
Rationale-based Visual Planning Monitors

Zohreh Alavi and Michael T. Cox
Department of Computer Science and Engineering

Wright State University
Dayton, OH 45435

{alavi.3, michael.cox}@wright.edu

Abstract

In this paper, we introduce a new technique for
planning in a world under continuous change. Our
approach is to make vision sensitive to relevant
changes in the environment that can affect plans
and goals. For this purpose, we applied a rationale-
based monitor technique to the SHOP hierarchical
planner. SHOP generates plan monitors that inter-
act with a vision system and react only to those
environmental changes that bear on current plan-
ning decisions. Thus when the monitors detect
these changes, they execute specific plan transfor-
mations as needed. We also present MIDCA 1.3
which uses the extended version of SHOP and the
rationale-based monitors. MIDCA communicates
with a Baxter humanoid robot to accomplish a goal
in a dynamic environment using the monitors to
focus vision and adapt plans. An experiment in a
blocks world demonstrates the effectiveness of our
approach.

1 Introduction
The ability to act and respond to exogenous events in dynamic
environments is crucial for robust autonomy. In dynamic en-
vironments, external changes may occur that prevent an agent
from reaching its goal(s). But the default strategy in most
agent systems is to wait until a plan step fails, then repair the
plan or start planning anew. Instead, we claim that an intelli-
gent agent should actively watch for what can go wrong and
anticipate mistakes before they occur.

Vision has traditionally been a distinct area of research and
vision systems act independently of planning and agent be-
havior. The “goal“ of vision is to accept a visual scene as in-
put and to label the objects and perhaps identify the relations
between objects as output (see for example [Marr, 1982]).
Agent goals are irrelevant. Once an agent architecture re-
ceives the output of vision, the system can search for objects
or relationships that bear on goals and plans. This division of
labor is quite inefficient since many of the objects in a visual
scene will likely never affect the agent. In contrast, an ac-
tive approach to vision asserts that the vision system should
operate with the goals and plans as guide (c.f., [Findlay and

Gilchrist, 2003; Fermuller and Aloimonos, 1994]). In the re-
search reported here, we propose a novel integration of plan-
ning and interpretation that uses goals and plans to bias an
active vision component.

We introduce a new system for planning in a world un-
der continuous change in an agent with visual perception.
Our main contribution is making vision sensitive to rele-
vant changes in the environment that affect an agent’s plans.
We apply a rationale-based monitor technique [Veloso et al.,
1998] to the SHOP Hierarchical Task Network (HTN) plan-
ner [Nau et al., 1999]. Rationale-based monitors provide a
means of focusing visual attention on features of the world
likely to affect the plan. We modified SHOP to generate
plan monitors to interact with a vision system and react only
to those environmental changes that bear on current plan-
ning decisions. Thus when the monitors detect any relevant
changes, corresponding plan transformations are executed as
needed. We have added our extended SHOP planner to the
planning phase of a cognitive architecture named MIDCA
[Cox et al., 2016] refined the integration with a Baxter robot,
and tested it on a simulated domain. MIDCA communicates
with Baxter to accomplish a goal in a dynamic environment
using the monitors to focus vision and adapt plans.

Not only are the plans of the agent important for vision,
but the goals themselves are as well. So too should the justi-
fication for goal selection be monitored. Let’s say a baby is
crying. We reason about this anomaly and so generate an ex-
planation such as hungry(baby) → cry(baby). As a result,
the goal is ¬hungry(baby), and MIDCA starts planning for
its achievement by selecting a method to feed the child. Now
suddenly the baby stops crying. Thus the reason that led us to
choose this goal is no longer valid. The vision system should
recognize this and help the planning component to retract the
goal altogether. For the purposes of this paper, however, we
will limit the scope of our discussion to the means by which
plans and their rationale can inform vision.

We begin the paper by describing the MIDCA cognitive
architecture and the SHOP planner embedded within it. The
following section will then describe the vision monitors con-
cept and how it is implemented in the SHOP planner. An pre-
liminary empirical evaluation of this technique follows with
related research and a conclusion finishing the paper.



