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Background

Quicksort was introduced by C.A.R. Hoare in 1960.

Divide and conquer algorithm

procedure Quicksort(Array A)
pivot ← arbitrary element in A
partition A into elements ≤ and > pivot

// hope that parts are about the same size
Quicksort(≤ part of A)
Quicksort(> part of A)

end procedure
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BREAKING NEWS!

In 2009, Vladimir Yaroslavskiy proposed a new quicksort
variant using a dual-pivot partitioning scheme.

Outperforms classic quicksort under the Java JVM by
close to 10%.

Replaced Java’s internal sorting algorithm in Java 7.

This contradicts prior work (especially Sedgewick 1977)
showing that using multiple pivots is an inferior strategy!
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award) provided a rigorous average-case analysis of
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An implementation detail in the partitioning process cuts
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approach.
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Classic quicksort uses on average
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Analysis of Yaroslavskiy

Yaroslavskiy’s quicksort uses 5-8% fewer comparisons but
achieves more than a 10% performance gain.

Another factor must be contributing to its performance.

There is a disparity between theory and what is observed in
practice.
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We make several contributions to the topic:

1 Confirm experimental results in C, removing potential
artifacts introduced by the JVM.

2 Describe a quicksort variant using three pivots that (in
our experiments) outperforms Yaroslavskiy’s quicksort.

3 Propose cache behavior as an explanation for the
performance of multi-pivot quicksort algorithms.
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3-Pivot Quicksort

Intuitively the same as classic quicksort:

Choose three elements as pivots and partition the array
around them.

Recursively sort the subarrays defined by the pivots.



3-Pivot Partition

Use four pointers a, b, c , and d .

Initialize a and b to the beginning of the array and c and
d to the end of the array.

Advance pointers b and c toward each other while
maintaining the invariant shown in the figure.

End when b and c cross each other.



3-Pivot Partition

In order to maintain the invariant, we must swap each new
element into place.

1 Keep advancing b while the element is less than q,
swapping it into place with the element at a or leaving it
alone. Keep advancing c in the same way.

2 Now both elements at b and c must go into “opposite”
sides of the array. Swap them into place according to the
four cases.

3 Repeat.



Comparisons and Swaps

The standard method of analysis by solving recurrences gives
the average number of comparisons and swaps for the 3-pivot
quicksort:

≈ 1.846n ln n + O(n) comparisons

≈ 0.615n ln n + O(n) swaps



Experimental Results

Experiments were run on the following algorithms:

Classic 1-pivot quicksort.

1-pivot quicksort using median of 3 pivot selection.

Yaroslavskiy’s 2-pivot quicksort.

2-pivot quicksort using 2nd and 4th of 5 pivot selection.

Our 3-pivot quicksort.

3-pivot quicksort using 2nd, 4th and 6th of 7 pivot
selection.



Experimental Results

Yaroslavskiy’s algorithm
performs just as well
written in C, confirming
previous experimental
results.

The 3-pivot algorithm
performs especially well
under this setup, and
mostly outperforms the
other variants under
multiple rigorous tests.
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Experimental Results

Interesting observation:

3-pivot quicksort outperforms median-of-3 1-pivot
quicksort.

Comparisons: 1.85n ln n vs. 1.71n ln n

Swaps: 0.62n ln n vs. 0.34n ln n

3-pivot quicksort uses more comparisons and more swaps but
has better performance.

This further suggests the presence of another factor
contributing to performance.



Cache Behavior Analysis

Method used:

1 Count the number of cache misses incurred by a single
partition step for any three pivots.

2 Define a recurrence based on the recursion of the
quicksort being analyzed.

3 Use symbolic math package to solve the recurrence and
manually simplify the expression.



Cache Behavior Analysis – Results

Let M be the size of the cache and B be the size of each
block of cache.

1-Pivot Quicksort: 2
(
n+1
B

)
ln
(

n+1
M+2

)
+ O( n

B
)

2-Pivot Quicksort: 8
5

(
n+1
B

)
ln
(

n+1
M+2

)
+ O( n

B
)

Leading constants of 2 and 1.6 for cache faults versus 2 and
1.9 for comparisons.



Cache Behavior Analysis – Results

More interestingly, the results for 3-pivot quicksort compared
with median-of-3 1-pivot quicksort:

3-Pivot Quicksort: 18
13

(
n+1
B

)
ln
(

n+1
M+2

)
+ O( n

B
)

Median-of-3 Quicksort: 12
7

(
n+1
B

)
ln
(

n+1
M+2

)
+ O( n

B
)

Leading constant of ∼ 1.38 for 3-pivot quicksort and ∼ 1.71
for median-of-3 quicksort.



Cache Behavior Experiments

Experiments using valgrind tool cachegrind reinforces the
cache analyses.

Sorting 10, 000, 000 integers:

1-pivot: ∼ 3, 700, 000 cache misses

2-pivot: ∼ 3, 100, 000 cache misses

3-pivot: ∼ 2, 700, 000 cache misses
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outperform classic quicksort.

Cache behavior explains the performance differences seen
in practice.

Fastest quicksort

...yet.
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Conclusion

The number of layers of cache seems to be constantly
increasing in hardware. This means:

Cache effect are constantly becoming more pronounced.

Past performance results may no longer be valid in
modern architecture.

Present results may change in the future.



Future Work

Future work regarding multi-pivot quicksort may be directed
toward:

Experimentation on different caching architectures.

Exploiting caches in more complex ways.



Thank you!
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