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Abstract
State-of-the-art planning methods for goal-oriented Markov
Decision Processes often work by limiting planning to re-
stricted regions of the state space. The resulting problems can
then be solved quickly, and the process repeated during ex-
ecution when states outside the restricted region are encoun-
tered. Typically, planning in these approaches is constrained
to states that are within some distance measure of the start
state (e.g., number of actions or probability of being reached).
However, this short-sighted approach sometimes makes it dif-
ficult to propagate information from states that are closer to
the goals than to the start state, and thus misses opportunities
for improved planning. In this work, we show an alternative
approach in which short-sightedness is used only for decid-
ing whether a state should be labeled as solved or not, but
otherwise the set of states that can be accounted for during
planning is unrestricted. Based on this idea, we propose the
FLARES algorithm and show that it outperforms other state-
of-the-art methods in several benchmark domains.

Introduction
Markov Decision Processes (MDPs) are a highly-expressive
model for probabilistic sequential decision making. One
type of MDP that has received significant attention by the
planning community is the Stochastic Shortest Path Prob-
lem model (SSP) (Bertsekas and Tsitsiklis [1991]), where
the objective is to minimize the expected cost of reaching a
goal state from a start state. The SSP model is more general
than other MDP classes (finite horizon MDPs and infinite-
horizon discounted-reward MDPs) (Bertsekas and Tsitsiklis
[1995]), and can be used for decision-making in the presence
of multiple goals.

Solving large MDPs and SSPs optimally is a computa-
tionally intensive task. Although they can be solved in poly-
nomial time in the number of states, most interesting prob-
lems have a state-space whose size is exponential in the
number of the variables that describe the problem (Littman
[1997]). This has led to the development of a range of model
reduction techniques (Dean et al. [1997]) as well as heuris-
tic search algorithms (e.g. LAO* (Hansen and Zilberstein
[2001]) and LRTDP (Bonet and Geffner [2003b])) that at-
tempt to focus the computation on states that are relevant to
an optimal policy. However, even restricting the attention to
states reachable by optimal policies could lead to prohibitive
computational costs.

Recent algorithms try to cope with this challenge by re-
ducing the size of the reachable state-space. Examples of
this are determinization-based replanning methods, such as
FF-Replan (Yoon et al. [2007]), RFF (Teichteil-Königsbuch
et al. [2010]), and model reduction approaches such as
SSiPP (Trevizan and Veloso [2012b]) and theMk

l reduced
model framework (Pineda and Zilberstein [2014]). How-
ever, these methods still have some shortcomings: some are
restricted to particular problem representations (e.g., FF-
Replan and RFF use PPDDL (Younes and Littman [2004])),
others require some form of pre-processing (Mk

l reduced
model framework), or only result in moderate time reduc-
tions with respect to other planners (SSiPP). Moreover, plan-
ning in these approaches is typically constrained to states
that are within some distance measure of the start state (e.g.,
number of actions, or probability); this makes it difficult to
propagate information from states that are closer to the goal
than to the start state, and thus misses opportunity for im-
proved planning.

In this work we introduce a new algorithm for action se-
lection in MDPs, FLARES (Fast Labeling from Residuals
using Samples), that can find high-performing policies or-
ders of magnitude faster than optimal algorithms. Unlike
previous methods, FLARES doesn’t require any specific
model representations, and can efficiently propagate infor-
mation from states closer to the goal. Moreover, with small
modifications, it also can be used to find optimal policies.
We show that FLARES is guaranteed to complete in a finite
amount of time, and experimental results on several well-
known benchmark domains show that it outperforms many
state-of-the-art planning algorithms.

Related Work
Determinization-based approaches saw a surge in popularity
after the success of FF-Replan on the IPPC’04 probabilis-
tic competition (Younes et al. [2005]). FF-Replan works by
creating a deterministic version of an MDP, solving this de-
terministic problem quickly using the FF planner, and then
re-plan if a state outside the current plan is reached during
execution. This algorithm is extremely fast but performance
may be poor for certain classes of probabilistic planning
problems (Little and Thiebaux [2007]).