2 The MIDCA Architecture and the SHOP
Planner

The meta-cognitive, integrated dual-cycle architecture
(MIDCA) [Cox et al., 2016; Paisner et al., 2013] consists of
“action-perception” cycles at both the cognitive level and the
meta-cognitive level (see Figure 1). In general, a cycle per-
forms problem-solving to achieve its goals and tries to com-
prehend the resulting actions and those of other agents. The
output side of each cycle consists of intention, planning, and
action execution, whereas the input side consists of percep-
tion, interpretation, and goal evaluation.

In problem solving, the Intend component commits to a
current goal from those available. The Plan component
then generates a sequence of Actions (a hierarchical-task-net
plan). The plan is executed by the Act component to change
the actual world through the effects of the planned Actions.
The agent stores the goal and plan in memory to provide it
with expectations about how the world will change in the fu-
ture. The agent will then use these expectations in the next
cycle to evaluate the execution of the plan and its interaction
with the world with respect to the goal.

Comprehension starts with perception of the world in the
attentional field via the Perceive component. The Interpret
component takes as input the resulting percepts and the ex-
pectations in memory to determine whether the agent is mak-
ing sufficient progress. The Evaluate component incorporates
the concepts inferred from the percepts thereby changing the
world model, and the cycle continues. This cycle of problem-
solving and action followed by perception and interpretation
functions over discrete state and event representations of the
environment.

The architecture includes a standard simulator for various
planning domains (again see Figure 1). In MIDCA Version
1.3, we have added an API interface to communicate with
the Robot Operating System (ROS) and a humanoid Baxter
robot. This interface is responsible for sending messages to
ROS as requested by MIDCA. Also, the interface places mes-
sages received in appropriate queues for MIDCA to process.
During the Perceive phase, these messages will be accessed
and stored in main memory. The Interpret phase is respon-
sible for reasoning about these messages and creating world
states which are represented symbolically as logical predi-
cates.

The Plan phase in MIDCA uses SHOP planner. SHOP is
an HTN planning algorithm that creates plans by recursively
decomposing tasks into smaller subtasks until only the prim-
itive tasks are left which can be accomplished directly [Nau
et al., 1999]. SHOP uses methods and operators. An opera-
tor specifies a way to perform a primitive task, and a method
specifies a way to decompose a non-primitive task into a set
of subtasks.

Following [Ghallab et al., 2004], we denote an ac-
tion a = (name(a), precond(a), effects(a)) accom-
plishes a primitive task t in a state s if name(a) = t
and is applicable to s. A method is a 4-tuple m =
(name(m), task(m), precond(m), subtasks(m)) in which
name(m) is the name of the method; task(m) is a nonpr-
mitive task; and precond(m) is a set of literals called the

Figure 1: MIDCA 1.3 Interfaces

method’s preconditions. precond(m) specifies what condi-
tions the current state must satisfy in order for m to be ap-
plied, and subtasks(m) specifies the subtasks to perform in
order to accomplish task(m).

Let t be a task and m be a method instance. If there is
substitution σ such that σ(t) = task(m), then m is relevant
for t, and the decomposition of t bym under σ is δ(t,m, σ) =
subtasks(m).

An HTN planning problem is a 3-tuple P = (S, T,D). It
takes the initial state, S, which is a symbolic representation
of the state of world, and a set of tasks, T = 〈t 1, ..., t k〉,
to be accomplished. Also, it takes a knowledge base, D, in-
cluding operators and methods. A plan π = 〈a1, ..., an〉 is a
solution for a planning problem to accomplish T . This means
that there is a way to decompose T into π in such a way that
π is executable in s, and upon execution will transform the
start state into the goal state [Ghallab et al., 2004]. We have
modified SHOP to use such plan information to bias vision
processes in MIDCA.

