
Abstract 

Effective goal reasoning requires a robust estima-
tion of the state of the agent’s environment, which 
can be challenging to achieve in partially observa-
ble domains.  Iterative explanatory diagnosis al-
lows a goal reasoning agent to infer important in-
formation that is not directly observable, but in re-
alistic domains this requires repeatedly searching a 
large, complex solution space over two interde-
pendent sources of uncertainty: unobservable 
events in the agent’s history and unobservable flu-
ents in the hidden state. We propose a formal ab-
straction of explanatory diagnosis that provides a 
convenient visual representation of the relation be-
tween these sources of uncertainty.  Our abstrac-
tion combines McIlraith's [1997] situation-calculus 
dialect for diagnosis and Pang and Holte’s [2011] 
model of state-set graphs. For this initial work, we 
assume a deterministic environment: all events are 
determined by agent actions and the partially ob-
servable initial environmental state.  

1 Introduction 

Goal reasoning is the ability of an agent to deliberate about 
and alter its goals during online plan execution in complex 
domains.  One common trigger for goal reasoning is a dis-
crepancy between the observed state of the environment 
during execution and the expected state that was predicted  
during planning [Vattam et al. 2013].  Such discrepancies 
often represent an opportunity to reason about hidden in-
formation in a partially observable domain.  Consider a goal 
reasoning robotic agent assisting a military squad; if it ob-
serves gunfire sounds and troop movements that were not 
expected in the predicted environmental state, then an ex-
planation which resolves these discrepancies can allow it to 
infer the presence of a hidden, unobservable sniper.  This 
inference about important, hidden state information allows 
the agent to select an appropriate goal and accurately plan to 
achieve that goal in partially observable domains.  We refer 
to this reasoning task as the explanatory diagnosis problem. 
Explanatory diagnosis is used in goal reasoning agents such 
as ARTUE [Molineaux et al. 2010] to provide a more accu-
rate understanding of the environment, allowing the agent to 
make more accurate predictions in future plans, and select 
appropriate goal. When the goal reasoning agent cannot 

explain discrepancies in its observations, it is unable to re-
spond to unobservable phenomena in its environment.   

To solve the explanatory diagnosis problem, an agent 
must address two sources of uncertainty introduced by par-
tial observability in the domain: (1) uncertainty about hid-
den facts in the current state and (2) uncertainty about the 
set of agent actions and environmental events that led to this 
state (the agent’s execution history). Iterative explanatory 
diagnosis is a complex iterative inference task that the agent 
must perform repeatedly. In each iteration the agent im-
proves a running hypothesis about the execution history (its 
explanation) by reconciling it with partial observations, and 
then applies it to estimate unobservable values in the current 
state. The interlocking spaces of possible states and possible 
execution histories are inherently interdependent, creating a 
complex solution space for the iterative explanatory diagno-
sis problem.  Little work exists on formally describing ex-
planatory diagnosis in the goal reasoning context. To better 
understand the solution space of this problem, we develop a 
formal abstraction that provides a convenient visual repre-
sentation of the relationship. Our formalization employs 
McIlraith’s [1997] situation-calculus dialect from diagnosis 
and Pang and Holte’s [2011] model of state-set graphs. For 
this initial work, we assume a deterministic environment: all 
events are determined by agent actions and the partially 
observable initial environmental state.  

We begin in §2 by discussing the related work that our 
model is derived from, and then in §3 briefly introduce the 
three core components of our abstraction: the iterative ex-
planatory diagnosis problem, the situation calculus, and 
state-set graphs.  In §4 we then describe our abstraction for 
the iterative explanatory diagnosis problem, in which we 
employ the situation calculus to characterize the space of 
possible execution histories and apply the state-set frame-
work to characterize the space of possible states. We con-
clude in §5 by discussing the implications of this abstraction 
for the design of iterative explanatory diagnosis algorithms.    

2 Related Work 

In realistic environments, reasoning agents encounter many 

forms of uncertainty.  Explanatory diagnosis is concerned 

with inferring an accurate execution history for the agent: 

inferring the sequence of states, agent actions and resulting 

environmental events leading from the initial state to the 

current state.  However, uncertainty occurs at a lower level 

as well (for example, in noisy sensor readings) leading to 

uncertain values for state variables. This form of uncertainty 
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is beyond the scope of this work, but cyclical projec-

tion/observation/belief revision algorithms exist to address it 

as well, and are well known.  These include Kalman Filters 

[Kalman 1960], and more generally, Particle Filters [Thrun 

et al. 2005].    

Our work, however, primarily relates to prior efforts on 

iterative explanation in goal reasoning, the situation calculus 

in explanatory diagnosis, and the state-set framework. We 

briefly review this literature here and provide greater depth 

on these topics in §3. 

 The ARTUE agent [Molineaux et al. 2010] is an imple-

mentation of the goal-driven autonomy model of goal rea-

soning; it attempts to explain discrepancies between the 

agent’s expectations and observations during plan execu-

tion. ARTUE originally employed a non-iterative diagnosis 

procedure based on an Assumption-Based Truth Mainte-

nance System [De Kleer 1986] that maintained only one 

historical observation. More recent versions, such as 

FOOLMETWICE [Molineaux and Aha 2014], employ the 

DiscoverHistory algorithm [Molineaux and Aha 2015], 

which reasons about a larger history of observations to elim-

inate incorrect hypotheses/explanations. While DiscoverHis-

tory provides a specific search algorithm for producing con-

sistent execution histories, we instead characterize the gen-

eral explanatory diagnosis problem using formal models of 

state sets and the situation calculus. 

