2
.

Thus,

� {Yn} = 2(n− 2k − 2)α+ (n− k − 1)β +
(
(n− 2k)2 − (n− k − 1)2 + (10k + 6− 5n)

)
β2

= n
(
2α+ β − (2k + 3)β2

)
+O(kα+ kβ + k2β2) .
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We note that β = 2pn,k/(k+ 2)(k+ 1). To compute α, let A,B,C be the minimal values among

U1, . . . , Uk+1; Uk+2, and Uk+3, . . . , U2k+3, respectively. Clearly,

α = p2
n,k

� {Y2,kY3+k,k}.
Considering all six permutations of A,B,C separately, one may compute the latter expected

value as

2

2k + 3

1

2k + 2

1

k + 1
+

1

2k + 3

1

k + 1

1

k + 1
+

2

2k + 3

1

2k + 2

1

2k + 1
=

5k + 3

(2k + 3)(2k+ 1)(k+ 1)2
.

Thus,

α =
(5k + 3)p2

n,k

(2k + 3)(2k+ 1)(k + 1)2
.

We have

� {Yn} =

= n

(
p2
n,k

10k + 6

(2k + 3)(2k+ 1)(k+ 1)2
− p2

n,k

8k + 12

(k + 2)2(k + 1)2
+ pn,k

2

(k + 2)(k+ 1)

)
+O(pn,k/k) .

Note that regardless of the value of pn,k, the coefficient of n is strictly positive. Indeed, the

coefficient is at least

p2
n,k

(
(10k + 6)(k+ 2)2 − (8k − 8)(2k+ 3)(2k+ 1) + 2(2k+ 3)(2k+ 1)(k+ 2)(k+ 1)

(k + 2)2(k + 1)2(2k + 3)(2k+ 1)

)

= p2
n,k

(
8k4 + 18k3 + 4k2 − 6k

(k + 2)2(k + 1)2(2k + 3)(2k+ 1)

)
.

Thus, there exist universal constants c1, c2, c3 > 0 such that

� {Yn} ≥ c1np
2
n,k/k

2 − c2pn,k/k ,

and
� {Yn} ≤ c3npn,k/k

2 .

We have Yn/
� {Yn} → 1 in probability if

� {Yn} = o(
�

2{Yn}), that is, if k = o(
√
npn,k). Using

pn,k ≥ 1/k!, we note that this condition holds if k = o(logn/ log logn).

Finally, we turn to the normal limit law and note that

Yn −
� {Yn}√ � {Yn}

L→ N (0, 1)

if k = o(logn/ log log n). For the proof, we refer to Lemma 7 and its notation. Clearly, Mn =

O(n). Furthermore, with r as in Lemma 7, we have Qn = O(rk). Finally, we recall the lower

bound on the variance from above. Assume that npn,k/k → ∞. The condition of Lemma 7,

applied with s = 3, holds if

lim
n→∞

nk2

n3/2p3
n,k/k

3
= 0 .
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Since pn,k ≥ 1/k!, this in turn holds if

lim
n→∞

k5k!3√
n

= 0.

Both conditions are satisfied if k = o(logn/ log logn).

The limitation on k in Theorem 7 cannot be lifted without further conditions: indeed,

if we consider as a tree pattern the tree that consists of a right branch of length k only, then
� {Xn} → 0 if k > (1 + ε) logn/ log logn for any given fixed ε > 0. As Xn is integer-valued, no

meaningful limit laws can exist in such cases.

§15. Refinements and bibliographic remarks

Central limit theorems for slightly dependent random variables have been obtained by

Brown (1971), Dvoretzky (1972), McLeish (1974), Ibragimov (1975), Chen (1978), Hall and

Heyde (1980) and Bradley (1981), to name just a few. Stein’s method (our Lemma 7, essentially)

is one of the central limit theorems that is better equipped to deal with cases of considerable

dependence. It is noteworthy that Berry-Esseen inequalities exist for various models of local

dependence such as k-dependence (Shergin (1979), Baldi and Rinott (1989), Rinott (1994),

Dembo and Rinott (1996)). The paper of Chen and Shao (2004) covers all of these and provides

Berry-Esseen inequalities in terms of a generalized notion of dependence graph.

