WORD2HTN: Learning Task Hierarchies Using
Statistical Semantics and Goal Reasoning

Sriram Gopalakrishnan and Héctor Muioz-Avila

Lehigh University
Computer Science and Engineering
19 Memorial Drive West
Bethlehem, PA 18015-3084 USA
{srg315,munoz}@cse.lehigh.edu

Abstract

This paper describes WORD2HTN, an algorithm
for learning hierarchical tasks and goals from plan
traces in planning domains. WORD2HTN com-
bines semantic text analysis techniques and sub-
goal learning in order to generate Hierarchical Task
Networks (HTNs). Unlike existing HTN learning
algorithms, WORD2HTN learns distributed vec-
tor representations that represent the similarities
and semantics of the components of plan traces.
WORD2HTN uses those representations to clus-
ter them into task and goal hierarchies, which can
then be used for automated planning. We de-
scribe our algorithm and present our preliminary
evaluation thereby demonstrating the promise of
WORD2HTN.

1 Introduction

Hierarchical Task Networks (HTN) planning is a problem-
solving paradigm for generating plans (i.e., sequences of ac-
tions) that achieve some input tasks. Tasks are symbolic rep-
resentations of activities such as achieve goal g, where g is an
standard goal. Tasks can be more abstract conditions such as
“protect the house”. HTN planning generates a plan by using
a recursive procedure in which tasks of higher level of ab-
straction are decomposed into simpler, more concrete tasks.
The task decomposition process terminates when a sequence
of actions is generated solving the input tasks. HTN plan-
ning’s theoretical underpinnings are well understood [Erol et
al., 1994] and has been shown to be useful in many practical
applications [Nau et al., 2005].

HTN planners require two knowledge sources: operators
(generalized definitions of actions) and methods (descriptions
of how and when to decompose a task). While operators
are generally accepted to be easily elicited in many plan-
ning domains, methods require a more involved and time-
consuming knowledge acquisition effort. Part of the reason
for this effort is that crafting methods requires us to reason
about how to combine operators to achieve the tasks. For
this reason, automated learning of HTN methods have been
the subject of frequent research over the years. Most of the
work on learning HTNs use structural assumptions and addi-
tional domain knowledge explicitly relating tasks and goals

Ugur Kuter
SIFT, LLC
9104 Hunting Horn Lane,
Potomac, Maryland 20854 USA
ukuter @sift.net

to make goal-directed inferences to produce task groupings
and hierarchies [Choi and Langley, 2005; Hogg et al., 2008;
Zhuo et al., 2014].

In this paper, we present a new semantic goal-reasoning
approach, called WORD2HTN, for learning tasks and their
decompositions by identifying subgoals and learning HTNs.
WORD2HTN builds on work involving word embeddings,
which are vector representations for words. These were
originally developed for Natural Language Processing(NLP).
WORD2HTN combines that paradigm and an algorithm to
process it for generating task hierarchies. Our contributions
are the following:

e We describe WORD2HTN, a new semantic learning al-
gorithm for identifying tasks and goals based on seman-
tic groupings automatically elicited from plan traces.
WORD2HTN takes as input the execution traces as sen-
tences with the planning components of the trace (op-
erators, atoms and objects) as words . It then uses
the popular semantic text analysis tool WORD2VECTOR
[Mikolov et al., 2013], which uses a neural network to
learn distributed vector representations for the words in
the plan trace. We discuss the WORD2VECTOR tool in
Section 4 and give an intuitive explanation for why it
learns good representations. To put it succinctly, dis-
tributed vector representations are learned based on the
co-occurrence of the words in the input traces. From
the vector representations, we can generate groupings
through agglomerative hierarchical clustering. This
groups words that are closer together, and repeats this
process to build a hierarchy.

e We describe a new algorithm that extracts HTNs from
the clustering. The results of the clustering can also
be used to group goals and identify tasks. The similar-
ity of the learned vector representations with the current
and goal states (input to the planner) will be used as the
method to decompose a higher level task in an HTN to
the next action to be taken.

e We report and discuss our implementation of the
WORD2HTN approach and demonstrate the progress
and promise via examples in a logistics planning do-
main.