The situation calculus [Lin and Reiter 1994] is a formal 

model of execution histories in planning agents. McIlraith 

[1997] proposes a dialect of the situation calculus tailored to 

the application of explanatory diagnosis, and we adapt this 

dialect to formally model explanatory diagnosis in online 

goal reasoning agents.  

Pang and Holte [2011] introduce their state-set frame-

work to provide a mechanism for visualizing and formally 

analyzing transitions (and sequences of transitions) between 

sets of states. While this concept applies to several search 

and abstraction problems in planning, we will employ it to 

model sets of possible states. 

3 Background  

To provide background for our abstraction, we briefly intro-
duce the explanatory diagnosis problem, the situation calcu-
lus, and the state-set framework.  We first describe the itera-
tive explanatory diagnosis problem as it occurs in a goal 
reasoning agent. The situation calculus provides a formal 
model for sequences of actions in an execution history, and 
we employ a variant designed for explanatory diagnosis by 
McIlraith [1997]. In particular, we apply it to a goal reason-
ing context. Finally, we use the state-set framework to ab-
stract sets of possible previous states, given the actions and 
events in the agent’s execution history.  

3.1 The Iterative Explanatory Diagnosis Problem 

We consider the diagnostic needs of a goal reasoning agent 

that interacts with a partially observable environment; its 

objective is to select appropriate goals at different points in 

its execution, identify viable plans (i.e., sequences of ac-

tions) to achieve the selected goals, and successfully com-

plete the chosen plans.  We characterize the agent’s interac-

tion with a partially observable, deterministic, dynamic en-

vironment as a cycle comprised of three phases: Agent Ac-

tion, Environmental Events, and Agent Observation. Over 

the course of plan execution, each agent action alters the 

environment (Agent Action). These alterations can trigger in 

the environment a sequence of exogenous, unobservable 

events that further alter it (Environmental Events).  Events 

occur deterministically when their (potentially unobserva-

ble) preconditions are satisfied, and multiple events may co-

occur (forming an event set). After taking each action, and 

after any resulting environmental events have been resolved, 

the agent makes an observation (Agent Observation) which 

provides it with the current values of all observable facts  

about the current state.  However, there are hidden facts 

whose values the agent cannot directly observe.  In general, 

we use the catch-all term fluent to refer to facts about the 

environmental state (which may be represented by a predi-

cate or function); the current state value is defined by the 

current values of all fluents, both hidden and observable.  

Thus the agent has limited knowledge: it knows with cer-

tainty which actions it has taken itself, and it possesses 

models of the preconditions and effects for all actions and 

events. But it must work with two forms of uncertainty: it 

cannot directly observe the subsequent state transitions 

(events) its actions trigger in the environment, and it cannot 

observe the complete state of the environment. 

In order to select a goal and plan a sequence of actions 

(and expected environmental events) to achieve it, the agent 

needs an estimate of the complete current state, including 

the hidden fluent values.  One way of estimating this state is 

to maintain a hypothesis about the initial state of the system 

and the execution history (including expected event-set se-

quences). Thus, before it makes each observation, the agent 

possesses an expected value for each fluent (both observable 

and hidden).  If the observation conflicts with the agent's 

estimated value for an observable fluent (an inconsistency), 

then an unexpected event sequence must have occurred1.  

This is the point at which the agent’s need for diagnosis 

arises:  When a conflict occurs between an observation and 

the agent’s estimate of the state, the suitability of the agent's 

original goal and plan are no longer guaranteed, and the 

agent must evaluate possible alternative goals, decide to 

select a new goal or retain its original goal, and create a new 

plan. To ensure that the new plan is based on well-founded 

assumptions about the current state of the environment, the 

agent must infer the reason for the expectation failure: it 

must solve a diagnosis problem by revising its hypothesized 

execution history and identifying the faulty assumptions 

about the initial state of the environment. As the agent pro-

                                                 
1 Note that, because agent actions are known and environmen-

tal events are deterministic, failures in state estimates can be traced 

back to one or more incorrect assumptions about the initial state.   



gresses toward its goal, each time an observation disagrees 

with its predictions the agent must solve a new diagnosis 

problem. Thus the overall online diagnosis need for the 

agent is inherently iterative over the course of execution: at 

each instance of the diagnosis problem, the agent has access 

to its previous solution a starting point to reconcile its pre-

dictions and observations.    

3.2 The Situation Calculus  

The situation calculus is a logical language that can be used 
to create formal definitions for transition systems with states 
and actions. The basic model is typical of state transition 
systems: states consist of values assigned to a set of predi-
cate fluents that may be parameterized over a finite set of 
objects. Actions have preconditions over fluent values, and 
effects that modify fluent values. Actions cannot occur con-
currently.   

However, the situation calculus is uniquely well suited to 
diagnosis problems because its fundamental formalism is 
not the environmental state. Instead, the focus is the situa-
tion: the complete sequence of actions that have occurred so 
far in the system. Because the situation is characterized as 
an action sequence, it may be concretely reasoned about 
even when the current state is only partially observable. 

