
Discourse-Driven Tellability Goals for Narrative Planning∗

David R. Winer and R. Michael Young
Liquid Narrative Group, Computer Science

North Carolina State University, Raleigh NC
drwiner@ncsu.edu

Abstract
Typical narrative generation systems
adopt a pipeline approach in which
fabula (i.e., plot) is generated and
provided as input for generating
discourse and narration (e.g. text or
animation). However, stories produced
independently from a communicative
plan are not guaranteed to have properties
which are readily tellable or worth
telling. This paper presents an approach
to narrative planning in which constraints
for a story are discovered as part of the
search for compatible story and discourse
solutions. Narrative generation involves
goal specification by users at multiple
levels, and this approach furthers the
research agenda to reduce this burden.

Introduction
Narrative intelligence is fundamental for organizing
experiences, understanding our surroundings, and
forming predictions about the future [Bruner, 1991;
Schank, 1995]. AI planning research is a popular
source of data structures and algorithms for under-
standing, generating, and reasoning about stories
[Young et al., 2014]. Narratologists frequently
distinguish the story (i.e. fabula) of narrative from
the discourse (e.g. the narration of the story to a
spectator) [Propp, 1968; Bruner, 1991], and plans
have proven useful for modeling both story and
discourse [Young et al., 2014]; they are effective

∗These match the formatting instructions of IJCAI-07.
The support of IJCAI, Inc. is acknowledged.

for modeling discourse because a coherent sequence
of communicative actions is plan-like [Cohen and
Perrault, 1979], and plans are effective for modeling
stories because stories are composed of events with
cause-effect relations with characters themselves
forming plans to achieve goals [Young et al., 2014].
Psychological studies have demonstrated that plans
capture many of the key aspects of narratives that
spectators use to understand narrative discourse
[Ware et al., 2014; Radvansky et al., 2014; Cardona-
Rivera et al., 2016].

A central item in the narrative planning
research agenda is to adapt planners originally
developed for efficient problem solving [Bonet
and Geffner, 2001] to produce plans which are
interesting by virtue that they have properties
worth telling (i.e., they are tellable). However,
narratologists often disagree on what properties
make a story tellable [Pratt, 1977; Bruner, 1991].
Some properties such as conflict may be essential
for tellability, but other properties may depend
on the goals of the narrator. For example, a
screenwriter may add an event to a screenplay’s
story level (e.g., a non-central characters falls to
his death off of a narrow bridge), in order to elicit
a discourse effect (e.g., the viewer believing this
bridge is a dangerous obstacle for the protagonist).
Other properties in a story may be tellable because
they facilitate narration (e.g. a conversation in a
wide room is more readily tellable through film than
a conversation in a narrow hallway). In this work,
we present a narrative-theoretic language in which
users can specify storyworld constraints to support
story tellability.

A typical approach to planning-based narra-

tive generation is a story-then-discourse pipeline
approach, in which a story is produced from a story
planner and passed as input to a discourse planner,
which then produces a plan for telling the story
[Callaway and Lester, 2002; Jhala and Young, 2010;
Young et al., 2014]. As a consequence, the story is
created in isolation and not tailored for the discourse
plan. If there are story constraints associated with
discourse actions (e.g., to film a conversation
between two characters using a 2-shot, there must
be sufficient free space around both characters
for cameras to position themselves), an input plan
that solves a story problem may not meet some
set of constraints needed to solve the discourse
problem (i.e., the story plan is incompatible with the
discourse goals), even though a solution to the story
problem exists and does meet those constraints.

We call a planner that generates both story and
discourse plans from story and discourse problems
bipartite complete just when the planner will find
a compatible pair of story and discourse solutions
when one exists. Thus, the story-then-discourse
planner may not be bipartite complete. We present
a discourse-driven approach to narrative generation
which tailors the story to support requirements
specified by the discourse. To model story plan
structure at the discourse level, we define a graph
structure that captures partially or incrementally
refined constraints between elements of a story
plan, and use the properties of this graph to add
constraints and check for consistency during dis-
course plan construction. We introduce the BiPOCL
algorithm which can interleave constructing the
story graph and the discourse plan, and ensures that
the completion of the constraints in the graph are
both causally consistent and fulfill the requirements
of the discourse plan.