2 Semantic Word Embeddings and Vector
Representations

For semantic reasoning about goals and tasks, we took inspi-
ration from Natural Language Processing(NLP) techniques,
specifically Word Embeddings. They are a way of repre-
senting, or embedding a word in an N-dimensional space
as distributed vectors [Mikolov et al., 2013]. This tech-
nique for learning word embeddings is popularly called
WORD2VECTOR. The number of dimensions N can be
chosen by heuristics or experimentally (we will discuss
more on this in Section 4). To illustrate how words
might look, let us consider a component of a domain
Location] in a 5-dimensional space. It maybe represented by
[0.5,1.2,—0.6,0.8,0.4], The component Location2 might
have a representation of [0.4,1.4,0.5,0.9,0.3]. Notice how
all dimensions but one are close in value. This is a simplified
example to illustrate how related components could be en-
coded in the vector model. Most of the dimensions would be
similar when Locationl and Location2 are used frequently
in similar contexts. Their vector representations would be
learned by adjusting the dimensions from their initial ran-
dom values in the same directions. It is important to note
that we do not know what each dimension means with the
WORD2VECTOR approach to learning word embeddings. In
NLP, they are referred to as “latent semantic dimensions” be-
cause they implicitly encode properties, but what each dimen-
sion means is hidden and affected by the training process. See
Figure 1 for an example of distributed vector representations
for some components of a logistics (transportation) domain

BOX 1

OAD TRUCK T1 BOX1 |

AIRPLANE 1 L
RUCK1 MOVE TRUCK |

0.8

=
TRUCK1 L1 L2 | 2
g
| | o
12 ro4 3
| 2
+02 8
\‘ w
100
10
/,/ 08
= <06
00 02 T—— o4
0t 06— _~~ (.2 Latent Dimension 2
Latent Dimension 1 08 Tl
10 00
Figure 1: Sample Distributed Vector Representations of

Components from Logistics Domain

Mikolov et al. showed how quality vector representations
of words from a corpus (group of documents) can be learned
using neural networks. The neural network starts with ran-
domized initial weights, and corrects them with the training
sentences (plan traces in our case) . The representations are
learned by looking at words within a specified context win-
dow size. The context window size (C) defines the number of
words (planning components) before and after a target word
that is used to define the context. The target component’s rep-
resentation is adjusted to be closer to the words in it’s context.
When all the sentences (plan traces) are iterated over, the fi-
nal N-dimensional representation (/V is an input parameter)

of each word in the vocabulary is learned. The distributed
representations are learned for each word to maximize each
word’s similarity with the words that appear in its contexts.
Additionally, words that do not occur within the same con-
texts would have differently aligned vectors. More details on
this process is discussed in Section 4.

3 Definitions and Terminology

We use standard definitions from the planning literature, such
as objects, atoms, actions, and state variables [Ghallab et al.,
2004] [Chapter 2]. We will refer to these constructs as plan-
ning components. They correspond to the “words” in the plan
traces. We summarize our definitions for planning compo-
nents below.

An action is a primitive (smallest) task with arguments that
are constant components (e.g., load-truck truck1,location1
). Note that the entire action component including the argu-
ments is treated as one word in the plan traces while learn-
ing. An action can change the state of the domain when it is
applied. Each action has a precondition and an effect. The
precondition and effect of an action is a set of atoms. For ex-
ample, “Move Truckl Location] Location2”, is an action that
has the precondition “Truckl in Location 1”. The effect can
be “Truckl in Location2”.

An atom is a positive literal, such as “Truckl in Loca-
tion2”. All the literals in the initial work were atoms (positive
literals) as opposed to negations. “Truckl not in Location2”
is instead covered by “Truckl in Location3” and the like.

A state is a collection of literals, indicating the current val-
ues for properties of the objects in a domain. A goal is a con-
junction of literals. A plan trace for a state-goal (s, g) pair
is a sequence of actions that, when applied in s, produces a
state that satisfies the goal g. We represent a plan trace by a
series of preconditions, actions, and their effects. As an ex-
ample, the plan trace to transport packagel from Locationl
to Location2 could be as follows:

Precondition (“packagel”, “packagel in Loca-
tionl”, “Location1”, “Truck1”, “Truckl in Location
17, “Location 17)

Action(“Load packagel Truckl Locationl”)
Effect(“packagel”, “packagel in Truckl”,
“Truckl1”,

“Truck1”, “Truckl in Location 17, “Location 1)