The modern situation calculus [Lin and Reiter 1994] has 
divided into a number of dialects, with varying properties 
and constraints, all expressing models for reasoning about 
situations as sequences of transitions. For our work, we are 
using the definitions introduced by McIlraith [1997] (see 
also [Sohrabi et al. 2010]) in her research on explanatory 
diagnosis problems.  We provide a brief introduction to the 
McIlraith dialect of the situation calculus below. 

The situation calculus definition for a specific diagnosis 
problem can be broken into two main parts: the set of sym-
bols that exist in the problem domain, and the set of axioms 
that control the interactions of those symbols. We use ex-
amples taken from a simplified model of the Autonomous 
Squad Member (ASM) domain [Gillespie et al. 2015], 
which describes a robotic agent that assists a squad with 
conducting a surveillance mission. 

Situation Calculus Symbols 
 Situations: The complete sequence of actions (often 

indicated with the symbol 𝑠) that have occurred in the 
system up to a given point.   The null, initial situation is 
denoted as 𝑆0, and the distinguished function ‘do’ de-
scribes situation transitions: 𝑠2 =  𝑑𝑜(𝑎, 𝑠1) denotes the 
situation 𝑠2 resulting from performing action 𝑎 in situa-
tion 𝑠1.   

 Objects 𝑂: A finite set of typed objects that exist in the 
environment (examples: squad members, trees, the 
ASM robot itself) 

 Fluents 𝐹: A set of predicates2 over objects, with val-
ues that vary across situations. For this reason, the situ-
ation is always the last parameter in a fluent expression.  

                                                 
2 An adaption to functional fluent values exists, but will not be 

treated in this paper.  

For example, the truth value of the predicate fluent 
𝑊𝑜𝑢𝑛𝑑𝑒𝑑(𝑠𝑜𝑙𝑑𝑖𝑒𝑟1, 𝑠) indicates whether 𝑠𝑜𝑙𝑑𝑖𝑒𝑟1 is 
wounded after the action sequence denoted by situation 
𝑠.  Note that, by itself, 𝑠 is generally not sufficient to 
determine the value of a fluent 𝐹(𝑥, 𝑠); this value is al-
so dependent on the initial system state,𝑇𝑆0

 , which we 
discuss below. 

 Actions 𝐴: There is a finite set of action symbols.  The 
behavior of these actions (i.e., their preconditions and 
effects) are encoded in the precondition and successor 
state axioms described below.  The atomic expression 
𝑃𝑜𝑠𝑠(𝑎, 𝑠) indicates whether action 𝑎 is possible in sit-
uation 𝑠 (and, as with fluents, the value of 𝑃𝑜𝑠𝑠(𝑎, 𝑠) is 
partially dependent on the initial system state 𝑇𝑆0.) 

Situation Calculus Axioms 
 Foundational Axioms  Σ𝑓𝑜𝑢𝑛𝑑  : The foundational axi-

oms specify the domain-independent framework of the 
situation calculus, including the definition of situations 
(described informally above) and the framing axiom or 
domain closure axiom (described informally below).  
They also define the predecessor relation 𝑠 ⊏ s’, which 
holds if and only if 𝑠 is a strict prefix of 𝑠′ (recall that 
each situation encapsulates an entire action sequence, 
starting from the initial null situation, 𝑆0) 

 Initial Constraints  𝑇𝑆𝐶
𝑆0 : A set of constraints on flu-

ents, which all valid initial states must satisfy (for ex-

ample, ∀𝑥 ∈ 𝑆𝑜𝑙𝑑𝑖𝑒𝑟𝑠: ¬𝑊𝑜𝑢𝑛𝑑𝑒𝑑(𝑥, 𝑆0) ). 

 Successor State Axioms 𝑇𝑆𝑆: This set contains one pair 

of Successor State Axioms (SSA) for each fluent; it en-

codes the effects each (possible) action can have on the 

fluent’s value3. These are of the form:  

𝐹(𝑥1, … , 𝑥𝑛 , 𝑑𝑜(𝑎, 𝑠)) ≡ Φ𝐹(𝑎, 𝑥1, … , 𝑥𝑛 , 𝑠) 

¬𝐹(𝑥1, … , 𝑥𝑛 , 𝑑𝑜(𝑎, 𝑠)) ≡ Φ¬𝐹(𝑎, 𝑥1, … , 𝑥𝑛 , 𝑠) 

where Φ𝐹 is a formula uniform in 𝑠 (ie, not referring to 

any predecessors of 𝑠), and 𝑎, 𝑥1, … , 𝑥𝑛 are free varia-

bles spanning all applicable actions and parameter val-

ues for 𝐹.  For example:  

 𝑊𝑜𝑢𝑛𝑑𝑒𝑑(𝑥, 𝑑𝑜(𝑎, 𝑠)) ≡ [𝑊𝑜𝑢𝑛𝑑𝑒𝑑(𝑥, 𝑠) ∨

(𝑎 = 𝐼𝑠𝑆ℎ𝑜𝑡(𝑥))] 

¬𝑊𝑜𝑢𝑛𝑑𝑒𝑑(𝑥, 𝑑𝑜(𝑎, 𝑠)) ≡ [¬𝑊𝑜𝑢𝑛𝑑𝑒𝑑(𝑥, 𝑠) ∨

(𝑎 = 𝑇𝑟𝑒𝑎𝑡𝑒𝑑(𝑥))]  

 Action Precondition Axioms 𝑇𝐴𝑃: This set contains 

one precondition axiom for each action symbol in the 

domain.  These are of the form:  