Related Work
Story planning benefits from a rich history of AI
research. The first story generation system to use
planning is TALESPIN [Meehan, 1977], which
generates stories about woodland creatures that take
actions, in accordance with rules of the world, to
satisfy simple needs. Another early story generation
system UNIVERSE [Lebowitz, 1983] represents
plot fragments as plans and selects a fragment to
execute that satisfies an authorial goal. MINSTREL
[Turner, 1993] uses planning to create an outline
of a story and case-based reasoning to fill in

details from a story library. Cavazza and colleagues
use character-centric planning [Cavazza, Charles,
and Mead, 2002], such that story is the emergent
property of characters pursuing goals. Partial-order
causal link (POCL) planning is used as a top-down
approach to story generation; a user specifies a
goal state of the story world and the solution space
is restricted to just those story plans which are
causally sound [Riedl and Young, 2010; Ware et al.,
2014] (see also [Young et al., 2014] for review of
story planning). CPOCL (conflict POCL) [Ware et
al., 2014] is a story planner with a solution space
supporting character intentionality and conflict.

In story-then-discourse systems such as Dar-
shak [Jhala and Young, 2010], a planner generates
or takes as input a story plan, and then generates
a discourse plan to narrate the story. Darshak is
a cinematic narrative planning system in which
dramatic patterns are defined as discourse operators
that have constraints describing what must be true
about the story plan for the operator to instantiate
as a step. Dramatic patterns decompose into camera
shot patterns which convey the story steps or set
of steps in a manner appropriate for the dramatic
pattern.

Dramatis [O’Neill and Riedl, 2014] takes a
story plan as input and measures the suspense level
by generating a character plan and determining the
likelihood of its success using a definition informed
by a cognitive theory of suspense. Suspenser
[Cheong and Young, 2015] and Prevoyant [Bae
and Young, 2014] systems take as input a story
plan and arrange the steps in an ordering which
elicits suspense or surprise, respectively, based
on cognitive-computational definitions inspired by
psychological theory.

Storybook [Callaway and Lester, 2002] is
an end-to-end narrative prose generation system
with four parts: 1) a narrative organizer which
takes as input a story plan, 2) a sentence planner
which creates a proto-sentence outline, 3) a revision
module which produces prose paragraphs from
proto-sentences, and 4) a surface realizer which
makes some grammatical edits and formats the story
in a file.

Problem Formulation
The discourse-driven narrative planning approach
is a search for solutions to two problems – a
story problem and discourse problem – where a

solution is a plan of actions to bring an initial
state to a goal state. At the story level, the
solution represents the actions of characters in
the storyworld, whereas at the discourse level the
solution represents the communicative actions by
a narrator agent to describe something about the
story. In prior approaches to story and discourse
generation, a story solution is passed through a
pipeline model. In our approach, goals for the
story solution are selected as part of the search for
a discourse solution. These goals are prerequisite
criteria about the story that must be true for the story
and discourse plans to be a bipartite solution to the
story and discourse problems.

Planning
Partial-order causal link (POCL) planning is a type
of planning as refinement search [Kambhampati,
Knoblock, and Yang, 1995], involving search
through plan-space such that each child node in the
search is a refinement to the (potentially flawed)
plan represented at its parent node. Through an
iterative process of identifying flaws in the plan
and repairing them in a least-commitment manner
[Weld, 1994], plans with no flaws are selected and
returned as solutions to the planning task.

Definition 1 (POCL Plan). A POCL plan is a tuple
〈S,B,O,L〉 with the following components:

• S is a set of steps, instantiated STRIPS-style
operators of the form 〈α, V,A, Pre,Eff〉
where α is a name distinguishing the operator
type, V is a set of variables, Pre is a set of
preconditions, first-order literals that must be
true for the step to execute, and Eff is a set
of effects, first-order literals that are made true
by the step’s execution.

• B is a set of binding constraints on variables
in steps in S including variable assignments,
codesignation, and non-codesignation con-
straints of the form 〈X,Y,=〉.
• O is a set of ordering constraints on steps in S

of the form sa ≺ sb indicating that sa executes
before sb for every total ordering of steps.