Precondition(“Truck1”, “Truckl in Location 17,
“Location 1)

Action(“Move Truckl Locationl Location2”)
Effect(“Truck1”, “Truckl in Location 2”, “Location
2)

Precondition (“packagel”, “packagel in Truckl”,
“Truckl1”, “Truckl”, “Truckl in Location 2”, “Lo-
cation 2”)

Action(“Unload packagel Truckl Location2”)
Effect(“packagel”, “packagel in Location2”,
“Location2”, “Truckl”, “Truckl in Location 27,
“Location 2")

In the previous example, the goal only consists of a single
atom, namely ‘“Packagel in Location2”. If the goal also re-
quires that Truck 1 be in Location2, then the goal would be
the conjunction of two atoms “Packagel in Location2” and
“Truckl in Location2”. Note that in the actual plan traces,
that were fed into our algorithm, there was no separation
of components into groups of actions, preconditions, and ef-
fects. These were added in the example for readability.

Lastly, a rask denotes an activity that needs to be per-
formed. Frequently to convert a goal into a task we encap-
sulate the goal with a task accomplishGoal that performs
the actions needed from an initial state to achieve the goal.
WORD2HTN will identify subgoals for achieving a goal.
Each of these subgoals will be encapsulated in smaller sub-
tasks thereby generating a hierarchical structure.

4 Learning Distributed Vector
Representations for Plan components

We observe that distributed vector representations can be
learned well for components in plan traces. In this paradigm,
the natural-language text words are atoms, actions, and the
objects of the domain (like Truckl). Similar components’
learned vector representations are closer together. We used
the WORD2VECTOR approach for generating word embed-
dings. Each sentence (plan trace) is separately processed
from every other sentence in WORD2VECTOR. A sentence
could either be a complete plan trace from a start state to a
goal state, or even just a single action with its precondition
and effects.

In our initial experiments, we chose the first option of com-
plete plan traces (i.e., sequences of one or more actions) in a
sentence. We chose this approach since the actions to reach
the goal state are sequentially executed with the next action’s
preconditions requiring the previous action’s effects. If the
actions in the traces were ordered with no semantic reason,
then it would help the learning by breaking the plan trace into
sentences of one action per sentence. This would prevent in-
ferring any incorrect relationships between components that
are only coincidentally next to each other.

The WORD2VECTOR approach for learning the distributed
representations, uses a shallow neural network model and
model parameters that define how WORD2VECTOR learns
the representations. The most important model parameters
are: the number of dimensions IV, the context window size
C, and the learning rate «.. After setting these, we pass in
the sentences of the data set. Every component is encoded
using one-hot encoding. This means every input component
is a long vector of size V/, which is the total number of com-
ponents in the data set. Only one dimension of the vector
in one-hot encoding is set to ”’1”, and it is unique for each
word. This is a sparse vector, which matters since it makes
the multiplication operations on it cheaper. This sparse vec-
tor is the input form passed into the neural network. The edge
weights of the neural network are randomly initialized. With
every data point, the edge weights are adjusted by a learning
rate () such that the target word and those within it’s context
have closer vector representations.

There are two common neural network structures

in WORD2VECTOR .One is Continuous-Bag-of-Words
(CBOW) and the other is Skip-Gram (SG). These are two
ways of comparing a word to it’s context, and that determines
the network structure (see Figure 2; cf. [Rong, 2014] used
with author’s permission).

e CBOW. In CBOW, the input consists of all the words
within the context window of the target word. In figure
2, the left side is the CBOW structure. The inputs are
the context words for xj, and these are x1y, Zok...xok,
where C is the size of the context window. Then the
hidden layer’s values are calculated from each of the
input words multiplied (matrix multiplication) by the
edge weights Wy, v, and then averaged. Note that V'
is the size of the vocabulary or the total number of plan
components, and N is the number of dimensions of the
learned vector representations.

The hidden layer consists of nodes hq, hs,...hy for a
total of IV nodes. The output value is the hidden layer
value multiplied by the output edge weights Wy, .
The output is again a V-dimensional vector like the in-
put. It is expected to match the target word’s one-hot
encoding. The error is back propagated through the net-
work and the edge weights are adjusted by the learning
rate «.

o SG. In Skip-Gram, the network is inverted (refer to right
side of figure 2). The input is the single target word xy,
and the output is compared to the each of the words that
makes up the context in which the target word was found
W1k, Y2k, ----Yok)- So the single input word’s represen-
tation in the NV-dimensional model should be close to the
representations of the words in it’s context. The error is
back propagated to updated the edge weights just as in
CBOW.