𝑃𝑜𝑠𝑠(𝑎(𝑥1, … , 𝑥𝑛), 𝑠) ≡ 𝛱𝑎(𝑥1, … , 𝑥𝑛 , 𝑠) 

where 𝛱𝑎 is a formula uniform in 𝑠 which defines all 

conditions under which 𝑎 can be performed in 𝑠,  and 

𝑎, 𝑥1, … , 𝑥𝑛 are free variables.  For example:  

𝑃𝑜𝑠𝑠(𝐼𝑠𝑆ℎ𝑜𝑡(𝑥), 𝑠) ≡ [𝑈𝑛𝑑𝑒𝑟𝐴𝑡𝑡𝑎𝑐𝑘(𝑥) ∧
𝐸𝑥𝑝𝑜𝑠𝑒𝑑(𝑥)] 

 Unique Action Name Axioms 𝑇𝑈𝑁𝐴: These axioms 
enforce unique names for actions.  

                                                 
3 The framing axiom, included in Σ𝑓𝑜𝑢𝑛𝑑 , asserts that fluents do 

not change value except as specified by the fluent’s SSA. 



 Initial State 𝑇𝑆0
: These axioms specify the complete set 

of initial fluent values for a given instance of the prob-

lem. Because situations specify action sequences rather 

than environmental states, 𝑇𝑆0
 is necessary (in general) 

to compute which fluent values hold and which actions 

are possible in a given situation. 

As a whole, the axiomatization of a given problem do-
main in the situation calculus can be written as:  

𝑇 = 𝛴𝑓𝑜𝑢𝑛𝑑 ∧ 𝑇𝑆𝐶
𝑆0 ∧ 𝑇𝑆𝑆 ∧ 𝑇𝐴𝑃 ∧ 𝑇𝑈𝑁𝐴 ∧ 𝑇𝑆0

 

An executable situation is a situation whose actions are 
all possible under the axiomatization of the domain (again 
dependent on 𝑇𝑆0

).  This has the natural definition, i.e: 

𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒(𝑠) ⟺ ∀𝑎, 𝑠′[(𝑑𝑜(𝑎, 𝑠′) ⊑ 𝑠) ⊃ 𝑃𝑜𝑠𝑠(𝑎, 𝑠′)] 

Additionally, McIlraith introduces the following useful 
formalisms specific to the explanatory diagnosis problem. 
   
Observation 𝑂𝐵𝑆[𝑆0, 𝑠]: This encodes the set of all obser-
vation information about the system that is available to the 
process performing the diagnosis algorithm.  Formally, it is 
a sentence of the situation calculus whose only free variable 
is 𝑠, and whose situation terms are restricted to 𝑠𝑖 such that 
𝑆0 ⊑ 𝑠𝑖 ⊑ 𝑠 (i.e., it refers only to situations that have oc-
curred during the current execution).  
Hypothesis 𝐻(𝑆0): This is the diagnostic algorithm’s hy-
pothesis regarding the value of the initial state, 𝑇𝑆0

. 
Diagnosis [𝐻(𝑆0), 𝐴]:  Given a problem domain axiomatiza-
tion 𝑇 and an observation 𝑂𝐵𝑆[𝑆0, 𝑠], the diagnosis consists 
of a hypothesis 𝐻(𝑆0) and a proposed action history (i.e., 
hypothesized sequence of actions) 𝐴, such that the actions A 
could have occurred starting from the hypothesized initial 
state  𝐻(𝑆0) without contradicting the observation 
𝑂𝐵𝑆[𝑆0, 𝑠]. Formally:  

𝑇 ∪ 𝐻(𝑆0) ⊨  
∃𝑠: [(𝑠 = 𝑑𝑜(𝐴, 𝑆0)) ∧ 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒(𝑠) ∧ 𝑂𝐵𝑆[𝑆0, 𝑠]]  

3.3 The State-set Framework 

  The state-set framework introduced by Pang and Holte 
[2011] provides a mechanism for formally analyzing transi-
tions and sequences of transitions between sets of states.  
While this concept applies in a variety of search problems in 
planning, we use it specifically to model sets of possible 
states (i.e., states that are consistent with the current 
knowledge of the agent). We provide a brief overview of 
concepts from the state-set framework that are central to our 
work, tailored to the situation calculus formalisms and our 
iterative explanatory diagnosis context. We then provide 
two useful theorems which are implied by the constraints of 
the explanatory diagnosis problem.  
 
State-set:  Let 𝔼  be the set of all possible environmental 
states for a given transition system. Then 𝐸 ⊆ 𝔼 is a state-
set with respect to 𝔼.  If |𝐸| =  1, (i.e. 𝐸 contains only one 
possible state) then we say 𝐸 represents a known state.  
State-set Operator:  In a state transition system, actions 
can be considered functions of the form 𝑎: 𝔼 → 𝔼 (i.e. an 

action transitions from one environmental state to the next,  
𝑎(𝑒1) = 𝑒2). The set of states that satisfy the preconditions 
of 𝑎 is referred to as 𝑃𝑅𝐸𝑎, and the set of states that could 
be the result of taking action 𝑎 is referred to as 𝑃𝑂𝑆𝑇𝑎 (for-
mally, 𝑃𝑂𝑆𝑇𝑎 =  {𝑎(𝑒)|𝑒 ∈ 𝑃𝑅𝐸𝑎})  For 𝐸 ⊆ 𝑃𝑅𝐸𝑎 , we 
define the state-set operator for an action 𝑎 as: 𝑎(𝐸) =
{𝑎(𝑒)| 𝑒 ∈ 𝐸}.   
Action Path: Given an initial state-set 𝐼, if a situation  𝑠 =
 𝑎1, 𝑎2, 𝑎3 … 𝑎𝑛 is executable for at least one initial state in I, 
this means that: [𝑎1(𝐼) ∩ 𝑃𝑅𝐸𝑎2