• L is a set of causal links of the form s
p−→ t

indicating that s is a step with some effect
p, and t is a step with some precondition p.
Step t is referred to as the consequent of the
causal link, and p is the dependency condition

of the causal link. Step t’s causal antecedents
are all steps σ such that there exists a causal
link σ

p−→ t. A step’s causal ancestors are its
causal antecedents in the transitive closure of
the antecedent relation. If s

p−→ t is a causal
link, then p is met when t executes just when
there is no step u such that u has effect ¬p and
u may execute before t and after s.
A plan is considered valid just when every

variable of every step is assigned to a constant,
and for every total ordering of steps, each step’s
preconditions are met when that step executes.
Definition 2 (Problem). A problem is a tuple
〈Λ, C, I,G〉 where Λ is a set of operators, C is a set
of constants, I is the initial state, a set of function-
free ground literals indicating what is true about the
world, and G is the goal state, a set of function-free
ground literals indicating the goal criteria for the
problem.

The POCL algorithm solves the planning
problem by resolving flaws. Initially, flaws are
created for each goal condition of the goal state.
Definition 3 (Open Precondition Flaw). An open
precondition flaw in a plan P = 〈S,B,O,L〉 is a
tuple 〈sneed, p〉 where sneed ∈ S and ¬∃s ∈ S such
that s

p−→ sneed ∈ L.
An open precondition flaw 〈sneed, p〉 is

resolved by reusing a step s already in the plan with
effect p, adding causal link s

p−→ sneed, and adding
ordering s ≺ sneed or by adding a new step snew
from an operator with effect p, adding causal link
snew

p−→ sneed, adding ordering snew ≺ sneed| and
adding precondition flaws for each precondition of
sneed.
Definition 4 (Threatened Causal Link Flaw). A
threatened causal link flaw in a plan P is a tuple
〈s p−→ t, sthreat〉 such that s

p−→ t is a causal link in
P and sthreat is a step in P with effect ¬p and can
execute before t and after s in some total ordering
of steps in P .

Threatened causal link flaws can be resolved
by adding an ordering to prevent the threatening
step from executing between the antecedent and
the consequent, or by adding bindings which
prevent the threatening effect from unifying with
the dependency condition. A plan is considered a
solution to the problem if the plan is valid, all

orderings and bindings are consistent, and there are
no flaws detected in the plan.

Element Graphs
To formalize the computational operations in our
approach, it’s convenient to re-conceptualize the
plan as a graph, which we refer to as an element
graph, composed of elements and edges between
elements. An element can represent a variable,
actor, literal, step, or a special root element which
represents the plan in its entirety.

Definition 5 (Element). An element is a tuple
〈i, t, A〉where i is a unique identifier, t is a type (i.e.,
a variable, actor, literal, step, or special root type),
and A is a dictionary of attributes associated with
the type (e.g., a step-typed element has an attribute
for its operator type, a literal-typed element has an
attribute for its predicate name, its status as true or
false, etc.)

Two elements are considered consistent just
when they are the same type and for each non-
empty attribute of one element, the other element’s
corresponding attribute is either the same value
or empty. Two elements are considered equivalent
just when they are consistent and for each non-
empty attribute of one element, the other element’s
corresponding attribute is the same value.

Definition 6 (Edge). An edge between two elements
a and b is a labeled, directed arc either indicating
that element a and b have the relationship as
specified by the arc’s label (positive edge), or do
not have the relationship (negative edge). Two edges
are considered consistent just when the sources
are consistent, the sinks are consistent, and they
have the same label. Two edges are considered
equivalent just when the sources are equivalent, the
sinks are equivalent, and the edges have the same
label.

Definition 7 (Element Graph). An element graph
is a tuple 〈V,E,C,Ω〉, where V is a set of elements,
E is a set of positive edges between elements in V ,
C = {c0, ..., cn} is a set of sets with positive and
negative edges between elements in V , and Ω is the
set of edge label options.

The edges in sets {c0, ..., cn} ∈ C represent
constraint sets. A single edge may be insufficient
to describe a constraint. For this reason, edges
are grouped into constraint sets in order to enable
constraints which specify a set of criteria which

all must be in the element graph for the constraint
to be considered detected. Two edge sets are
considered equivalent just when every edge in
one set is equivalent to some edge in the other,
and if two edges share an endpoint, then their
equivalent counterparts must also share an endpoint.
Negative edges in constraint sets represent edges
that if detected, disqualify the constraint from being
considered detected.

Definition 8 (Constraint Detection). A constraint
is detected in an element graph 〈V,E,C,Ω〉 just
when the set of positive edges in some constraint set
c ∈ C is equivalent to some subset of E and if there
is at least one negative edge in c, the set of negative
edges in c is not equivalent to any subset of E.