In the neural network, each component’s one-hot encod-
ing is being projected onto an N-dimensional space. To un-
derstand how this is happening, let us look at a simple and
smaller network. Let us say that the hidden layer has N = 3
nodes, and this means the model is building vector represen-
tations of 3 dimensions. For our example, let us set the vo-
cabulary size V' as 5. The value of each node in the hidden
layer, is the value along one of the N dimensions. The in-
put edge weights are of dimensions 5x3. Each column is
the representation of a basis vector of the N-dimensional
space in the one-hot encoding form of the input. For exam-
ple, the first latent dimension’s basis vector representation in
the V-dimensional space of the input could be of the form
[0.1,0.02,0.5,0.3,0.7].

The input word(s) is in one-hot encoding format, so
Truckl would be [0,1,0,0,0]. When an input word is mul-
tiplied with the edge weights, what we are really doing is tak-
ing the dot-product of the input word, with each of the basis
vectors of the N-dimensional semantic space. This is the pro-
jection of the input word onto each of the basis vectors. So
the values of the nodes hl, k2, h3 in our example would be
the representation of the word T'ruck1 in the 3 dimensional
space.

In CBOW network, the hidden layer’s values would be the
average of the projections of each input words. On the output

\Input layer

" 0 000 [T 0 s 000

[@

LN sXsXs]|

0

/ cx1-dim

@

3 Output layer
/‘ =
/ M ¥i;
/Wiy 2
Input laver s
o~ Hidden layer/ Lot

\
.
CHeXsXei}

\Wr B
: d

)

Yeji

el

CxJ-dim

Figure 2: Comparison of CBOW and SG Neural Network Configurations for WORD2VECTOR.

side, the edge weights represent the N-dimensional represen-
tation of each word of the vocabulary. Column 1 of the output
weights would be the vector representation for word 1 of the
vocabulary. In the current example, the edge weights would
be in a 3x5 matrix. So when the hidden layer’s values are
multiplied by the output edge weights, we are taking the dot
product of a vector in the 3-dimensional model with each of
the words in the vocabulary. If two vectors are similar (closer
together), the dot product will be greater. So in our example,
the output could be a 5-dimensional vector like [0.2, 0.7, 0.8,
0.1, 0.1] when word 2 and 3 are the most similar. Finally, we
run a softmax function on the output to get the probability of
each output word. The difference (error) with the actual result
in the plan trace is then back propagated to update the edge
weights.For more details on the math and error propagation,
please refer to the paper by Rong (2014).

Once the vector representations are learned, we can ana-
lyze them for relationships. The similarity between two com-
ponents is defined by the cosine distance of their vector rep-
resentations. This is the cosine of the angle between the vec-
tors. To get an intuitive idea see Figure 1 again, which shows
how similar vectors can be more closely aligned. The similar-
ity is calculated by taking the dot product of the normalized
vectors of the components. Cosine distance is a standard met-
ric for similarity between word embeddings in NLP. We have
adopted it as well, and initial experiments have show good
results with this metric.

S Learning Goal and Task Hierarchies

The motivation for using vector representations is to trans-
form the problem into a form in which we can apply more
general and powerful algorithms. We transform it to a
distributed vector representation using the WORD2VECTOR
tool. This representation can then be used to apply clustering
algorithms like Agglomerative clustering or K-means on the
vector representations. We chose to use agglomerative clus-

tering (bottom-up hierarchical clustering). This will generate
a hierarchical grouping of all the actions by their semantic
similarity (cosine distance).