≠ ∅] ∧ [𝑎2(𝑎1(𝐼)) ∩
𝑃𝑅𝐸𝑎3

≠ ∅] … ∧ [𝑎𝑛−1(… (𝐼)) ∩ 𝑃𝑅𝐸𝑎𝑛
≠ ∅] .    We’ll use 

the shorthand 𝑠(𝐼) to refer to the set 𝑎𝑛(𝑎𝑛−1 (… 𝑎1(𝐼)).  
We say 𝑠 forms an action path from state-set 𝐼 to state-set 
𝑠(𝐼), and the states-sets 𝑎𝑖(… (𝐼))  are intermediate state-
sets on this path.  Figures 1a-1c provide illustrations of ac-
tion paths.  

We now show that the intermediate state sets on an action 
path decrease in size monotonically (depicted in Figure 1). 
Theorem 1:  
Claim 1: If 𝑎 is an action and 𝐸 is a state-set such that 
𝑃𝑅𝐸𝑎 ⊇ 𝐸, then: |𝐸| ≥ |𝑎(𝐸)|.   
Claim 2: Additionally, if a situation 𝑠 is executable for at 
least one state in an initial state-set 𝐼, then:  |𝐼| ≥ |𝑠(𝐼)| , 
and for all 𝑠′, 𝑠′′ such that 𝑠′ ⊑ 𝑠′′ ⊑ 𝑠 , |𝑠′(𝐼)| ≥ |𝑠′′(𝐼)| 
Proof: The first claim is implied by of the fact that 𝑎 is a 
function over the individual states in E (intuitively: taking 
an action in a state will never lead to the agent being in two 

Figure 1: Action paths in the state-set framework 



different states afterwards).  The second claim results from 
an application of the transitive property to the first claim.∎  
 Recall that the main objective in our iterative explanatory 

diagnosis problem is to obtain a robust estimate of the cur-

rent state to supply to the goal reasoning agent. Corollary 1 

states that, if explanatory diagnosis ever reaches definite 

knowledge of the current state, all subsequent states will be 

definitely known. 
Corollary 1: If s forms an action path from I to s(I), and 
there exists 𝑠′ ⊑ 𝑠 such that  |𝑠′(𝐼)| = 1 (i.e. there is an 
intermediate state-set  which is a known state), then 
∀𝑠′′such that 𝑠′ ⊑  𝑠′′ ⊑ 𝑠, we have |𝑠′′(𝐼)| = 1 (all subse-
quent state-sets on the action path are also known states).  
In particular, if 𝐼 is a known state, all state-sets on the path 
are known states.  
Proof: This is a consequence of Theorem 1.∎   
 

Finally, we note that in the goal reasoning context, peri-
odic observations provide new information that may reduce 
the set of possible states.  However, observations are not 
state-set operators because they do not transition between 
states, they merely provide information by which an infer-
ence algorithm can eliminate possible sates. We’ve chosen 
to depict this using a rectangular bar as in Figure 2.  In the 
following section we discuss in greater detail the role of 
observations in the solution space for the explanatory diag-
nosis problem.   

 

4 A Novel Abstraction  

In this section, we begin by providing a formal mapping 
between the structures of our iterative explanatory diagnosis 
problem model and the framework of the situation calculus. 
We then present our abstraction of the integrated situa-
tion/state-set solution space for the explanatory diagnosis 
problem, and describe how the explanation search algorithm 
operates with respect to this solution space.  

4.1 Definition in the Situation Calculus Framework 

There exists a relatively natural mapping from the iterative 
explanatory diagnosis problem model into the situation cal-
culus framework. Fluents have similar interpretations in 
both systems; Both environmental events and agent actions 
can both be encoded as action symbols in the situation cal-
culus. To address the problem of expressing co-occurring 
environmental events in the situation calculus (which does 
not allow concurrent actions), we refer to event sets as de-

fined in §3.1. The fact that event sets are triggered determin-
istically as soon as their preconditions are satisfied is encod-
ed in the action precondition axioms.  

Given an iterative explanatory diagnosis problem as de-
scribed in §3.1, with a finite set of objects 𝑂, observable 
fluents 𝐹𝑂𝐵𝑆 and hidden fluents 𝐹𝐻𝐼𝐷 , observable agent ac-
tions 𝐴𝐴𝐺 , unobservable deterministically-triggered envi-
ronmental event sets 𝐴𝐸𝑉,  knowledge of valid initial states 
𝐼𝑉𝐴𝐿 ,  and ground-truth initial state 𝑒𝑠𝑡𝑎𝑟𝑡 , the mapping from 
this iterative explanatory diagnosis problem into the situa-
tion calculus  is as follows: 

 
 Mapping to Situation Calculus Symbols: 

 Situations: Sequences of interleaving actions and 
event-sets, starting in the null initial situation 𝑆0.  