More recent extensions of this idea offer performance
improvements. For instance, RFF (Teichteil-Königsbuch et



al. [2010]), the winner of the IPPC’08 planning competi-
tion (Bryce and Buffet [2008]), works by creating a high-
probability envelope of states and finding a plan for each of
these using determinization and FF. Another notable exten-
sion is FF-Hindsight (Yoon et al. [2008]), which works by
sampling different deterministic realizations of the transition
function, solve each of these using FF, and then aggregating
the result. These methods work well in practice, but, unlike
the method presented in this work, they are constrained to
problems described in PPDDL format.

More recent methods have explored other forms of
state-space reduction besides determinization. For instance,
SSiPP (Trevizan and Veloso [2012b]) is a method that cre-
ates reduced problems containing states reachable with at
most t number of actions, where t is an input parameter.
The reduced problems can be solved quickly using optimal
MDP solvers, providing a short-sighted method for action
selection.

A more recent variant reduces the model by pruning states
with low probability of being reached (Trevizan and Veloso
[2012a]). This latter variant also has some similarities with
the HDP(i,j) algorithm (Bonet and Geffner [2003a]). HDP
incorporates Tarjan’s connected component algorithm into
a heuristic search probabilistic algorithm, by labeling states
in the same strongly connected component as solved once
some error criterion is met. HDP(i,j) is a variant that only
considers states up to some plausibility1 i away from the
start state; the parameter j represents the plausibility value
used for re-planning. A key difference between SSiPP/HDP
and the approach presented here is that planning in these
methods is constrained to states that are “close” to the start
state, and can thus require large horizons to propagate infor-
mation from states closer to the goal; on the other hand, the
approach presented here does not restrict the search only to
states close to the start.

Finally, another form of reduction is the Mk
l reduc-

tion (Pineda and Zilberstein [2014]), which is a generaliza-
tion of determinization. In aMk

l reduced model some of the
outcomes of each action schema are labeled as exceptions,
and the transition function is modified so that exceptions are
ignored after k of them have occurred; the parameter l repre-
sents the maximum number of the non-exception outcomes
for action that are allowed. This reduction is more robust
than simpler determinization, but requires some preprocess-
ing to find the best reduction. Finding good reductions is an
open problem.

Background
In this work we consider a special type of MDP called
a Stochastic Shortest Path problem (SSP) (Bertsekas and
Tsitsiklis [1991]). An SSP is a tuple xS,A, T,C, s0, sgy,
where S is a finite set of states, A is a finite set of actions,
T ps1|s, aq P r0, 1s represents the probability of reaching
state s1 when action a is taken in state s, Cps, aq P p0,8q

1Plausibilities are related to the likelihood of reaching a state
from another one. A trajectory with plausibility 0 corresponds to a
trajectory with the highest probability, and larger values correspond
to trajectories with lower probability.

is the cost of applying action a in state s, s0 is an initial
state and sg is a goal state satisfying @a P A, T psg|sg, aq “
1^ Cpsg, aq “ 0.

A solution to an SSP is a policy, a mapping π : S Ñ A,
indicating that action πpsq should be taken at state s. A pol-
icy π induces a value function V π : S Ñ R that represents
the expected cumulative cost of reaching sg by following
policy π from state s. An optimal policy π˚ is one that min-
imizes this expected cumulative cost; similarly, we use the
notation V ˚ to refer to the optimal value function.

We restrict our attention to problems in which a policy
exists such that the goal is reachable from all states with
probability 1. Under this assumption, an SSP is guaranteed
to have an optimal solution, and the optimal value function is
unique. This optimal value function can be found as the fixed
point of the so-called Bellman update operator (Equation 1).

BUpsq :“ min
aPA

!

Cps, aq `
ÿ

s1PS

T ps1|s, aqV ps1q
)

(1)

A greedy policy for value function V is the one that
chooses actions according to Equation 2. Importantly, a
greedy policy over V ˚ is guaranteed to be optimal.

πpsq “ argmin
aPA

!

Cps, aq `
ÿ

s1PS

T ps1|s, aqV ps1q
)

(2)

Finally, the following additional definitions will be useful
for the rest of the paper.