3 Rationale-based Vision Monitors
A rationale-based vision monitor provides a means of focus-
ing visual attention on features of the world relevant to what
the agent is trying to do. That is, vision should be informed
by planning activity, because a plan represents the intended
actions to achieve the agent’s goals and therefore contains the
objects and states of interest to the agent. Vision should thus
monitor states that form the basis (i.e., rationale) of planning
choices. When a feature being monitored changes, and the
change is detected, we say that the monitor fires. Delibera-
tion can then be performed to decide whether the plan under
construction should be changed. If the planner decides to ac-



count for the new change, it will update the plan and alter
the planning search. In particular, parts of the plan may be
deleted because they have become unnecessary; new tasks
may be added and current ones refined; and prior decisions
about how to achieve particular goals may be revisited. Origi-
nally, rationale-based monitors were implemented in the state
space planner Prodigy [Veloso et al., 1998]. Our work differs
in using these monitors in the SHOP planner and applying
them to make vision more goal-driven (and less data-driven).

A change in the world can result in different kinds of plan
transformations. We organize these transformations into three
different categories:

1. Extending the plan with additional actions;

2. Shortening the plan by removing actions;

3. Substituting a different plan with alternative bindings or
steps.

This paper focuses on the first two types. See [Veloso et al.,
1998] for a discussion of the third type of transformation. We
also address monitoring changes in the world that occur at
planning time, leaving the extension to plan execution-time
monitors for future research.

3.1 The Influence of World State in Planning
Decisions

Each of the planning decisions are influenced by the planner’s
beliefs about the state of world and their goals. Given a task t,
the planner repeatedly needs to decide how to decompose the
task to achieve t until the decomposition reaches primitive
tasks represented as operators, i.e., executable actions. The
decision to pursue a decomposition over another one will be
highly dependent on the current state of the world. When
a satisfied precondition of an operator becomes not satisfied
during planning, the planner needs to add steps to the plan to
reestablish the condition. In other situations, when a portion
of the current plan serves to establish some condition c, it may
become necessary to cut those actions from the plan, should
c become true.

For example, assume two blocks, A and B as shown
in panel a) of Figure 2. The goal is on(A,B), and
the task to accomplish this goal is stack T (A,B). Be-
cause both blocks are clear, the planner generates the plan
π = pickup(A), stack(A,B). Now consider the situation
whereby another agent puts the block C on top of A while
MIDCA is planning. This new state violates the precondi-
tion of pickup that the item to be grasped be clear. Thus,
the planner must add further actions to the plan before con-
tinuing. The new plan to achieve this goal will be π′ =
pickup(C), putdown(C), pickup(A), stack(A,B).

3.2 Vision Monitors in SHOP
We have implemented rationale-based monitors within the
SHOP planner. Algorithm 1 shows the overall procedure.
The SHOP algorithm takes the initial state, s, a set of tasks,
〈t′1, ..., t′c〉, and a knowledge base,D, including operators and
methods. We added another argument, l, to the planner to
keep track of the recursion tree depth. A plan π = 〈a1, ...am〉
is the solution of this algorithm.

Algorithm 1 SHOP with Rationale-based Monitors
1: mnts← 〈〉 . list of generated monitors
2: l← 0
3: T ′ ← 〈t′1, ..., t′c〉 . goal tasks
4: procedure SHOP (s, 〈t1, ..., tk〉, D, l)
5: (new s, 〈(p1, l1), ...(pn, ln)〉)← fired(mnts)
6: if n 6= 0 then . at least one monitor fired
7: s′ ← backtrack(l1)
8: s′ ← update s′ with new s . state changed
9: return SHOP (s′, T ′, D, l1 + 1)

10: end if
11: if k = 0 then
12: return 〈〉 . i.e., the empty plan
13: end if
14: if t1 is primitive then
15: active ←

{
(a, σ)|a is an instance of an operator

in D, σ is a substitution such that a is relevant for σ(t1),
and a is applicable to s

}
. active is a set of relevant

operators for task t 1
16: if active = φ then
17: return failure
18: end if
19: nondeterministically choose any (a, σ) ∈ active
20: π ← SHOP (γ(s, a), σ(〈t2, t3, ..., tk〉), D, l+1)
21: if π = failure then
22: return failure
23: else
24: generate monitors(a, l, s,mnts)
25: return a.π
26: end if
27: else if t1 is nonprimitive then
28: active ←

{
(m,σ)|m is an instance of a method

in D, σ is a substitution such that m is relevant for σ(t1),
and m is applicable to s

}
29: if active = φ then
30: return failure
31: end if
32: nondeterministically choose any (m,σ) ∈ active
33: w ← subtasks(m).σ(〈t2, ..., tk〉)
34: return SHOP (s, w,D, l + 1)
35: end if
36: end procedure

Algorithm 2 Generate monitors
1: procedure generate monitors(o, l, s,mnts)
2: for p in precond(o) do
3: if satisfied(p, s) then
4: mnts← (p, l).mnts
5: else if ¬ satisfied(p, s) then
6: mnts← (¬p, l).mnts
7: end if
8: end for
9: end procedure



Figure 2: Blocksworld problem to put A on B

The algorithm takes the first task, t1, and proceeds accord-
ing to one of the following cases.