 Objects 𝑂: 𝑂 
 Fluents 𝐹: 𝐹𝑂𝐵𝑆 ∪ 𝐹𝐻𝐼𝐷 
 Actions 𝐴:  𝐴𝐴𝐺 ∪ 𝐴𝐸𝑉 

 
Mapping to Situation Calculus Axioms: 

 Initial Constraints  𝑇𝑆𝐶
𝑆0 :  𝐼𝑉𝐴𝐿  

 Successor State Axioms 𝑇𝑆𝑆: For each fluent in 

𝐹𝑂𝐵𝑆 ∪ 𝐹𝐻𝐼𝐷, and for every action or event set in 

𝐴𝐴𝐺 ∪ 𝐴𝐸𝑉 that references that fluent in its effects, 

a pair of positive and negative SSA’s are defined as 

described in §3.2.   

 Action Precondition Axioms  𝑇𝐴𝑃: For each event 

set in 𝑎𝑉 ∈ 𝐴𝐸𝑉, an Action Precondition Axiom 

𝛱𝑎𝑉
 is defined over the fluents in 𝐹𝑂𝐵𝑆 ∪ 𝐹𝐻𝐼𝐷  that 

are referenced in the preconditions of 𝑎𝑉, as de-

scribed in §3.2. We use 𝛱𝐸𝑉 =  ⋁𝑎𝑉∈𝐴𝐸𝑉
[ 𝛱𝑎𝑉

] to 

represent the union of all event set preconditions. 

Recall that in our model, events sets must happen 

immediately when they are triggered and agent ac-

tions cannot occur until the last triggered event se-

quence has completed. To encode this constraint, 

the Precondition Axiom 𝛱𝑎𝐺
 for each agent action 

in 𝑎𝐺 ∈ 𝐴𝐴𝐺  include both ¬𝛱𝐸𝑉  in addition to the 

fluents in 𝐹𝑂𝐵𝑆 that are referenced in the action’s 

precondition (the preconditions for agent actions 

are always observable).   

 Unique Action Name Axioms 𝑇𝑈𝑁𝐴: Defined for 

each action symbol.  

 Initial State Value 𝑇𝑆0
: 𝑒𝑠𝑡𝑎𝑟𝑡   

The iterative explanatory diagnosis problem is distinct 
from the diagnosis formalism previously defined in §3.2, in 
that it occurs iteratively in online (e.g., goal reasoning) 
agents: At all times the goal reasoning agent maintains a 
hypothesis about the initial state value 𝐻(𝑆0) and an expla-
nation (a consistent, estimated execution history 𝐴). Each 
time the agent encounters an unexpected observation, it 
searches for a diagnosis which will consist of a revised hy-
pothesis 𝐻′(𝑆0) and revised execution history 𝐴′, preceding 
from the previous [𝐻(𝑆0), 𝐴].    

Valid diagnoses must be consistent with the agent’s (iter-

atively updated) observation, which is comprised of all 

Figure 2: Observations in the state-set framework 



agent actions and the values of 𝐹𝑂𝐵𝑆 in the situations that 

immediately preceded those actions. We introduce notation 

to formally define the observation as a sentence in the situa-

tion calculus.  We refer to the sequence of agent actions that 

have occurred so far in situation 𝑠 as 𝐴𝑎𝑔𝑒𝑛𝑡(𝑠) =

𝑎1, 𝑎2, … 𝑎𝑛.  For each 𝑎𝑖 ∈ 𝐴𝑎𝑔𝑒𝑛𝑡(𝑠) we use 𝑠𝑎𝑖
to refer to 

the situation immediately before action 𝑎𝑖 occurred (i.e., the 

situation after 𝑎𝑖 is 𝑑𝑜(𝑎𝑖 , 𝑠𝑎𝑖
)).  We further use the notation 

 𝐹𝑂𝐵𝑆+(𝑠𝑖) =  ⋀𝐹𝑖∈𝐹,𝑋∈𝑂𝑘:[𝐹𝑖(𝑋,𝑠𝑖)=𝑇][𝐹𝑖(𝑋, 𝑠𝑖)]  and  

𝐹𝑂𝐵𝑆−(𝑠𝑖) =  ⋀𝐹𝑖∈𝐹,𝑋∈𝑂𝑘:[𝐹𝑖(𝑋,𝑠𝑖)=𝐹]¬[𝐹𝑖(𝑋, 𝑠𝑖)] to indicate 

the true and false grounded observable fluents in situation 

𝑠𝑖.  We then have:  

 

𝑂𝐵𝑆[𝑆0, 𝑠] = ∀𝑎𝑖∈𝐴𝑎𝑔𝑒𝑛𝑡(𝑠):  [𝑑𝑜(𝑎𝑖 , 𝑠𝑎𝑖
) ⊑ 𝑑𝑜(𝑎𝑖+1, 𝑠𝑎+1)] 

∧ [ 𝐹𝑂𝐵𝑆+(𝑠𝑎𝑖
) ∧ 𝐹𝑂𝐵𝑆−(𝑠𝑎𝑖

)] 

 

4.2 The Situation/State-set solution space   

The space of valid solutions to the iterative explanatory di-

agnosis problem consists of two interdependent sub-spaces: 

possible states and possible situations. There is the space of 

possible environmental states at each step in the execution, 

and there is the set of possible situations (consisting of the 

known agent actions and possible environmental event se-

quences).  Because events occur deterministically, infor-

mation that eliminates possible states also reduces the set of 

possible event sequences. Similarly, refining the set of pos-

sible event sequences reduces the set of possible current 

states.  For an agent’s hypothesized execution history and 

estimated state to be valid, they must lie within this solution 

space. 