• A trial of policy π is the process of sampling a trajectory
ps0, s1, . . . , sN q s.t. P psi`1|si, πpsiqq ą 0 and sN “ sg .

• The residual error for state s under value function V is
defined as Rpsq “ |BUpsq ´ V psq|.

The FLARES Algorithm
The fastest optimal solvers for SSPs are based on
heuristic search (LAO* (Hansen and Zilberstein [2001]),
LRTDP (Bonet and Geffner [2003b])). These algorithm are
characterized by the use of an initial estimate for the optimal
value function (referred to as a heuristic and denoted as h) to
guide the search to the more relevant parts of the problem.
Typically the heuristic is required to be admissible; i.e., a
lower bound on the optimal value function. Moreover, often
the heuristic is also required to be monotone, in which case
it must satisfy:

hpsq ď min
aPA

!

Cpa, sq `min
s1PS

T ps1|s, aqhps1q
)

(3)

Although heuristic search can result in significant com-
putational savings over Value Iteration and Policy Iteration,
their efficiency is highly correlated with the size of the re-
sulting optimal policy. Concretely, in order to confirm that
a policy is optimal, a solver needs to ensure that there is no
better action for any of the states that can be reached by this
policy. Typically, this involves performing one or more Bell-
man backups on all reachable states of the current policy,
until some convergence criterion is met.
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Figure 1: Example of a problem with large optimal pol-
icy but small high-probability envelope (scale shows log-
probability). S: start state. G: goal state.

However, a common situation is having an optimal policy
in which many of the covered states can only be reached with
low probability. For instance, consider a grid like the one
shown in Figure 1. Suppose every time the agent tries moves
in one direction, it succeeds with probability 0.7, or moves
in each of the other directions with probability 0.1; the goal
is to move from position (9,11) to position (13,11). Due to
the nature of the transition function, the optimal policy for
this problem covers the entire state grid. Yet, as the color
gradient shows, the (log)probability of visiting a state un-
der the optimal policy quickly degrades with distance to the
goal, resulting in a very small “envelope” of high-probability
states, close to the most likely path between the start and the
goal. This raises the question of how to better exploit this
property to come up with faster approximate algorithms to
solve SSPs.

One option is to create a depth-limited SSP (either by
number of actions, or by highest probability paths) rooted
at the current state and solve it to find a “short-sighted” ac-
tion. However, this could make it hard to propagate infor-
mation from states close the goal to the initial state, and
can therefore require a large horizon to achieve good cost
solutions—which can subsequently result in sub-problems
covering a large number of states. On the other hand, an al-
ternative is to use a trial-based search algorithm that samples
high-probability paths, like RTDP, and then solve a short-
sighted SSP rooted at each of the states visited during sam-
pling. However, as it turns out, this approach doesn’t result
in major computational savings over a standard version of
RTDP, and can even result in slower convergence2; further-
more, it lacks a crisp termination criterion relating the short-
sighted approach with the solution of the complete problem.

Nevertheless, we can combine these two ideas to create an
algorithm that can very quickly find good plans with near-
optimal performance. The resulting algorithm, which we call
FLARES, is an online approximate algorithm for action se-
lection. FLARES works by performing a number of trials
from the start to the goal, while trying to label states as
solved according to a short-sighted labeling criterion. The
key difference between FLARES and the other approaches
mentioned above, is that FLARES can propagate informa-

2We experimented with such an approach without much suc-
cess. Results are not reported here due to space considerations.

tion from the goal to the start state while simultaneously
pruning the state-space, and do so without requiring a large
search horizon. Intuitively, FLARES works by attempting to
construct narrow corridors of states with low residual error
from the start to the goal.

Readers familiar with heuristic search methods for solv-
ing MDPs will notice similarities between FLARES and the
well-known LRTDP algorithm (Bonet and Geffner [2003b]).
Indeed, FLARES is based on LRTDP with a particular
change in the way states are labeled. For reference, LRTDP
is an extension of RTDP that includes a procedure to label
states as solved (CHECKSOLVED). In RTDP, trials are run re-
peatedly and Bellman backups are done on each of the states
visited during a trial. This procedure can be stopped once
the current greedy policy covers only states s s.t. Rpsq ă ε,
for some given tolerance ε. In LRTDP, this is improved by
adding the states seen during a trial to a stack and calling
CHECKSOLVED on each of them, in post-order traversal.