We generate plan traces for the logistics domain by hand
coded HTNSs. It must be noted that in addition to the precon-
ditions and effects for each action, we also insert the atoms
associated with the objects in the action. This means that
“Location] in Cityl” will be added because it is an atom as-
sociated with “Locationl” which is an object in the action
“Load packagel Truckl Location1”. Related atoms are added
to help learn all relationships in the domain. Another impor-
tant point is that the order of atoms, and the order of objects
around those atoms is randomized for each trace. Only the
fact that the preconditions occur before the action, and the
effects occur afterwards is fixed. For example:

Precondition (“packagel”, “packagel in Loca-
tionl”, “Locationl”, “Truckl”, “Truckl in Location
17, “Location 17, “Location 17, “Locationl in

City1”, “City 1)

Action (“Load packagel Truckl Location1”)
Effect (“packagel”, “packagel in Truckl”,
“Truck1”,

“Truck1”, “Truckl in Location 17, “Location 17,
“Location 17, “Locationl in Cityl”, “City 17)

Once the component’s vector representations are learned,
we then use it to identify clusters of atoms and actions for
grouping. One of the groupings that we can learn are the sets
of actions which are semantically related, and make tasks.

After identifying a semantically related set of actions, we
can identify the atoms achieved (net effects), and the initial
atoms needed to start it (net preconditions) using knowledge
of each action’s preconditions and effects. We thus identify
the pair (net preconditions, net effects) as a task, which is used
to build an HTN by combining it with other action groups that

have related preconditions or effects. Thus we can learn tasks
from the grouping of planning components by their similarity
(cosine distance).

Groups are combined hierarchically based on the strength
of the similarity between them (cosine distance). An action
is linked to another one when there are atoms that are com-
mon to both actions. This can happen, for example, when the
effects of one action are in the preconditions of another one.

6 Implementation

6.1 Experimental Domain

In order to test the methodology, we use a slight variant of the
logistics transportation domain [Veloso, 1992]. In this do-
main packages must be relocated between locations. These
locations can be in the same city or in a different city. Trucks
are used to transport packages between locations in the same
city. Airplanes are used to transport packages between air-
ports (i.e., a special type of location) in different cities. In
our variant, we use planets to add another transport layer. To
travel between planets rockets are used. Rockets can travel
between space stations. In our experimental setup, we use
state configurations consisting of two planets, cities in plan-
ets, and locations within cities. Plan traces for transporting
the package from a randomly-selected location in Planet] to
a location in Planet2 were generated. These plan traces were
then given into WORD2VECTOR to learn the vector repre-
sentations. The plan traces consisted of sequences of oper-
ators. Each operator was preceded by its preconditions and
succeeded by its effects. In addition to the precondition and
effects, the atoms associated with the objects that the opera-
tor affects were included, such as “Locationl in Cityl”, even
though it is not explicitly a precondition. By including all the
object information associated with the objects in the opera-
tor, we can better learn relationships and hierarchies in the
domain. One example of learning such a hierarchy is group-
ing all the actions associated to a city in one task as in figure
3.

6.2 WORD2HTN Setup

To train the model, we tune parameters of the
WORD2VECTORiImplementation for it to learn quality
vector representations. The important parameters that were
tuned are the following:

Similarity Evaluation. The similarity between two com-
ponents is the dot product of their normalized vectors. This
is also equal to the cosine of the angle between the compo-
nents’ vectors. The idea is that if the principal components of
the two vectors are both high (closer to 1), they will contribute
more to the similarity value. On the other hand if either one is
small, then it will contribute less to the similarity. Since these
are unit vectors, the sum of all the dimensional products can
be at most 1 (when they are identical).

The similarity cutoff of 0.60 was chosen based on the expe-
riences of other engineers and researchers in NLP who have
used WORD2VECTOR. Our initial experimental results show
this value to be good as well. We are still searching for formu-
las or metrics to help choose a good cutoff, or to dynamically

change the cutoff when grouping more dissimilar components
into hierarchically larger groups.

If redundant preconditions are consistently present in
the training data, then the association with the action will
be learned. However, if atoms and objects appear in-
frequently, and with other unrelated actions as well, then
the association is very weak. It is important to note
that WORD2VECTORonly learns similarities by frequent co-
occurrences. We cannot learn an action’s cause and effect.
What we can learn is statistically significant grouping of ac-
tions into groups (tasks) with subgoals based on their inferred
semantic relationships.

Semantic Space Dimensions. The dimension size for the
vector representations significantly affects the performance of
the model. If there are too few dimensions, the relationships
cannot be distributed effectively. Fewer dimensions would
also cause the similarity between vectors to be higher than it
ought to be. It is better to err on the side of more dimensions,
even if the training time increases. As a rule of thumb, we
set the dimension size to twice the number of objects in the
domain. The intuition was that every atom and action uses a
subset of the objects in the domain. Therefore, setting the di-
mension size as a function of the number of atoms or objects
would give enough space to distribute the vector representa-
tions for effectively capturing the relationships. This is not a
hard rule, but an intuition that we used. In our experiments,
there were 26 objects, and so we used 52 dimensions.