Definition 9 (Internal Consistency). An element
graph 〈V,E,C,Ω〉 is considered internally consis-
tent just when the graph is acyclic and no constraint
is detected.

Edges with label ’ordering’ and ’causal-link’
represent orderings and causal links. For edges with
label ’ordering’, the source of the edge precedes the
sink.

An element such as a step element or literal
element refers only to its id, type, and attributes, and
not to its component arguments or preconditions
and effects. The element-induced subgraph is the
graph structure representing the element type and
its components.

Definition 10 (Element-Induced Subgraph). If
GE is an element graph and ε is an element in
GE , then an ε-induced subgraph of GE is an
element graph composed of all elements and edges
reachable from ε by edges not labeled ’ordering’ or
’causal link’.

Definition 11 (Instantiated Element). If
v is an element in an element graph,
Gv = 〈Vv, Ev, Cv, Lv〉 is a v-induced subgraph,
and GO = 〈VO, EO, CO, LO〉 is another element
graph, then v can be instantiated by GO just when
all edges in Ev are consistent with some edge in
EO, no constraint in Cv is detected in GO, and no
constraint in CO is detected in Gv . An element v
can be considered instantiated as GO just when Ev

and EO are equivalent.

There may be multiple ways to match the
edges in an element-induced subgraph to the edges
in another graph, and therefore multiple ways

to instantiate an element. An assignment of an
element in an element graph to an element in
another element graph is called a coupling. The
resulting set of couplings denotes how the graph
was instantiated.

We now have the language needed to describe
the operations of the approach.

Discourse Level
At the discourse level, literals indicate what a
spectator agent believes is true and not true about
the story. Discourse actions are communicative
actions taken by a narrator agent to add or delete
the spectator’s beliefs.

Discourse operators are regular STRIPS-
style operators [Fikes and Nilsson, 1972], plus a
prerequisite: an element subgraph indicating the
structural properties required for an element graph
to be compatible with a discourse plan which
includes that discourse action. The variables in a
discourse operator are partially defined elements.

Definition 12 (Discourse Operator). A discourse
operator is a tuple 〈α, V, Pre,Eff,Req〉, where α
is the operator type, V is a set of elements, Pre
is a set of preconditions, literals indicating what
the spectator must believe for the step to execute,
Eff is a set of effects, literals indicating what
the spectator believes as the result of the step’s
execution, and Req is an element subgraph.

The element subgraph Req indicates the
properties required in an element graph representing
the story for the story to be compatible.

Definition 13 (Discourse Plan). A discourse plan
is a tuple 〈SD, BD, CD, OD, LD, GS〉 where SD is
a set of discourse steps, BD is a set of bindings
over elements in steps in SD, CD is the set of
couplings between elements in steps in SD and
elements in GS , OD is a set of orderings over
steps in SD, LD is a set of causal links between
steps in SD, and GS is an element graph which
instantiates the prerequisites from steps in SD. The
plan is considered valid just when the plan is valid
according to Definition 1, every element in steps in
SD is in a coupling with some element in GS , all
prerequisites in SD are instantiated in GS , and GS

is internally consistent.

For every discourse step that is added to the
discourse plan, some element in the element graph
must instantiate the step’s prerequisite (sometimes

via the special root element). Thus, the number
of possible ways to include a prerequisite in an
element graph is the number of elements in the
element graph which can instantiate the prerequisite
times the number of ways each of those elements
can be instantiated.
Definition 14 (Open Prerequisite Flaw). An open
prerequisite flaw in an element graph GS is a tuple
〈Q〉 where Q is an element subgraph that is not yet
instantiated by an element in GS .

Additionally, each step element in an element
graph must become instantiated by an operator.
The operators in a domain are converted into
element graphs, called operator graphs, and the
step element is instantiated by some operator graph
as defined in Definition 11.
Definition 15 (Uninstantiated Step Element
Flaw). An uninstantiated step element flaw in an
element graph GS is a tuple 〈σ〉 where σ is a step
element in GS that is not yet instantiated by an
operator graph.

We can now consider planning story and
discourse in the same algorithm by choosing
either to resolve flaws in the story plan, which is
conceptualized as an element graph, or to resolve
flaws in the discourse plan.