Stein’s method offers short and intuitive proofs, but other methods may offer attractive

alternatives. Using the contraction method and the method of moments, Hwang and Neininger

(2002) showed that the central limit result of Theorem 6 holds with G(n) = O(na), a ≤ 1/2.

Our result is weaker, but requires fewer analytic computations. The ranges of application of

the results are not nested—in some situations, Stein’s method is more useful, while in others

the moment and contraction methods are preferable. The previous three section are based on

Devroye (2002).

Aldous (1991) showed that the number Vk,n of subtrees of size precisely k in a random

binary search tree is in probability asymptotic to 2/(k + 2)(k + 1). The limit law for Vkn

(Theorem 2) is due to Devroye (1991). The latter result follows also from the previous section

if we take as toll function f(σ) =
�

[|σ|=k].

Recently, there has been some interest in the logarithmic toll function f(σ) = log |σ|
(Grabner and Prodinger, 2002) and the harmonic toll function f(σ) =

∑|σ|
i=1 1/i (Panholzer and

Prodinger, 2002). The authors in these papers are mainly concerned with precise first and second

moment asymptotics. Fill (1996) obtained the central limit theorem for the case f(σ) = log |σ|.
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Clearly, these examples fall entirely within the conditions of Lemma 7 or Theorem 6, with some

room to spare.

Flajolet, Gourdon and Martinez (1997) obtained a normal limit law for the number of

subtrees in a random binary search tree with fixed finite tree pattern. Clearly, this is a case in

which (the indicator function) f(σ) depends on σ in an intricate way, but f = 0 unless |σ| equals

the size of the tree pattern. The situation is covered by the law of large numbers of Theorem

4 and the central limit result of Theorem 7. Theorem 7 even allows tree patterns that change

with n.

§16. The toll function ladder

The various types of limit behavior can best be illustrated by considering the toll function

g(n) = nα. Define the random variable

Xn =
∑

u

N(u)α

where N(u) is the size of the subtree rooted at node u. For α = 1, we have Xn = n + Ln, as

can easily be verified. We can use (yet another!) representation of a random binary search tree

in terms of the sizes of left and right subtrees of the root, bnUc, and bn(1− U)c, respectively,

where U is uniform [0, 1]. A different independent uniform random variable is thus associated

with each node. For a first intuition, we can drop the truncation function.

n elementsroot

N elements n−1−N elements

Figure 9. The root splits a random bi-
nary search tree into two subsets, of sizes
N and n−1−N respectively, where N is dis-
tributed as bnUc, and U is uniform [0,1].

Call the (random) binary search tree T . Augment the tree T by associating with each

node the size of the subtree rooted at that node, and call the augmented tree T ′. The root of T ′

has value n. Since the rank of the root element of T is equally likely to be 1, . . . , n, the number

N of nodes in the left subtree of the root of T is uniformly distributed on {0, 1, . . . , n− 1}. A

moment’s thought shows that

N
L
= bnUc ,
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where U is uniformly distributed on [0, 1]. Also, the size of the right subtree of the root of

T is n − 1 − N , which is distributed as bn(1 − U)c. All subsequent splits can be represented

similarly by introducing independent uniform [0, 1] random variables. Once again, we have

used an embedding argument: we have identified a new fictitious collection of random variables

U1, U2, . . ., and we can derive all the values of nodes in T ′ from it. This in turn determines T .

However, the tree T obtained in this manner is only distributed as the T we are studying—it

may be very different from the (random) instance of T presented to us. The rule is simply

this: in an infinite binary tree, give the root the value n. Also, associate with each node an

independent copy of U . If a node has value V , and its assigned copy of U is U ′ (say), then the

value of the two children of the node are bV U ′c and bV (1− U ′)c respectively. Thus, the value

of any node at distance k from the root of T ′ is distributed as

b· · · bbnU1cU2c · · ·Ukc ,
where U1, . . . , Uk are i.i.d. uniform [0, 1].