Another approach to finding an appropriate value for any
parameter would be to vary one parameter for multiple tri-
als and compare the results. So increase the number of di-
mensions, and compare the results with expected similarities.
When the similarity of two components that was expected to
be high, shows little change with increasing dimensions, then
stop increasing the number of dimensions. If we graph the di-
mension size on the x-axis, and the similarity of the test com-
ponents on the y-axis, the point would look like the knee of
the graph. It is the point when the incremental improvement
with parameter changes is minimal. Needless to say, this ap-
proach requires multiple iterations, and having a set of plan
components for which we expect high similarity. Although
this approach can be time consuming, it can help train a good
model.

Context Window Size. This is the size of the window (or
number of words) around the target word which defines its
context. The context window size ought to be large enough
to cover the relevant words. When choosing a window size
it is better to err on the smaller side, and use more training
data. For our experiments we chose a window size of 10. A
smaller window size ensures that the atoms and objects that
fall inside the context are actually relevant to the target word.
Recall that every sentence is a plan trace consisting of a series
of actions, atoms, and objects. To ensure that as many of the
relevant planning components are associated with the target
action, it also helps to randomize the order of the atoms and
objects in the preconditions and effects. Randomizing the or-
der ensures that the many of the relevant atoms definitely fall

into the context window (especially if it is small) in at least
some of the training data. However, if the window size is
too large, it is more likely to pick up noise or artifacts from
the training data that are not semantically relevant. An exag-
gerated example to illustrate this problem would be that the
window size is larger than the entire plan trace. In that case,
every word’s context is every other word in the trace and that
would be incorrect. If a sentence only contains one action
with preconditions and effects, then setting the window size
to cover the entire sentence makes sense, since the context is
the entire sentence. This is however not the case, and a plan
trace typically contains many actions.

6.3 Ordering actions and Hierarchical Clustering.

After the vector representations of the model are trained, we
can then begin clustering the actions, atoms, and objects into
groups by their semantic similarity. One effective way to do
this is agglomerative clustering. This is a bottom-up hierar-
chical clustering approach. What that means is, in every iter-
ation the closest components are grouped together into a new
unit, and the process is repeated. The distance metric is the
cosine distance between the vectors. The smallest angle be-
tween any one of a group of vectors and the new vector to be
added is the metric for deciding the next group to make. For
example, if the action “Move Truck Locationl Location2”
is closer(more similar) to the atom “Truck in Location2” (as
per its vector representation) than any other pair of vectors,
then those two words would be grouped first before others.
Later the new group maybe combined with “Truck in Loca-
tionl” to form another group. In this manner, we can group
semantically related components together. An example that
shows actions being grouped hierarchically is shown in fig-
ure 3. Other atoms and objects in the graph were removed for
visibility as the graph would be cluttered with them.

After the clustering is complete, we have different subtasks
at different levels of the hierarchy. When planning and solv-
ing, in order to decide what action to take we use the HTNs
and vector values learned by WORD2VECTOR and search
with the input current state’s atoms and objects, as well as
the goal state’s atoms and objects (like “Packagel in Loca-
tion5”, “Packagel”, and “Location5”). The task that has the
highest similarity with the current state and goal state, will
be chosen. Then that task will be decomposed further to
choose the subtask with the highest similarity, and so forth
until a primitive action is reached that can no longer be de-
composed. This smallest action is then executed to approach
the goal state. Please note that we have not yet completed the
code to choose the action and solve new problems from the
learned HTNs. We have finished the agglomerative clustering
from the learned vector representations, an example of which
is shown in figure 3.

6.4 Initial Experiments and Results

The training plan traces were generated from hand coded
rules on the logistics domain that was specified. There were
9 different plan traces because of 9 different starting states.
All traces had the same goal of delivering Packagel to a
location in Planet2 from a location in Planetl. The aver-
age length of the plan traces was 221 words (actions, atoms,

and objects). The traces were fed into an implementation of
WORD2VECTOR in python [Rehtifek and Sojka, 2010]. The
implementation iterated over the different plan traces 1000
times to help the vector representations stabilize. Multiple
iterations are typical in Natural Language Processing as the
learning rate () is typically a small value like 0.001 (the
value we used). Finally, after the model was trained, the re-
sulting vectors were put through an agglomerative clustering
function (as described in the previous section). This results
in hierarchical grouping of the planning components. We can
see some of the grouped actions in Figure 3. Other compo-
nents (atoms and objects) were removed for visibility.