The BiPOCL algorithm is presented in Al-
gorithm 1. Goal planning at the discourse level
(lines 3-13) includes selecting and resolving open
precondition flaws, threatened causal link flaws,
and open prerequisite flaws. Whenever a new
discourse step is added to the discourse plan, an
open prerequisite flaw is added to the set of flaws
in the story plan. An open prerequisite flaw (line
13) is resolving by finding an instantiation of the
prerequisite in the element graph. Goal planning
at the story level (lines 14-15) includes selecting
and resolving open precondition flaws, threatened
causal link flaws, uninstantiated step element flaws,
and other flaws beyond the scope of this work
[Riedl and Young, 2010; Ware et al., 2014]. An
uninstantiated step element flaw 〈σ〉 is resolved by
selecting an operator graph which can instantiate σ
in the element graph.

Example
We present example discourse operators in Figure
1. Imagine these two operators are instantiated as
steps and there is a causal link between them. The

Algorithm 1 The BiPOCL (Bipartite Partial Order Causal Link) Algorithm
BiPOCL (PD = 〈SD, BD, CD, OD, LD, GS〉, FD, FS ,ΛD,ΛS)
Input: PD is an empty plan with dummy initial and final steps, GS has the special root element, FD and
FS include open precondition flaws for discourse and story goal conditions, respectively, ΛD is a set of
discourse operators, and ΛS is a set of operator graphs.

1: Termination: If either BD, OD, or GS is inconsistent, fail. If FD ∪ FS = ∅, return PD.
2: Plan Refinement: Nondeterministically choose a flaw f from FD ∪ FS :
3: If f ∈ FD is an open precondition flaw 〈sneed, p〉, choose sadd with effect p in one of two ways:
4: Reuse: Choose sadd from SD.
5: New Step: Create sadd from an operator in ΛD with effect p. Let S′

D = SD ∪ {sadd}.
6: For each precondition c of sadd, add new open precondition flaw 〈sadd, c〉 to F ′

D.
7: Add an open prerequisite flaw 〈Q〉 to F ′

S for the prerequisite Q of sadd.
8: Let L′

D = LD ∪ 〈sadd
p−→ sneed〉, add bindings to B′

D, let O′
D = OD ∪ 〈sadd ≺ sneed〉.

9: If f ∈ FD is a threatened causal link flaw 〈s p−→ u, t〉, choose how to prevent the threat:
10: Promotion: Let O′

D = O′
D ∪ {t ≺ s},

11: Demotion: Let O′
D = O′

D ∪ {u ≺ t}
12: Restriction: Add bindings to B′

D which cause the threatening effect of t not to unify with p.
13: If f ∈ FD is an open prereq flaw 〈Q〉, instantiate an element in GS with Q, add couplings to C ′

D.
14: If f ∈ FS is not an uninstantiated step element flaw, resolve f using its associated method.
15: If f ∈ FS is an uninstantiated step element flaw 〈σ〉, instantiate σ with some operator in ΛS

16: Threat Detection: If any causal link (or causal link edge) λ is threatened by a step σ,
17: Add new threatened causal link flaw 〈λ, σ〉 to F ′

D or F ′
S .

18: Recursive Invocation Call BiPOCL(P ′
D, F

′
D, F

′
S ,ΛD,ΛS).

Figure 1 Example discourse operators

convey- danger - at
el ement s: (?death - step,

?victim - actor
?loc - variable)

pr econdi t i on: (and)
ef f ect : (bel-danger-at ?loc ?death)
pr er equi si t e: (edges = {
('effect' ?death (not (alive ?victim))),
('precond' ?death (at ?victim ?loc))})

convey- i n- danger
el ement s:(?hero ?c - actor

 ?dloc - variable
 ?move ?m2 ?dstep - step)

pr econdi t i on: (bel-danger-at
 ?dloc ?dstep)

ef f ect : (bel-in-danger ?hero)
pr er equi si t e: (edges = {
('ordering' ?dstep ?move),
('effect' ?move (at ?hero ?dloc))},

const r ai nt s={c1={
('effect' ?m2 not (at ?c ?dloc),
('not effect' ?m2 (not (alive ?c)))
('ordering' ?m2 ?move)}})

first step conveys that a location is dangerous by
virtue that a character dies at this location, and the
second step conveys that a character is in danger by
virtue that he/she is at that dangerous location.