Case 1 If t1 is a primitive task, it nondeterministically
chooses an operator, a, from the set of relevant oper-
ators for t 1 which is applicable to s. After applying
the first action to the state and get the next state, it calls
the SHOP planner with the new state and the remaining
tasks (steps 14-27).

Case 2 If t1 is a non-primitive task, then it nondeterministi-
cally chooses a method to decompose t1 into its subtasks
and adds them to the list of tasks. Then, it calls SHOP
with the current state, and the set of new tasks (steps
27-34).

To integrate with rationale-based monitors, two procedures
are added to the SHOP planner. First, the monitors are gener-
ated when an operator is added to the current plan, π (line 24
in the algorithm). generate monitors takes the operator, o,
the current depth, l, state ,s, and the list of monitors ,mnts,
as input parameters.

Monitors observe features that directly influence π. This
includes preconditions of all the operators in π. Algorithm
2 shows the details of monitor generation for the precondi-
tions of an operator. Some of these preconditions will be true
when they are added to π; they therefore must be monitored,
because, should they become false, π will fail unless addi-
tional planning is performed. Other preconditions will be ini-
tially false; should they become true, then the portions of π
that established them may become unnecessary (steps 3-6 in
algorithm 2).

Second, at each planning cycle, the SHOP planner checks
for fired monitors. If a monitor fires, the planner goes back
to the depth that the monitor was generated to refine the plan.
It also updates part of the state based on the perceived state
(step 5-9 in algorithm 1)

Algorithm 3 shows the details of checking for fired moni-
tors. It checks to see if the preconditions of all operators in
the plan so far are still satisfied in the new perceived state.

Plan transformation is done by backtracking to the depth
that the fired monitor was generated. When monitors are gen-
erated, the current recursion depth is recorded and backtrack-
ing uses this information. Then, the process continues with
the new state (the state at the depth that the algorithm back-
tracked to) and the list of goal tasks (steps 7-9 in algorithm
1).

3.3 A Vision Application
We have added our extended SHOP planner to the planning
phase of MIDCA 1.3 and tested our system with a Baxter hu-

Algorithm 3 Check for fired monitors
1: procedure fired(mnts)
2: s← perceive the world
3: for (p, l) in mnts do
4: if s 6|= p then
5: fired list← (p, l).fired list
6: end if
7: end for
8: return (s, fired list)
9: end procedure

manoid robot in a blocksworld domain to show how vision
monitors improve planning in a dynamic environment. Addi-
tionally, we describe how planning improves the efficiency of
vision.

In this section, first we describe creating the predicates
from the image received from the Baxter’ camera, and then
we explain how plan monitors restrict the vision. We also ex-
amine the relationship between Interpret, Plan and Perceive
phases when monitors are running.

Creating a Symbolic World from Visual Images
MIDCA generates world states which are represented sym-
bolically as logical predicates from perceived objects and
their description. The inference process operates in two
stages. Figure 3 shows these two stages to create the sym-
bolic world from an image. First, as Baxter’s camera reads
in images, a visual detection node performs a simple ob-
ject detection procedure to locate the objects and sends ob-
ject data (e.g., color, location) about any known objects to
MIDCA 1.3 (see Figure 4 for Baxter executing plans in a
physical blocksworld). The visual detection node is a ROS
node that is running concurrently with MIDCA and sends the
information about objects to MIDCA. In section 2, we de-
scribed how our API manages the communication between
ROS nodes and MIDCA. The object detection algorithm uses
functions from the OpenCV library (opencv.org) to processes
the image received, filters color from a certain range in the
HSV color space, transforming it in a black and white image.
Then it searches for the largest contour on that image, and we
assume that this contour will represent the object. After that,
the algorithm finds a point in the center of that contour, which
will represent the pixel of the object on the image plane.