025/

015

010

1 - COSINE DISTANCE

0.00

LOAD PACKAGE1 TRUCK3 L2_CITY3 UNLOAD PACKAGE1 TRUCK3 L3 CITYS LOAD PACKAGE1 TRUCK3 L1_CITYS
MOVE TRUCK3 L2_CITY3L3_CITY3 MOVE TRUCK3 L1_CITY3 L3_CITY3 MOVE TRUCKS L2_CITY3 L1_CITY3

Figure 3: Agglomerative Hierarchical Clustering of Actions

in One City

The results met our expectations. The hierarchy learned
from the plan traces, was as we constructed the domain. All
the actions relating to transporting the package within a city
(by truck) were all grouped together. The actions related to
moving the package between cities (by airplane) was in a
group. Those two groups were combined together first, be-
fore being combined with the actions to transport the package
across planets (by rocket).

While the hierarchy meets our expectations, we have yet
to implement the code to use the learned HTNs and vector
representations to solve problems in the domain. We would
also like to analyze WORD2HTN performance in a domain
that does not have a clear hierarchy.

7 Related Work

In order to understand how our work relates or compares to
other work in the field, let us look at some of the planning
and HTN literature. Most existing work on learning HTN
planning knowledge focuses on using symbolic techniques to
group the actions. For example, ICARUS [Choi and Langley,
2005] learns HTN methods by using skills (i.e., abstract defi-
nitions of semantics of complex actions). The crucial step is a
teleoreactive process where planning is used to fill gaps in the

HTN planning knowledge. For example, if the learned HTN
knowledge is able to get a package from an starting location
to a location A and the HTN knowledge is also able to get
the package from a location B to its destination, but there is
no HTN knowledge on how to get the package from A to B,
then a planner is used to generate a trace to get the package
from A to B and skills are used to learn new HTN methods
from the generated trace.

Another example is HTN-Maker [Hogg et al, 2008].
HTN-Maker uses task semantics defined as (precondi-
tions,effects) pairs to identify segments (i.e., sequences con-
tiguous actions) in the input plan trace where the (precondi-
tions, effects) are met. Task hierarchies are learned when a
segment is identified as achieving a task and the segment is a
subsegment of another larger segment achieving another task.
This includes the special case when the subsegment and the
segment achieve the same task. In such a situation recursion
is learned.

The only other work that we know which learns HTN
planning knowledge using training data to build a model is
HTNLearn [Zhuo et al., 2014]. HTNLearn transforms the in-
put traces into a constraint satisfaction problem. Like HTN-
Maker, it assumes (preconditions,effects) task semantics to
be given as input. HTNLearn process the input traces con-
verting them into constraints. For example, if a literal p is
observed before an action a and «a is a candidate first sub-
task for a method m, then a constraint c is added indicating
that p is a precondition of m. These constrains are solved
by a MAXSAT solver, which returns the truth value for each
constraint. For example, if ¢ is true then p is added as a pre-
condition of m. WORD2HTN does not assume that the task
semantics are given. Instead the similarities and groups are
elicited from the learned vector space representations.

Similar to hierarchical abstraction techniques used in HTN
planning, domain-specific knowledge has been used to search
Markov Decision Processes(MDPs) in hierarchical reinforce-
ment learning [Parr, 1998; Diettrich, 2000]. Given an MDP,
the hierarchical abstraction of the MDP is analogous to an in-
stance of the decomposition tree that an HTN planner might
generate. Given this hierarchical structure, these works per-
form value-function composition for a task based on the value
functions learned over its subtasks recursively. However, the
hierarchical abstractions must be supplied in advance by the
user. In our work WORD2HTN the hierarchical abstractions
are learned based on the co-occurrence of the objects,atoms,
and actions in the plan traces.