Figure 3 applies the combined situation/state-set abstrac-

tion to illustrate the evolution of this solution space, through 

the first action and observation, for an agent whose initial 

plan begins with the actions: [𝑎𝑐𝑡𝑖𝑜𝑛1, 𝑎𝑐𝑡𝑖𝑜𝑛2, 𝑎𝑐𝑡𝑖𝑜𝑛3].  
Figure 3a depicts the solution space before the first action is 

taken. The set of possible initial states is constrained by the 

agent’s knowledge of the starting state, taken from an initial 

observation and the set of constraints that determine which 

initial states are valid, (𝐹𝑂𝐵𝑆(𝑆0) ∧ 𝐼𝑉𝐴𝐿).   

The set of possible states following the first action will be 

smaller if the action taken is not a one-to-one function. For 

example: taking the action 𝑀𝑜𝑣𝑒𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑟𝑜𝑏𝑜𝑡1, 𝑆0) 

would have the effect of mapping the possible initial states 

where the fluent  ¬𝑀𝑜𝑣𝑖𝑛𝑔(𝑟𝑜𝑏𝑜𝑡1, 𝑆0) holds, and the pos-

sible initial states where 𝑀𝑜𝑣𝑖𝑛𝑔(𝑟𝑜𝑏𝑜𝑡1, 𝑆0) holds, to 

states where fluent 𝑀𝑜𝑣𝑖𝑛𝑔(𝑟𝑜𝑏𝑜𝑡1, 𝑠1) is guaranteed to 

hold.  This reduces the set of possible states after the ac-

tion—and overwrites the initial state information 

[¬]𝑀𝑜𝑣𝑖𝑛𝑔(𝑟𝑜𝑏𝑜𝑡1, 𝑆0), such that it may be impossible to 

infer with certainty from later observations.  (One implica-

tion of this reduction in state-set size is that it is possible to 

reach a known intermediate state on an action path, and thus 

be guaranteed to satisfy the agent’s diagnosis needs by cor-

rectly predicting all future states and event sequences, with-

out ever being able to correctly determine with certainty the 

states and situations that preceded the known state.)  

Dependent on the state following the first action, there are 

many event sequences that could possibly occur, (the space 

of possible event sequences is depicted in grey in Figure 3 

Panel I).  Some event sequences will affect observable flu-

ents differently than others, and will result in different ob-

servation values following the sequences.  Making an ob-

servation thus eliminates possible situations and reduces the 

solution space. Figure 3 Panel II depicts the evolution of the 

solution space after the first observation is taken, and Figure 

3 Panel III shows the solution space after the second obser-

vation. 

Figure 3: The situation/state-set solution space 



 

 4.3 Depiction of Explanatory Diagnosis in an 

Online Agent  

We now apply our abstraction to discuss how the explana-
tion search algorithm [Molineaux and Aha 2015] iteratively 
navigates the solution space to identify a revised, consistent 
explanatory diagnosis (‘explanation’) each time an observa-
tion conflicts with the agent’s expectations. Figure 4 illus-
trates four steps of an online planning agent with explanato-
ry diagnosis over the subsequence of the situation occurring 
between the most recent two observations (the complete 
explanatory diagnosis search continues revisions back to 
correct the hypothesized initial state).  The steps of the ex-
planatory search algorithm proceed as follows:  (1) Initially, 
the agent maintains a hypothesized state and projects from 
there the expected event sequence and observation (Panel I).  
(2) The expected state is compared to the observation and 
discrepancies, if any, are identified (if there exists one or 
more discrepancies, the space of possible event sequences 
no longer contains the previously hypothesized event se-
quence (Panel II)).  (3) The agent begins explanation revi-
sion by considering all possible edits to the previously hy-
pothesized execution history (e.g., adding or removing 

events) that might affect the discrepancy regarding the un-
expected observed fluent value (Panel III).  These edits to 
the explanation may introduce additional discrepancies 
(such as unsatisfied preconditions or conflicts with previous 
observations), causing the edited explanation to violate the 
space of possible situations. (4) The discrepancy-resolution 
process (searching across all applicable edits) is recursively 
applied, until a resulting explanation has no further dis-
crepancies. One or more resolutions must change a hypothe-
sized initial state value (because, in a deterministic envi-
ronment, no other execution history can have occurred with 
the same hypothesized initial state). The revised explanation 
must lie entirely inside the set of possible situations, imply-
ing that it is consistent with the domain constraints defined 
in §4.1 and is consistent with all observations (Panel IV).  

5  Discussion and Future Work 

Our goal has been to formalize and clarify the iterative ex-
planatory diagnosis problem for goal reasoning agents in 
partially observable environments. Here we highlight some 
initial insights, with the objective of demonstrating concrete 
applications of these insights in our future work.  