The CHECKSOLVED labeling procedure has the follow-
ing property: it only labels a state s as solved if all states s1
that can be reached from s following a greedy policy satisfy
Rps1q ă ε. The main advantage is that, once a state is labeled
as solved, the stored values and actions can be used if this
state is found during future trials or calls to CHECKSOLVED.

Typically, labeling states results in large savings in com-
putation time with respects to methods than don’t in-
corporate this approach. However, despite its advantages,
CHECKSOLVED is subject to the same problems as other op-
timal solvers; that is, it can potentially explore large low-
probability sections of the state space, since it must check
all reachable states before labeling.

To address this problem, we introduce the following
depth-limited labeling property as a way to accelerate
heuristic search methods: a state s is considered depth-t-
solved only if all states s1 that can be reached with t or less
actions following the greedy policy satisfy Rps1q ă ε.

Algorithm 1 shows a procedure that implements this idea.
A call to DLCHECKSOLVED from state s and horizon t
works by visiting all states that can be reached from s by
following at most 2t actions under the current greedy policy.
If all states s1 visited during this search satisfyRps1q ă ε, the
method then proceeds to label as depth-t-solved only those
states found up to horizon t. Note that doing the search up to
horizon 2t allows DLCHECKSOLVED to label several states
during a single call, instead of only the root state if the resid-
uals were only checked up to depth t.

The FLARES algorithm, wneverhich incorporates
DLCHECKSOLVED into a trial based action selection
mechanism, is given by Algorithm 2. Propositions 1 and
2 show the conditions under which FLARES, and more
specifically DLCHECKSOLVED, maintains both of the
labeling properties described above. To simplify the pre-
sentation, we overload the notation so that the statement
s P closed is equivalent to Dd s.t. xs, dy P closed.

Proposition 1. DLCHECKSOLVED labels a state s with
s.SOLV “ true only if all states s1 that can be reached from
s following the greedy policy satisfy Rps1q ă ε.

Proof. Let x be the first state incorrectly labeled with



Algorithm 1: A depth limited procedure to label states.
DLCHECKSOLVED

input : s, t
1 solved “ true
2 open “ EMPTYSTACK
3 closed “ EMPTYSTACK
4 all “ true
5 if  ps.SOLV _ s.D-SOLVq then
6 open.PUSHpxs, 0yq

7 while open ‰ EMPTYSTACK do
8 xs, dy “ open.POPpq

9 if d ą 2t then
10 all “ false
11 continue
12 closed.PUSH(xs, dy)
13 if s.RESIDUALpq ą ε then
14 solved = false

15 a “ GREEDYACTIONpsq
16 for s1

P ts1
P S|P ps1

|s, aq ą 0u do
17 if  ps.SOLV _ s.D-SOLVq ^ s1

R closed then
18 open.PUSH(xs1, d` 1y)

19 else if s.D-SOLV ^ s.SOLV then
20 all “ false

21 if solved then
22 for xs1, dy P closed do
23 if all then
24 s1.SOLV “ true
25 s1.D-SOLV “ true

26 else if d ď t then
27 s1.D-SOLV “ true

28 else
29 while closed ‰ EMPTYSTACK do
30 xs1, dy “ closed.POPpq
31 BELLMANUPDATEpsq

32 return solved

x.SOLV “ true by DLCHECKSOLVED. Then, during the
call DLCHECKSOLVEDpxq, at line 23 we have all “ true
while there exists a state y, reachable from x following the
greedy policy, s.t. Rpyq ą ε and y R closed . The if block
in lines 9-11 guarantees that this state was never added to
open, otherwise y R closed ùñ  all. Let u be the first an-
cestor of y in the greedy policy graph rooted at x that wasn’t
added to open. Thus, either u.SOLV or u.D-SOLV due to the
if statement in line 17. Since x is the first state to be la-
beled SOLV incorrectly, the only possibility consistent with
Rpyq ą ε is that  u.SOLV^u.D-SOLV. However, since this
implies  all for u, the else if statement in lines 26 im-
plies that u.SOLV, which is a contradiction.