The top-right graph (G) of Figure 2 shows
one way to instantiate the prerequisites from those
steps into an element graph. An example of another
way would be that element ?victim equals element
?hero, even though this would prove problematic
and ought to not be considered as early as possible.
In G, the dashed arrows show constraint edges, and

dashed boxes show elements which are endpoints
only of constraint edges. These edges are from the
constraint set in the ’convey-in-danger’ discourse
operator.

The element graph in G of Figure 2 specifies
the following scenario: A) a step ?death executes
with the precondition that a character ?victim is
at a location ?loc and the effect is that ?victim is
not alive, B) a step ?move executes after ?death
with the effect that character ?hero is at location
?loc, and C) there is no step ?m2 which executes
before ?move (c-1) which has the effect that some
character ?c is not at location ?loc (c-2) and does not
have the effect that ?c is not alive (c-3). The reason
for part C of this scenario is that the character might
not be interpreted as being in danger if the spectator
observes other characters safely passing through the
dangerous location.

The graph on the bottom of Figure 2 (G′)
shows an element graph given the instantiation of
the ?death element with the ’fall-from’ operator
graph, and the instantiation of the ?move element
with the ’move’ operator graph. If the literal names
”alive” and ”at” were not found in the operator

Figure 2 G (top-right) shows an element graph
which instantiates the prerequisites from discourse
steps as described in the text. The dashed arrows
show constraint edges, and dashed boxes show ele-
ments which are endpoints only of constraint edges.
At the top-left is a very simple story domain with
two operators.G′ (bottom) shows an instantiation of
the step elements in the prerequisites given operator
graphs constructed from the operators.

fall-from

atnot alive at

?loc

'2-arg'

'2-arg'

?victim

'1-arg'

'1-arg'

'effect' 'precond'

move

'effect'

'ordering'

not atat

?from

'2-arg'

?hero

'1-arg'

'precond'

'1-arg'

'1-arg'
'2-arg'

adj

'precond'

'1-arg'
'2-arg'

'effect'

high-up

'1-arg'

'precond'

not at

'2-arg'
'1-arg'

'effect'

alive

'1-arg'

'precond'

alive

'precond'

'1-arg'

Si mpl e Domai n
move (?c ?f r om ?t o) :
Pr econdi t i ons: { (at ?c
?f r om) , (adj ?f r om
?t o) , (al i ve ?c) }
Ef f ect s: { (at ?c t o) ,
¬(at ?c ?f r om) }

f al l - f r om (?c ?f r om) :
Pr econdi t i ons: { (at ?c
?f r om) , (hi gh- up ?f r om) ,
(al i ve ?c) }
Ef f ect s: { ¬(al i ve ?c t o) ,
¬(at ?c ?f r om) }

G' constructed from G by instantiating ?deathstep and ?move step elements with
" fall-from" and "move" operator graphs, respectively

G'

?death

atnot alive at

?loc

'2-arg' '2-arg'

?victim

'1-arg' '1-arg'

'effect'
'precond'

?move

'effect'

'ordering'

?hero

'1-arg'

?m2 'ordering'

?c

not at

'1-arg''2-arg'

'effect'

?m2 'ordering'

G

not alive

'not effect'

'not 1-arg'

graphs, then the instantiation would not be possible.
The ’fall-from’ operator meets some criteria for the
constraint of the discourse step ’convey-in-danger’.
It is ordered to occur before ’move’ = ?move (c-1)
and has an effect that a character (?victim) is not
at ?loc (c-2), but it also has the effect that ?victim
is not alive (violating c-3); therefore, the constraint
is not detected in G′. Since G′ is also acyclic, G′ is
internally consistent.

Conclusion and Future work
The work presented in this paper describes mechan-
ics for discourse-driven narrative planning, for the
purpose of generating stories to be compatible with
a discourse plan.

One of the advantages to our design is that
the planning process can be interleaved such that
paths in the discourse search are pruned if no
internally consistent element graph is possible, and
paths in the story search are pruned by considering
only element graphs which are internally consistent
given the prerequisites in the discourse plan.
However, it is not necessary to interleave planning
in this way: one can first find a valid discourse plan

Figure 3 High-level schematic showing the
discourse-driven planning approach for narrative
generation and 4 levels of goal management: (1)
discourse goals, (2) tellability goals, (3) story goals,
and (4) character goals.