U
1

U
2

U
3

nU
1
U

2
nU

1
(1−U

2
) nU

3
(1−U

1
) n(1−U

1
)(1−U

3
)

Figure 10. The augmented tree T ′: the values associated with the
nodes are the sizes of the subtrees of corresponding nodes in T . Only the
values of the nodes two levels away from the root are shown (modulo
some floor functions). The random splits in the tree are controlled by
independent uniform [0,1] random variables U1,U2,....

For α > 1, the total contribution to Xn from the root level is nα. From the next level,

we collect nα(Uα + (1−U)α), from the next level nα(Uα(Uα
1 + (1−U1)α) + (1−U)α(Uα

2 + (1−
U2)α)), and so forth, where all the Ui’s are independent uniform [0, 1] random variables. Taking

expectations, it is easy to see that the expected contribution from the i-th level is about

nα
(

2

α+ 1

)i
.
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This decreases geometrically with i, the distance from the root. Therefore, the top few levels,

which are all full, are of primary importance. It is rather easy to show that

Xn

nα
L→ Y

where Y may be described either as

1 + Uα
1 + (1− U1)α + Uα

1 (Uα
2 + (1− U2)α) + (1− U1)α(Uα

3 + (1− U3)α) + · · · ,
or as the unique solution of the distributional identity

Y
L
= 1 + UαY + (1− U)αY ′

where Y, Y ′, U are independent and Y
L
= Y ′. Taking expectations in this recurrence, we see that

� {Y } = (α+ 1)/(α− 1), and that this tends to ∞ as α ↓ 1.

At α = 1, we have a transition to the next behavior, because Xn/n→∞ in probability.

The contributions from the first few full levels is n, so that we expect Xn to be of the order of

n logn. In fact, as we know, Xn/(n logn)→ 2 in probability. To discover a limit law, we have

to subtract the mean, and, as we now know,

Xn −
� {Xn}
n

L→ Y

where Y has the quicksort limit distribution. See the next section for a description and deriva-

tion.

For α < 1/2, we have seen (Theorem 6) that

Xn −
� {Xn}√
n

L→ N (0, σ2)

for a certain σ2 > 0 depending upon α. The main contributions to Xn all come from the bottom

levels, and normality is obtained because they are slightly dependent.

In the range 1/2 < α < 1, we have an intermediate behavior, with

Xn −
� {Xn}
nα

L→ Y,

where Y satisfies the distributional identity given above. The details are given by Hwang and

Neininger (2002).

§17. The contraction method

In some cases, a random variable Xn can be represented in a recursive manner as a

function of similarly distributed random variables of smaller parameter. A limit law for Xn,

properly normalized, can sometimes be obtained by the contraction method. This requires
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several steps. First, we need to settle on a metric on the space of distributions of interest.

Then, we may attempt to normalize Xn in such a way that the limit distribution can be guessed

as a stable point of a distributional identity (which one gets from the recursive description of

Xn). Then one establishes that the recursion yields a contraction for the given metric, that is, a

fractional reduction in the distance between two distributions. This implies in many cases that

the stable point is unique. Finally, the most work is usually related to the proof that Xn or its

normalized version tends to that unique limit law in the given metric.

We will illustrate this methodology on the number of comparisons in quicksort. For other

examples, we refer to Rösler and Rüschendorf (2001) or Neininger and Rüschendorf (2004).

Let Ln denote the internal path length of a random binary search tree Tn. We recall that

this is equal to the number of comparisons needed to sort a random permutation of {1, 2, . . . , n}
by quicksort. We write

L
= to denote equality in distribution. The root recursion of Tn implies

the following:

Ln
L
= LZn−1 + L′n−Zn + n− 1, n ≥ 2,

where Zn is uniformly distributed on {1, 2, . . . , n}, Li L= L′i, and Zn, Li, L
′
i, 1 ≤ i ≤ n, are

independent. Furthermore, L0 = L1 = 0. We know that

� {Ln} ∼ 2n logn

from earlier remarks, so some normalization is necessary to establish a limit law. We define

Yn =
Ln −

� {Ln}
n

.