Proposition 2. As long as no call to BELLMANUPDATEps1q
with Rps1q ă ε results in Rps1q ě ε, then DLCHECK-
SOLVED labels a state s with s.D-SOLV only if s is depth-t-
solved.

Algorithm 2: The FLARES algorithm.
FLARES

input : s0, t
output: action to execute

1 while  s0.SOLVED _ s0.D-SOLV do
2 s “ s0
3 visited “ EMPTYSTACK
4 while  ps.SOLVED _ s.D-SOLVq do
5 visited.PUSHpsq
6 if GOALpsq then break
7 BELLMANUPDATEpsq
8 a “ GREEDYACTIONpsq
9 s “ RANDOMSUCCESSORps, aq

10 while visited ‰ EMPTYSTACK do
11 s “ visited.POPpq
12 if  DLCHECKSOLVEDps, tq then
13 break

14 return GREEDYACTIONpsq

Proof. Following Proposition 1, we ignore the label set in
line 25 because this label is always correct. We use induction
to prove that the label set in line 27 is correct. Suppose that
when a call to DLCHECKSOLVED all labels have previously
set correctly. Then, if a tuple xx, dxy is taken from from the
stack in line 8, all the descendants y of x that are reachable
within 2t ´ dx actions and satisfy Rpyq ě ε will also be
added to closed. Thus, any state s labeled in line 27 with
depth d ď t are in fact depth-t-solved. Note that the assump-
tion on the Bellman updates guarantees that once a state is
correctly labeled, further backups of any unlabeled descen-
dant, s1, will still keep the label correct, because Rps1q will
never increase above ε. To complete the proof, it only re-
mains to prove that the base case (when no labels have been
previously set) is also correct. It is easy to see that this is
true, because in this case all states up to depth 2t will be
added to the stack, and, if their residuals are below ε, only
states up to depth t are labeled.

The assumption at the start of proposition 2 requires fur-
ther explanation. It is possible for a state s to be labeled with
s.D-SOLV “ true while some of its low residual descendants
within depth t are not; this is because DLCHECKSOLVED
only labels states up to depth t after checking the residual on
all states up to depth 2t. Therefore, since FLARES can still
perform Bellman backups of states that have not yet been la-
beled, and because residuals are not guaranteed to be mono-
tonically decreasing for all states, it is possible for the resid-
ual of an unlabeled state to increment above ε during a trial,
and therefore break the depth-limited labeling guarantee of
its ancestors.

Unfortunately, there is no simple way to get around this
issue without resorting to some cumbersome backtracking,
and no way to predict whether such an increment will hap-
pen on a given run of FLARES. However, our experiments
suggest that this event is uncommon in practice (it was never
encountered during our experiments). Moreover, we can ob-



Algorithm 3: An optimal version of FLARES.
OPT-FLARES

input: s0
1 t “ t0
2 while  s0.SOLVED do
3 for s P S do
4 s.D-SOLV “ false

5 FLARESps0, tq
6 t “ ρpV, tq

tain a revised labeling error guarantee during planning, by
keeping track of all states for which a Bellman backup in-
creased the residual above ε, and use the maximum of those
residuals as the revised error.

Next we prove that FLARES is guaranteed to terminate in
a finite number of iterations.

Theorem 1. If the heuristic is admissible and monotone,
FLARES terminates after at most ε´1

ř

sPS V
˚psq ´ V psq

trials.

Proof. It is a well-known fact that Bellman backups pre-
serve admissibility and monotonicity of the value function,
regardless of the order in which states are backed up. Thus,
if the initial heuristic is admissible and monotone, all state
values computed V psq by FLARES are bounded above by
V ˚psq. At the same time, each trial of FLARES either labels
all visited states as solved or increases the value of at least
one them by more than ε. Therefore, in the worst case, each
trial will increase the value of a single state by ε until all val-
ues reach V ˚psq, which results in the proposed bound.