The Perceive phase in MIDCA receives information con-
cerning detected objects and infers the predicates represent-
ing a symbolic world from their xy coordinate locations. For
example, if the x values are within a specific threshold, the
algorithm will infer that one block is on top of the other one.
Based on the y values, it can infer which one is on top of
the other one. For example, the predicates that describe the
image in Figure 3 are:
on(green block, red block)
clear(red block) = false
on− table(red block)
clear(green block) = false

Planner, Vision and Interpreter
In this section, we discuss how the Planning, Perceive and
Interpret phases interact during planning. Perceive and Inter-



Figure 3: From image to symbolic world

Figure 4: Baxter stacking a green block on a red block

pret Phases are involved in the process of monitoring during
the planning.

The planner generates plan monitors to check for related
changes in the world state. Every monitor is running asyn-
chronously with the Plan phase. To detect changes in the
world, plan monitors parameterize Perceive to seek specific
feature changes of the world during planning. In other
words, the monitor restricts vision to look for specific re-
lations among the perceived objects (stage 2 in Figure 3).
Perceive updates the state in the memory. Then the Inter-
pret phase checks to see if the observed state is the same as
the expected state (various approaches to using expectations
to detect discrepancies are described in [Vattam et al., 2013;
Dannenhauer and Munoz-Avila, 2015]). If any change hap-
pens, the interpreter will notify the planner. Then, the planner
can refine the plan based on new changes in the world.

Note that in Figure 5 the red block is about to become

not clear. A monitor fires and adds steps (unstack(green-
block), putdown(greenblock)) to Baxter’s plan.

Figure 5: Someone puts a green block on the red block during
planning.

Traditionally, vision observes the whole environment and
labels all objects, most of which may not be related to any
goal. We focus vision on that part of the world that is rel-
evant to successfully accomplishing the goal. Monitors are
designed in a way that they guide vision to label parts of the
world that have influence on the plan under construction.

4 Empirical Evaluation
MIDCA 1.3 is the latest implementation of the MIDCA ar-
chitecture which was briefly described in section 2. In this
section, we describe our experiment with MIDCA on a mod-
ified blocksworld domain [Paisner et al., 2013]. We use a
standard simulator to simulate the world state and actions (see
Figure 1).

Our work focuses on the relationship between the Perceive
and Planning phases. The Perceive phase assists the Plan
phase by monitoring the relevant features of the world during
planning time. Relevant features are those that relate to the
current plan and current goals. In the evaluation below, we
show how vision assists planning. We leave the evaluation of
planning assisting vision to future work.

4.1 Blocksworld Domain
To evaluate the performance of our approach to the re-
lationship between vision and planning, we ran the sys-
tem in a modified blocksworld [Fikes and Nilsson, 1971;



Winograd, 1971] domain. The goal of this experiment is to
examine the benefit from using vision monitors to improve
planning in a dynamic environment.

This version of blocksworld includes both rectangular and
triangular blocks, which compose the materials for simpli-
fied housing construction. The initial goals for problems in
this domain are to build houses consisting of towers of blocks
with a roof (triangle) on each. Specifically, the housing do-
main goes through a cycle of three state classes in building
new “houses”.

We use a world simulator that simulates actions specified
using predicate logic. The types of actions which can be per-
formed are specified prior to startup in a domain file. Actions
MIDCA produces during the Act phase will be simulated, as
well as actions performed by other agents and natural events.

We added the possibility that blocks could catch fire and
before any block was picked up, the fire should first be ex-
tinguished. In order for an extinguisher to be used, it must
first be taken out of the box. The box itself is represented as
a block. If the box is not clear, the planner generates a plan
to make the box clear. Furthermore, there were additional
actions available to MIDCA allowing it to deal with these re-
finements. The three new types of actions are as follows:

put-out-fire(C, ext) If C is on fire, extinguish C
preconditions: on-fire(C)=true; holding=[ext]
effects: on-fire(C)=false

get-extinguisher(ext, B) if B is clear, take out the extin-
guisher ext from B

precondition: clear(B)=true; in-box(ext,B); holding=[]
effects: holding=[ext]

make-box-clear(B) if B is not clear, unstack all blocks on
top of B
precondition: clear(B) = false
effects: clear(B) = true

4.2 Experimental Results
In this experiment, we changed the world state in the middle
of planning to make the current plan not valid. Our hypothesis
is that the planner will refine the plan to successfully achieve
the goal.