Régnier (1989) was the first one to prove by a martingale argument that Yn
L→ Y , where Y is a

non-degenerate non-normal random variable, and
L→ denotes convergence in distribution. Rösler

(1991, 1992) characterized the law of Y by a fixed-point equation: Y is the unique solution of

the distributional identity

Y
L
= UY + (1− U)Y ′ + ϕ(U),

where U is uniform on [0, 1], Y
L
= Y ′, and U, Y, Y ′ are independent, and

ϕ(u) = 2u log u+ 2(1− u) log(1− u) + 1.

The limit law has no simple explicit form, but we know that it has a density f (Tan and

Hadjicostas, 1995), which is in C∞ (Fill and Janson, 2000), and additional properties of that

density are now well understood (Fill and Janson, 2001, 2002). We will give Rösler’s proof,

which has been used in many other applications, and is now referred to as the contraction

method.
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Step 1: a space and a metric. Let D denote the space of distribution functions with zero

first moment and finite second moment. Then the Wasserstein metric d2 is defined by

d2(F,G) = inf
√ � {(X − Y )2},

where the infimum is taken over all pairs (X,Y ), X has distribution function F and Y has

distribution function G. This metric thus uses the idea of a maximal coupling between X and

Y . If F−1 denotes the inverse of F , then the maximal coupling for which the infimum in d2(F,G)

is reached is given by setting

(X,Y ) =
(
F−1(U), G−1(U)

)

where U is uniform [0, 1]. Using the same U , we can in thisd manner couple infinite families of

random variables. We will call this a universal coupling of a collection of random variables.

1

0

U

F

G

F−1(U)G−1(U)

Figure 11. Illustration of optimal coupling for the Wasserstein metric.

If d2(F,G) = 0, then there exists a coupling such that X = Y with probability one, and

thus, F = G. It is known that (D, d2) is a complete metric space. Observe furthermore that

a sequence Fn converges to F in D if and only if Fn converges weakly to F and if the second

moments of Fn converge to the second moments of F .

Step 2: prove that there is a unique fixed point. We begin by showing that the key dis-

tributional identity has a unique solution with
� {Y } = 0.
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Lemma 1. Define a map M : D → D as follows: if Y and Y ′ are identically distributed with

distribution function F of zero mean, U is uniform [0, 1], and U, Y and Y ′ are independent, then

M(F ) is the distribution function of

UY + (1− U)Y ′ + ϕ(U).

Then we have a contraction with respect to the Wasserstein metric:

d2(M(F ),M(G)) ≤
√

2

3
d2(F,G).

(In other words, M(.) is a contraction, and thus, there is a unique fixed point F ∈ D with

M(F ) = F . Indeed, set F0 = F , Fn+1 = M(Fn), and note that d2(Fn+1), Fn) ≤
√

2/3d2(Fn, Fn−1) ≤
(2/3)n d2(F1, F0)→ 0 as n→∞. But then Fn converges in (D, d2) to some distribution function

F . There is at least one solution. There can’t be two, as d2(M(F ),M(G)) = d2(F,G).)

Proof. Let X,X ′ both have distribution function F , and let Y, Y ′ both have distribution func-

tionG, and assume that the means are zero. Furthermore, let U be as above, let (X,Y ), (X ′, Y ′), U

be independent. Then, as M(F ) is the distribution function of UX + (1 − U)X ′ + ϕ(U), and

M(G) is that of UY + (1− U)Y ′ + ϕ(U),

d2
2(M(F ),M(G))≤ � {(UX + (1− U)X ′ − UY − (1− U)Y ′)2}

=
� {(U(X − Y ) + (1− U)(X ′ − Y ′))2}

=
� {(U(X − Y ))2}+

� {((1− U)(X ′ − Y ′))2}
(this step uses the zero mean assumption)

= 2
� {U 2} � {(X − Y ))2}

=
2

3

� {(X − Y ))2}.
Take the infimum with respect to all possible pairs (X,Y ) and obtain

d2
2(M(F ),M(G)) ≤ 2

3
d2

2(F,G).