Even though this is the same bound as LRTDP’s, in prac-
tice convergence will happen much faster because the fi-
nal values computed by FLARES are only lower bounds of
the optimal values. Unfortunately, like other methods that
choose actions based on lower bounds, it is possible to con-
struct examples where the final policy returned by FLARES
can be arbitrarily bad. On the other hand, it is easy to see
that FLARES is asymptotically optimal as t Ñ 8 because
it simply turns into the LRTDP algorithm.

In fact, as the following theorem shows, there exists a fi-
nite value of t for which FLARES returns the optimal pol-
icy. We can use this fact and the labels SOLV computed by
FLARES to produce an following optimal SSP solver, which
is shown in Algorithm 3. Here ρ represents a function that
takes the current value function V and the current t and pro-
duces a new value for t. Typically, ρpV, tq “ t ` 1, but
it’s possible that there are more clever ways to increment t
based on an analysis of the current values and previous calls
to FLARES. Theorem 2 shows the conditions under which
OPT-FLARES is guaranteed to be optimal.

Theorem 2. If the initial heuristic is admissible and mono-
tone, and ρ satisfies @V, t, ρpV, tq ą t, with t0 ě 0, then
OPT-FLARES computes an optimal policy.

25 x 100 cells

25 x 100 cells

Start Goal 1

Goal 2

Figure 2: Grid world used for illustrating advantages of
FLARES.

Proof. Note that the value function will remain admissible
and monotone after every call to FLARES. Therefore, every
call to FLARES in line 5 is done using an admissible heuris-
tic and a larger value of t. Since the state space is finite, there
exists a finite value of t for which all calls to DLCHECK-
SOLVED covers the same set of states as CHECKSOLVED (a
trivial solution is t ě |S|). Because all D-SOLV labels are
cleared in the loop in lines 3-4, FLARES at that point be-
comes equivalent to LRTDP and is thus optimal.

Experiments
In this section we compare FLARES to three other algo-
rithms: LRTDP, HDP(i,j) and SSiPP. We start by illustrat-
ing some of the advantages of FLARES over optimal algo-
rithms and other short-sighted approaches, by means of a
simple grid world problem that is easy to analyze. We then
show results on the racetrack domain (Barto et al. [1995])
and the sailing domain (Kocsis and Szepesvári [2006]), two
common benchmarks for probabilistic planning algorithms.
All algorithms were implemented by us and tested on a In-
tel Xeon 3.10 GHz computer with 16GB of RAM. For all
experiments we used a value of ε “ 10´3.

A Simple Gridworld Problem
Consider the grid world shown in Figure 2. In this prob-
lem the agent can move in any of the four grid directions
(up, down, right, left). Every time it moves, there is a 0.7
probability of succeeding or a 0.3 probability of moving to
one of the other 3 directions (chosen uniformly at random).
The cost of moving is 1, except for some “dangerous” cells
(highlighted in gray) where the cost of moving is 20; ad-
ditionally, some cells have obstacles that cannot be crossed
(shown in black color near the bottom edge). The grid has
width 100 and height 51, for a total of 5100 states. The start
state is at the bottom left corner, and there are two goals, one
at the top-left corner and one at the bottom-right. The opti-
mal policy attempts to reach the state at the goal state at the
right, so that the agent avoids the dangerous states at the top.

Table 1 shows the expected cost (mean and standard er-
ror) and average planning time for each of the algorithms;
the cost shown for LRTDP is the optimal cost calculated by
the algorithm. The heuristic used is the Manhattan distance
to the closest goal. All results are averaged over 100 runs



algorithm cost time
LRTDP 135 34.02

FLARES(0) 134.07 ˘ 0.84 0.586

FLARES(1) 135.63 ˘ 0.99 0.589

HDP(0,0) 208.9 ˘ 10.92 0.195

HDP(4,0) 135.22 ˘ 1.09 0.610

HDP(4,4) 133.91 ˘ 0.83 0.593

SSiPP(16) 441.12 ˘ 4.87 10.87

SSiPP(32) 400.87 ˘ 1.85 51.49

SSiPP(64) 136.49 ˘ 0.76 9.49

Table 1: Results on the gridworld shown in Figure 2.

of complete planning and execution simulations. The esti-
mated values are reused within the same run if re-planning
is needed, but they are reset to the heuristic after each run.
The average time includes time spent on re-planning.