8 Conclusions

We have described WORD2HTN, a new algorithm for learn-
ing hierarchical tasks and goals from plan traces in planning
domains. WORD2HTN first learns semantic relationships
from plan traces and encodes them in distributed vector rep-
resentations using WORD2VECTOR. Then this vector model
is used to combine the components that are most similar into
hierarchical groups using agglomerative clustering. This hi-
erarchical grouping is used to define tasks and build HTNs.
The next step in our research is to implement the code that
uses the learned HTNs and vector representations to choose

actions for reaching the input goal states. We also want to
find an appropriate metric to measure the efficiency of the
plan trace produced by the planner using the learned model.
After completing our experiments in the logistics domain, we
will apply this approach to different domains such as Blocks
World to test its validity. We will also conduct experiments
with several benchmark planning domains from the auto-
mated planning literature.

Thus far the experiments that we have done have been with
deterministic traces. However, the reason we started this re-
search, is because we think this method can work well with
non-deterministic traces as well. Moving forward, we will
generalize our approach to probabilistic actions with multi-
ple outcomes. We plan to generate plan traces for learning
from the probabilistic actions, where each plan trace will re-
sult from a probabilistic execution of of actions. We believe
that the rest of the WORD2HTN algorithms will still work be-
cause the components with shared contexts will still have sim-
ilar vector dimensions. One difference is that the similarity of
the effects of an action would depend on the frequency of oc-
currence (probability distribution) of the different effects. For
example if the action “LoadTruck Truckl Packagel” resulted
in the atom “Packagel in Truck1” more than 80 percent of
the time (over all the training plan traces), then the two com-
ponents would be more closely related. If 20 percent of the
time, it resulted in “Packagel is Broken” then there would
be a learned similarity of that atom with the action to load
the truck as well (albeit a weaker similarity). We will inves-
tigate this hypothesis both theoretically and experimentally
with non-deterministic plan traces.

Acknowledgments

This research was funded in part by NSF grant 1217888
and by Contract FA8650- 11-C-7191 with the US Defense
Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory. Approved for public release, dis-
tribution unlimited. The views expressed are those of the au-
thors and do not reflect the official policy of the U.S. Govern-
ment.

References

[Choi and Langley, 2005] Dongkyu Choi and Pat Langley.
Learning teleoreactive logic programs from problem solv-
ing. In Inductive Logic Programming, pages 51-68.
Springer, 2005.

[Diettrich, 2000] Thomas G Diettrich. Hierarchical rein-

forcement learning with the maxq value function decom-
position. J. Artif. Intell. Res.(JAIR), 13:227-303, 2000.

[Erol et al., 1994] Kutluhan Erol, James Hendler, and
Dana S Nau. Htn planning: Complexity and expressivity.
In AAAI volume 94, pages 1123-1128, 1994.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated planning: theory & practice. Else-
vier, 2004.

[Hogg et al., 2008] Chad Hogg, Héctor Munoz-Avila, and
Ugur Kuter. Htn-maker: Learning htns with minimal ad-

ditional knowledge engineering required. In AAAI, pages
950-956, 2008.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. Efficient estimation of word rep-
resentations in vector space. In Workshop proceedings of
the First International Conference on Learning Represen-
tations, Scottsdale, Arizona, May 2013. International Con-
ference on Learning Representations.

[Nau et al., 2005] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami,
Ugur Kuter, Dan Wu, Fusun Yaman, Héctor Muifioz-Avila,
and J William Murdock. Applications of shop and shop2.
Intelligent Systems, IEEE, 20(2):34-41, 2005.

[Parr, 1998] R. Parr. Hierarchical Control and learning for
Markov decision processes. PhD thesis, Univ. of Califor-
nia at Berkeley, 1998.

[Rehtifek and Sojka, 2010] Radim Rehiifek and Petr Sojka.
Software Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks, pages 45-50, Val-
letta, Malta, May 2010. ELRA. http://is.muni.
cz/publication/884893/en.

[Rong, 2014] Xin Rong. word2vec parameter learning ex-
plained, 2014.

[Veloso, 1992] Manuela M Veloso. Learning by analogical
reasoning in general problem solving. Technical report,
DTIC Document, 1992.

[Zhuo et al., 2014] Hankz Hankui Zhuo, Héctor Mufoz-
Avila, and Qiang Yang. Learning hierarchical task network
domains from partially observed plan traces. Artificial in-
telligence, 212:134-157, 2014.