In each planning problem we set the initial state to be one
with a block A on fire, a separate tower with C as its bottom-
most block, and a fire extinguisher, ext, inside C. The goal is
to put A on B (on(A,B)). Figure 6 (a) shows an example for
this problem (the height of the tower here is 3). Block A is
on fire, onfire(A) is true, and in order to pickup A, the fire
needs to be extinguished first. Since the height of tower is 3,
the planner has to unstack and putdown 2 blocks, D and E,
in order to obtain the fire extinguisher from block C and use
it on block A (Figure 6 (b) and (c)).

If the fire goes out during the planning process, the monitor
watching the precondition onfire(A) fires. Then the planner
cuts parts of the plan related to putout fire and simply generate
the plan pickup(A).

Here, the purpose of monitoring is to observe such a
change as the fire going out, and suggest a cut in the plan.

By varying the height of the tower, we can vary the com-
plexity and length of the solution. In this experiment, we
varied the height of tower, n, from 4 to 26 in increments of
3. During planning, the monitor which observes the state of
onfire(C) fires and suggests a plan refinement. We vary the
time at which this monitor fires during the planning process,
namely after 0, 10, 30, 50 planning steps.

Figure 6: Blocksworld example to put A on B when a fire
breaks out

Figure 7 shows the results of the experiment and plots the
total time as a function of n. As can be seen, when the envi-
ronment does not change, the amount of time increases with
n. However, with the rationale-based monitors, the planner
can react to the state changes and find a solution faster. As
would be expected, when the changes occur later, the savings
benefit of the planner is reduced, because it has already per-
formed significant planning. When there is no monitor, it has
to unstack all the blocks to get the extinguisher. When there
is no delay, it means the fire goes out in the beginning and it
is like when there is no fire.

Figure 7: Planning performance using rationale-based moni-
tors in the SHOP planner. The curves refer to different delays
of the state change during the planning process.

5 Future Work
There are many promising avenues for future work. First, we
plan to examine the benefit of using these monitors during the
act (execution) phase. This approach could allow the agent to



respond to unexpected changes during execution (i.e., after
planning has already succeeded). This helps the agent to fo-
cus only on what is important. In [Ayan et al., 2007], the au-
thors introduce an HTN-based planning system which revises
the plan if any action fails due to a state change. Our work
is different in a way that we know the action failure earlier,
so we have a chance to revise the plan sooner before reaching
the failed action.

In our current work, we detect changes during planning
time using rationale-based monitors. In doing so, we inter-
leave perception and planning. This suggests that cognitive
tasks may benefit from calling other cognitive tasks and/or
changing the order in which cognitive processes operate. Ex-
ploring this idea further is another avenue of future work. In
this modified cognitive architecture, different phases will be
able to call each other as needed. Also, if any change hap-
pens in the world, MIDCA needs to decide how to respond to
those changes. These changes may result in the consideration
of new plans or alter the agent’s intentions regarding its own
reasoning processes. Some changes may cause the system to
replan many times, but the better solution might be to change
focus completely and pursue new goals.

As mentioned in the introduction, vision should also mon-
itor goals and their rationale. We have used rationale-based
monitors in the past to track universally quantified expres-
sions within an action’s preconditions [Veloso et al., 1998],
but not for vision processing. Furthermore, top-level goals
may also be universally quantified and require monitoring.
Open-world quantified goals [Talamadupula et al., 2010] rep-
resent such an example that could benefit from rationale-
based monitors.