Notably, FLARES with t “ 0 already returns a policy
that is essentially optimal, while being on average two or-
ders of magnitude faster than the optimal algorithm, LRTDP.
HDP(i,j) is also quite fast on this problem, but it required
some parameter tuning to find the best values for i; results
comparable to FLARES(0) are obtained using HDP(4,4).

On the other hand, SSiPP is slower than the other approx-
imate methods in this problem, and substantial parameter
tuning was also required; the table shows only results ob-
tained with t “ 16, t “ 32 and t “ 64. Note the large
horizons required to find a good policy; a near-optimal pol-
icy was obtained only with t “ 64, and required close to 18
times more time than FLARES with t “ 0. The larger time
required for t “ 32 (compared to the time using t “ 64)
was due to many more re-planning episodes needed during
execution.

First, this simple problem highlights several qualities of
FLARES. Although an optimal policy for this problem must
cover the entire state space, every state outside the narrow
corridor at the bottom is only reached with low probability.
This is an example of a problem where an optimal solver
would be unnecessarily slow. On the other hand, FLARES
only needs to realize that the policy going up leads to a high
cost, which happens during the first few trials. Then, once
the algorithm switches to the policy that moves to the right,
it quickly stops when all states in the corridor reach a low
residual error.

Second, since the algorithm is only short-sighted dur-
ing labeling, but is otherwise not restricted during the trials
phase, it is able to quickly account for the dangerous states
that are far away from the start state. This is the reason why a
low t is enough to generate very good policies. On the other
hand, limiting the search to states close to the start, requires
much larger horizons to achieve comparable results.

Racetrack domain
We experimented with the racetrack domain described by
Barto et al. [1995]. We modify the problem so that, in addi-
tion to a 0.2 probability of slipping, there is a 0.1 probability
of randomly changing the intended acceleration by one unit;

similar modifications have been used before to increase the
density of the transition function and the difficulty of the
problem (McMahan et al. [2005]). We used the hmin heuris-
tic for this problem, which was pre-computed for all states
before the runs.

Figure 3 shows boxplots of the costs obtained from 100
simulations on four instances of the racetrack domain of
varying sizes and shapes. In general, LRTDP, FLARES(0)
and various instances of HDP obtained similar performance.
In fact, we ran t-tests comparing the results of each algo-
rithm with those of LRTDP, and FLARES(1) was never sig-
nificantly different from LRTP (p-values higher than 0.27),
except for the ring-5 track where the expected cost obtained
with FLARES(1) was 10% higher; similar results were ob-
tained with most versions of HDP. On the other hand, SSiPP
had expected costs considerably higher than LRTDP.

Table 2 show average planning times of all the algo-
rithms in these problems. In all cases, FLARES(0) and
FLARES(1) were two orders of magnitude faster than the
other algorithms. HDP(i,j) was in general about twice faster
than LRTDP, but still two orders of magnitude slower than
FLARES. The reason for this large computation time is un-
clear, but it appears there is a lot of thrashing between differ-
ent policies due to the short-sightedness of the algorithm. On
the other hand, SSiPP required high horizons (results shown
up to t “ 8) which resulted in considerably high computa-
tion times, even though the expected costs were still signifi-
cantly higher than optimal.

square-4 square-5 ring-5 ring-6
LRTDP 49.89 262.84 11.64 65.02

FLARES(0) 0.276 1.637 0.052 0.341

FLARES(1) 0.260 1.645 0.058 0.362

HDP(0,0) 23.71 151.15 5.50 37.15

HDP(0,1) 26.84 145.12 5.84 37.08

HDP(1,0) 27.50 145.83 6.09 36.09

HDP(1,1) 28.41 142.02 6.10 38.27

SSiPP(4) 16.24 76.11 4.78 25.11

SSiPP(8) 48.61 178.98 20.13 89.72

Table 2: Average planning time (seconds) on several race-
track domain problems. Fastest times shown in bold.