Observe that this proof can also be used to show that for any α > 1/2,

Y
L
= UαY + (1− U)αY ′ + ϕ(U)

is a contraction.

Step 3: prove convergence to the fixed point. So, we are done if we can show that d2(Fn, F )→
0, where Fn is the distribution function of Yn and F is the distribution function of Y . This will

be the first time we will need the actual form of ϕ. We note throughout that Y and Yn have
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zero mean and that both have finite variances. From the recursive distributional identity of Ln,

we deduce these distributional identities: Y0 = Y1 = 0, and furthermore, for n ≥ 2,

Yn
L
=
Ln −

� {Ln}
n

L
=
LZn−1 + L′n−Zn + n− 1

n

−
� {LZn−1|Zn}+

� {L′n−Zn |Zn}+ (n− 1)

n

+

� {LZn−1|Zn} −
� {LZn−1}+

� {L′n−Zn |Zn} −
� {L′n−Zn}

n
L
= YZn−1

Zn − 1

n
+ Y ′n−Zn

n− Zn
n

+ ϕn(Zn)

where

ϕn(j) =

� {Lj−1}+
� {L′n−j} −

( � {L′n−Zn}+
� {LZn−1}

)

n

=

� {Lj−1}+
� {L′n−j} − (

� {Ln − (n− 1)})
n

.

Let us do a quick back-of-the-envelope calculation, replacing Zn by nU , n − Zn by n(1 − U)

and
� {Li} by 2i log i. If the Yn’s indeed converge to Y in law, then we have that Y should be

approximately distributed as

UY + (1− U)Y ′ + ϕ(U).

Theorem 8.

lim
n→∞

d2(Fn, F ) = 0.

Proof. We let (Y ′, Y ′n) be an independent copy of (Y, Yn) for all n, and let these pairs be

independent of U . It is critical to pick versions of (Yj, Y ) and Y ′j , Y
′) such that

� {(Yj − Y )2} =
� {(Y ′j − Y ′)2} = d2

2(Fj, F ).

Also, the sequence of Yj ’s is independent, and similarly for Y ′j . Since Zn is uniform on {1, . . . , n},
it is distributed as dnUe, where U is uniform [0, 1]. Thus,

Yn
L
= YdnUe−1

dnUe − 1

n
+ Y ′n−dnUe

n− dnUe
n

+ ϕ(dnUe).
Use one step in the distributional identity of Y to note the following:

d2
2(Fn, F ) ≤ �

{(
YdnUe−1

dnUe − 1

n
− UY + Y ′n−dnUe

n− dnUe
n

− (1− U)Y ′ + ϕ(dnUe)− ϕ(U)

)2
}
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where we picked the same Y and Y ′ in both distributional identities. By the fact that Y, Y ′, Yn, Y
′
n

have all zero mean, and the independence of (Y, Yn), (Y ′, Y ′n) and U , the right-hand-side is equal

to

2
�

{(
YdnUe−1

dnUe − 1

n
− UY

)2
}

+
�
{

(ϕ(dnUe)− ϕ(U))
2
}
. (5)

Here we used the symmetry in the first two terms. We treat each term in the upper bound

separately, starting with the first one. Note that
∣∣∣∣U −

dnUe − 1

n

∣∣∣∣ ≤
1

n
,

so that, writing θ for any quantity in absolute value less than one, the first term is not more

than

2
�

{(
(YdnUe−1 − Y )

dnUe − 1

n
+
θY

n

)2
}

=
1

n

n∑

j=1

2
�

{(
(Yj−1 − Y )

j − 1

n
+
θY

n

)2
}

≤ 1

n

n∑

j=1

2

(
j − 1

n

)2
�
{

(Yj−1 − Y )
2
}

+
1

n

n∑

j=1

4
j − 1

n2

� {θY (Yj−1 − Y )}+
1

n

n∑

j=1

2
�

{(
θY

n

)2
}

≤ 2

n

n∑

j=1

(
j − 1

n

)2

d2
2(Fj−1, F ) +

4

n
sup
j

� {|Y ||Yj−1 − Y |}+
2

� {Y 2}
n2

≤ 2

3
sup
j<n

d2
2(Fj, F ) +

4

n
sup
j<n

d2(Fj, F )
√ � {Y 2}+

2
� {Y 2}
n2

(by the Cauchy-Schwarz inequality)