6 Conclusion

The integration of planning and interpretation in a cognitive
architecture is not a simple one way interaction. Here we
have argued that vision should serve the needs of the plan-
ner. The planner generates visual monitors for the vision
system based on the rationale for plan decisions (e.g., pre-
conditions), and the vision system detects when these condi-
tions are violated. However, it can equally be argued that
the planning component should serve the needs of vision
and interpretation. Given a particular scene or situation,
MIDCA’s interpretation component recognizes new problems
in terms of expectation failures or discrepancies. The in-
terpretation system will then attempt to explain the discrep-
ancy and use the explanation to generate a goal to remove
the problem. The goal is passed to the problem-solving
module of MIDCA, and the planner will generate a plan to
achieve it. This technique typifies the goal-driven auton-
omy approach to goal reasoning (e.g., [Aha et al., 2010;
Cox, 2013] ).

The results in this paper support the idea that vision has
an important role in supporting the intentions and actions of
the agent. The work is still preliminary in nature however, so
much future work remains to be performed.

7 Acknowledgments
ONR supports this research under grant number N00014-15-
1-2080. We thank the anonymous reviewers for their com-
ments and suggestions.

References
[Aha et al., 2010] DW Aha, M Klenk, H Munoz-Avila,

A Ram, and D Shapiro. Goal-driven autonomy: Notes
from the aaai workshop, 2010.

[Ayan et al., 2007] N Fazil Ayan, Ugur Kuter, Fusun Yaman,
and Robert P Goldman. Hotride: Hierarchical ordered
task replanning in dynamic environments. In Planning
and Plan Execution for Real-World Systems–Principles
and Practices for Planning in Execution: Papers from the
ICAPS Workshop. Providence, RI, volume 38, 2007.

[Cox et al., 2016] Michael T Cox, Zohreh Alavi, Dustin
Dannenhauer, Vahid Eyorokon, and Hector Munoz-Avila.
Midca: A metacognitive, integrated dual-cycle architec-
ture for self-regulated autonomy. In AAAI, 2016.

[Cox, 2013] Michael T Cox. Question-based problem recog-
nition and goal-driven autonomy. In Goal Reasoning: Pa-
pers from the ACS workshop, page 10, 2013.

[Dannenhauer and Munoz-Avila, 2015] Dustin Dannen-
hauer and Hector Munoz-Avila. Raising expectations
in gda agents acting in dynamic environments. In In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-15), 2015.

[Fermuller and Aloimonos, 1994] C. Fermuller and Y. Aloi-
monos. Vision and action. IVC, 1994.

[Fikes and Nilsson, 1971] Richard E Fikes and Nils J Nils-
son. Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3-
4):189–208, 1971.

[Findlay and Gilchrist, 2003] J. M. Findlay and I. D
Gilchrist. Active vision: The psychology of looking and
seeing, 2003.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated planning: theory & practice. Else-
vier, 2004.

[Marr, 1982] David Marr. A computational investigation into
the human representation and processing of visual infor-
mation. Vision, pages 125–126, 1982.

[Nau et al., 1999] Dana Nau, Yue Cao, Amnon Lotem, and
Héctor Muñoz-Avila. SHOP: Simple hierarchical ordered
planner. In Proceedings of the 16th IJCAI-Vol. 2, pages
968–973. Morgan Kaufmann, 1999.

[Paisner et al., 2013] Matt Paisner, Michael Maynord,
Michael T Cox, and Don Perlis. Goal-driven autonomy in
dynamic environments. In Goal Reasoning: Papers from
the ACS Workshop, page 79. Citeseer, 2013.

[Talamadupula et al., 2010] K. Talamadupula, P. Benton,
J.and Schermerhorn, M. Scheutz, and S. Kambhampati.
Integrating a closed-world planner with an open-world
robot: A case study. In Proceedings of AAAI 2010, 2010.



[Vattam et al., 2013] Swaroop Vattam, Matthew Klenk,
Matthew Molineaux, and David W Aha. Breadth of ap-
proaches to goal reasoning: A research survey. In Goal
Reasoning: Papers from the ACS Workshop, page 111,
2013.

[Veloso et al., 1998] Manuela M Veloso, Martha E Pollack,
and Michael T Cox. Rationale-based monitoring for plan-
ning in dynamic environments. In AIPS, pages 171–180,
1998.

[Winograd, 1971] T. Winograd. Procedures as a represen-
tation for data in a computer program for understanding
natural language, 1971.