Sailing Domain
We next present results on a four instances of the sailing
domain, as described by Kocsis and Szepesvári [2006]. The
instances vary in terms of grid size (all grids are squares)
and where the goal is located in the grid (opposite corner or
middle of the grid). Table 3 shows average costs and times
over 100 simulations.

In this domain, FLARES(1) and HDP have similar results
in terms of average cost; Figure 4 shows boxplots of the
costs obtained. Out of all instances of FLARES and HDP,
FLARES(0) was the worse in terms of average cost, with
average costs more than 40% higher than the other algo-
rithms; however, its running time was 2-4 times faster (see
Table 3). FLARES(1) had slightly worse average perfor-
mance than HDP, but with times that are between 30% to
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Figure 3: Boxplots of costs obtained by the algorithms on
four racetrack domain instances (100 simulations). Labels:
OPT (optimal, LRTDP), F(i) - FLARES with t “ i, H(i,j) -
HDP(i,j), S(i) - SSiPP with t “ i.

200% faster. Moreover, running t-tests to compare the costs
obtained with those of LRTDP, results in no significant dif-
ference with respect to FLARES(1) (the lowest p-value was
0.15, obtained on the largest problem). Finally, SSiPP re-
quired large horizons (t “ 8) to get reasonable results and
its running time was more than twice higher than the running
times of FLARES and HDP; moreover, the average costs ob-
tained were still substantially worse than optimal.

s=20
g=corner

s=40
g=corner

s=20
g=middle

s=40
g=middle

LRTDP 1.81 14.65 1.37 12.09

FLARES(0) 0.33 3.15 0.138 1.142

FLARES(1) 1.01 7.79 0.417 3.065

FLARES(2) 1.47 9.51 0.731 4.094

HDP(0,0) 1.33 11.93 0.854 7.034

HDP(0,1) 1.33 12.04 0.854 7.245

HDP(1,0) 1.35 11.85 0.853 7.133

HDP(1,1) 1.33 11.88 0.853 7.159

SSiPP(4) 3.05 8.83 1.60 5.69

SSiPP(8) 7.14 52.47 3.93 19.77

Table 3: Average planning time (seconds) on several sail-
ing domain problems. Problems are labeled as s=(size) and
g=(goal location). Fastest times shown in bold.

Conclusions
In this work we present a new approach to short-sightedness
for MDPs that applies the reduction only for labeling states
as solved. In contrast to previous approaches, which focus
on states that are close to the initial state, applying the re-
duction only during labeling allows for larger sections of the
state space to be explored, and quickly propagate informa-
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Figure 4: Boxplots of costs obtained by the algorithms on
four sailing domain instances (100 simulations). Labels:
OPT (optimal, LRTDP), F(i) - FLARES with t “ i, H(i,j) -
HDP(i,j), S(i) - SSiPP with t “ i.

tion of states close the goal. Moreover, this results in needing
lower horizon values for labeling, which significantly accel-
erate running times.

Based on this idea, we introduced the FLARES algorithm,
a modified version of LRTDP that incorporates a bounded
labeling procedure to produce a very fast approximate ac-
tion selection mechanism. We prove that FLARES is guar-
anteed to terminate with a policy in a finite amount of time,
and that it can be easily extended to produce an optimal al-
gorithm. Experimental results in three different planning do-
mains show that FLARES can produce near-optimal policy
orders of magnitude faster than state-of-the-art algorithms.

Although we implemented our reduced labeling approach
as an extension of LRTDP, we note that the key ideas can be
used in conjunction with other search-based methods. Re-
duced labeling can be combined with other action or out-
come selection mechanism for planning, using a framework
like THTS (Keller and Helmert [2013]). We are working on
new algorithms based on this idea.

Finally, in this work we focused on a reachability re-
duction based on number of actions, but a version that
uses trajectory probabilities, similar to (Trevizan and Veloso
[2012a]), is a straightforward extension that we plan to ex-
plore in the future.
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Håkan L. S. Younes, Michael L. Littman, David Weissman,
and John Asmuth. The first probabilistic track of the In-
ternational Planning Competition. Journal of Artificial
Intelligence Research, 24(1):851–887, 2005.