≤
(

2

3
+

4
√ � {Y 2}

n

)
sup
j<n

d2
2(Fj, F ) +

4
√ � {Y 2}

n
+

2
� {Y 2}
n2

.

The second term of (5) is bounded from above by the square of

sup
0≤u≤1

|ϕn(dnue)− ϕ(u)| .

We recall that, using Hn for the n-th harmonic number, and Hn = logn+γ+(1/2n)+O(1/n2),

where γ = 0.57721566490153286060 . . . is the Euler-Mascheroni constant,

� {Ln} = 2nHn + 2Hn − 4n = 2n logn+ n(2γ − 4) + 2 logn+ 2γ + 1 +O(1/n).

Thus, uniformly over 2 ≤ j ≤ n− 1,

ϕn(j) =
n− 1 +

� {Lj−1}+
� {Ln−j} −

� {Ln}
n

=
n+ 2j log(j − 1) + 2(n− j + 1) log(n− j)− 2(n+ 1) logn+O(1)

n

43



= 1 +
2j

n
log

(
j − 1

n

)
+

2(n− j + 1)

n
log

(
n− j
n

)
+O

(
1

n

)
.

Denoting by θ any number between 0 and 1, we have uniformly over 2 ≤ j ≤ n − 1, and over

(j − 1)/n < u ≤ j/n,

|ϕn(dnue)− ϕ(u)|

= O

(
1

n

)
+

∣∣∣∣
2j

n
log

(
j − 1

n

)
+

2(n− j + 1)

n
log

(
n− j
n

)

−2(j − θ)
n

log

(
j − θ
n

)
− 2(n− j + θ)

n
log

(
n− j + θ

n

)∣∣∣∣

≤ O
(

1

n

)
+

∣∣∣∣
2j

n
log

(
j − 1

n

)
− 2j

n
log

(
j − θ
n

)∣∣∣∣

+

∣∣∣∣
2(n− j)

n
log

(
n− j
n

)
− 2(n− j)

n
log

(
n− j + θ

n

)∣∣∣∣

+
2

n

∣∣∣∣log

(
n− j
n

)∣∣∣∣+
2

n

∣∣∣∣log

(
j − θ
n

)∣∣∣∣+
2

n

∣∣∣∣log

(
n− j + θ

n

)∣∣∣∣

≤ O
(

1

n

)
+

∣∣∣∣
2j

n
log

(
j − 1

j − θ

)∣∣∣∣

+

∣∣∣∣
2(n− j)

n
log

(
n− j

n− j + θ

)∣∣∣∣+
6 logn

n

= O

(
logn

n

)
.

For j = 1 and j = n,

ϕn(j) =
n− 1 +

� {Ln−1} −
� {Ln}

n
= 1 +O

(
logn

n

)
,

and for the same j, with u = (j − θ)/n,

sup
0≤θ≤1

|ϕ(u)− 1| = O

(
logn

n

)
.

Combining this shows that

sup
0≤u≤1

|ϕn(dnue)− ϕ(u)| = O

(
logn

n

)
.

We conclude that for some universal constants C,D,

d2
2(Fn, F ) ≤

(
2

3
+
D

n

)
sup
j<n

d2
2(Fj, F ) +

C

n
.

It is left as an easy exercise to show that this implies that

lim
n→∞

d2
2(Fn, F ) = O

(
1

n

)
.
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M. Régnier, “A limiting distribution for quicksort,” RAIRO Informatique Théorique et Appli-
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