We start by noting that techniques which use an explicit 
estimation of the situation/state-set solution space to limit 

Figure 4: Four steps of online planning with explanatory diagnosis 



the scope of the diagnosis search could help improve search 
efficiency. 
   There are several techniques that might be effective for 
guiding the explanation search to stay within the set of pos-
sible states/situations as much as possible, reducing time 
spent on fruitless branches in the search.  Case-based ap-
proaches that store event sequences associated with com-
mon classes of fluent observation values might be applica-
ble for guiding search in this fashion.  Finally, fluent de-
pendency data structures (mapping each expected observa-
tion fluent to previous estimated hidden fluents hypothe-
sized to affect its value) could allow us to infer likely candi-
dates for revised hypothesized states, directly from the un-
expected observation.   

Another way to limit the scope of explanation search is 
temporally: Since the agent’s primary diagnosis need is to 
attain a robust estimate of its current state, rather than a 
complete execution history, it may not be practically useful 
to revise explanations completely back to the initial state 
(which, as we established in §4.2, will in many cases be 
impossible to identify with certainty.)  The agent could use a 
method for estimating the size and structure of intermediate 
state-sets to construct a heuristic identifying when signifi-
cant information loss has occurred between state-sets.  This 
would be useful for selecting a point to terminate explana-
tion revision, accepting uncertainty about the history of flu-
ents whose true values may not be inferable previous to that 
point.  This approach could be exploited in conjunction with 
an agent using diagnostic planning to intentionally select 
actions that reduce the set of possible current states. 

Additionally, the true size and complexity of the solution 
space depicted in Figure 3 depends on the structure of the 
fluent set (which determines the size and internal structure 
of possible event-sets) and the design of the action/event 
preconditions and effects (which affect the space of possible 
event-sequences, and the reduction in the size of the state-
set after each action).  Since different representations of a 
given domain may result in varying levels of complexity in 
the modeled solution space, which in turn causes varying 
degrees of efficiency in explanation search, future work 
could investigate the domain-representation qualities that 
affect efficiency of explanatory diagnosis search.   
Finally, in the future we may consider actions with non-
deterministic effects, or non-deterministically triggered 
events, and adjust our abstraction to represent these. 

Acknowledgements 

Thanks to OSD ASD (R&E) for sponsoring this research.  

References 

[Abelson et al. 1985] Harold Abelson, Gerald Jay Sussman, 
and Julie Sussman. Structure and Interpretation of Com-
puter Programs. Cambridge, MA: MIT Press, 1985. 

[Baumgartner et al. 2001] Robert Baumgartner, Georg 
Gottlob, and Sergio Flesca. Visual information extrac-
tion with Lixto. In Proceedings of the 27th International 

Conference on Very Large Databases. Rome, Italy: 
Morgan Kaufmann, 2001. 

[De Kleer 1986] Joahn De Kleer. An assumption-based 
TMS. In Artificial Intelligence, 1986 

 [Gillespie et al. 2015] Kellen Gillespie, Matthew 
Molineaux, Michael W. Floyd, Swaroop S. Vattam, and 
David W. Aha. Goal reasoning for an autonomous squad 
member. In Goal Reasonning: Papers from the ACS 
Workshop. Atlanta, GA: Georgia Institute of Technolo-
gy, Institute for Robotics and Intelligent Machines, 
2015. 

[Kalman 1960] Rudolph Emil Kalman. A new approach to 
linear filtering and prediction problems. In Journal of 
Basic Engineering, 1960. 

[Lin and Reiter 1994] Fangzhen Lin and Raymond Reiter. 
State constraints revisited. Journal of Logic and Compu-
tation, 4(5):655-678. Oxford University Press, 1994. 

[McIlraith 1997] Sheila McIlraith. Towards a formal ac-
count of diagnostic problem solving. PhD thesis. Toron-
to, Ontario, Canada: University of Toronto, Department 
of Computer Science, 1997. 

[Sohrabi et al. 2010] Shirin Sohrabi, Jorge A. Baier, and 
Sheila A. McIlraith. Diagnosis as planning revisited. In 
Proceedings of the Twelfth International Conference on 
the Principles of Knowledge Representation and Rea-
soning. Toronto, Ontario, Canada: AAAI Press, 2010. 

[Molineaux and Aha 2015] Matthew Molineaux and David 
W. Aha. Continuous explanation generation in a multi-
agent domain. In Proceedings of the Third Conference 
on Advances in Cognitive Systems. Atlanta, GA: Cogni-
tive Systems Foundation, 2015. 

[Molineaux and Aha 2014] Matthew Molineaux and David 
W. Aha. Learning unknown event models. In Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial 
Intelligence. Quebec City, Quebec, Canada: AAAI 
Press, 2014. 

[Molineaux et al. 2010] Matthew Molineaux, Matthew 
Klenk, and David W. Aha. Goal-driven autonomy in a 
Navy strategy simulation. In Proceedings of the Twenty-
fourth AAAI Conference on Artificial Intelligence. Atlan-
ta, GA: AAAI Press, 2010. 

[Pang and Holte 2011] Bo Pang and Robert C. Holte. State-
set search. In Fourth Annual Symposium on Combinato-
rial Search, 2011. 

[Thrun et al. 2005] Thrun, Sebastian, Wolfram Burgard, and 
Dieter Fox. Probabilistic Robotics. Cambridge, MA: 
MIT Press, 2005. 

[Vattam et al. 2013] Swaroop S. Vattam, Matthew Klenk, 
Matthew Molineaux, and David W. Aha. Breadth of ap-
proaches to goal reasoning: A research survey. In Goal 
Reasoning: Papers from the ACS Workshop.  College 
Park, MD: University of Maryland, Department of Com-
puter Science, 2013. 

 