(1) Di scour se
Pl anner

Tel l abi l i t y Goal s

Di scour se
Pr obl em

St or y
Pr obl em St or y

Goal s

Di scour se
 Goal s

Sur f ace
Real i zat i on

(e. g. t ext or
ani mat i on)

Di scour se Pl an

St or y Pl an

I NPUT

Di scour se- Dr i ven Nar r at i ve Pl anni ng Appr oach

St or y Pl anner

Char act er
Pl ans/ Goal s

(3)

(4)

(2)

by constructing an element graph from prerequisites
in discourse steps and then use this graph as
the starting point for finding the complete set of
partial plans. In future work, we will formulate and
compare heuristics based on their efficiency.

Ultimately, our approach will involve goal
management at 4 levels; (1) discourse goals
specifying the final mental state of a spectator
agent, (2) tellability goals to scaffold the story
via prerequisites, (3) story goals specifying the
final state of the story world, and (4) character
goals which are adopted during the story but
may be thwarted. Figure 3 shows a high level
schematic of the approach. Through prior work
[Riedl and Young, 2010; Ware et al., 2014], the
goal management at Level 4 (character goals) is
encoded into the problem solving at Level 3 (i.e.,
4 ⊆ 3) by encoding plan flaws to character goal
following (e.g., characters only consent to actions
that are part of a plausible plan to achieve a goal),
so that the story planner reasons about character
goals as part of the search for story solutions.
The objective of this work is to formulate tellable
story goals using a meta-plan language so that the
discourse planner can reason about story as part of
the search for a discourse solution (i.e., 2 ⊆ 1). A
next-step ambition of our work is to generate the
story planning problem goal state as part of solving
tellability goals (3 ⊆ 2) so that a user need only
specify discourse goals (i.e., 4 ⊆ 3 ⊆ 2 ⊆ 1).

References
[Bae and Young, 2014] Bae, B.-C., and Young,

R. M. 2014. A computational model of
narrative generation for surprise arousal. IEEE
Transactions on Computational Intelligence and
AI in Games 6(2):131–143.

[Bonet and Geffner, 2001] Bonet, B., and Geffner,
H. 2001. Planning as heuristic search. Artificial
Intelligence 129(1):5–33.

[Bruner, 1991] Bruner, J. 1991. The narrative
construction of reality. Critical inquiry 1–21.

[Callaway and Lester, 2002] Callaway, C. B., and
Lester, J. C. 2002. Narrative prose generation.
Artificial Intelligence 139(2):213–252.

[Cardona-Rivera et al., 2016] Cardona-Rivera,
R. E.; Price, T.; Winer, D. R.; and Young, R. M.
2016. Question answering in the context of
stories generated by computers. Advances in
Cognitive Systems. In Press.

[Cavazza, Charles, and Mead, 2002] Cavazza, M.;
Charles, F.; and Mead, S. J. 2002. Character-
based interactive storytelling. IEEE Intelligent
systems.

[Cheong and Young, 2015] Cheong, Y. G., and
Young, R. M. 2015. Suspenser: A story gen-
eration system for suspense. IEEE Transactions
on Computational Intelligence and AI in Games
7(1):39–52.

[Cohen and Perrault, 1979] Cohen, P. R., and Per-
rault, C. R. 1979. Elements of a plan-
based theory of speech acts. Cognitive science
3(3):177–212.

[Fikes and Nilsson, 1972] Fikes, R. E., and Nils-
son, N. J. 1972. Strips: A new approach to
the application of theorem proving to problem
solving. Artificial intelligence 2(3):189–208.

[Jhala and Young, 2010] Jhala, A., and Young,
R. M. 2010. Cinematic visual discourse: Rep-
resentation, generation, and evaluation. IEEE
Transactions on Computational Intelligence and
AI in Games 2(2):69–81.

[Kambhampati, Knoblock, and Yang, 1995]
Kambhampati, S.; Knoblock, C. A.; and Yang,
Q. 1995. Planning as refinement search:
A unified framework for evaluating design
tradeoffs in partial-order planning. Artificial
Intelligence 76(1):167–238.

[Lebowitz, 1983] Lebowitz, M. 1983. Creating a
story-telling universe. Proceedings of the Eighth
International Joint Conference on AI 1:63–65.

[Meehan, 1977] Meehan, J. R. 1977. Tale-spin,
an interactive program that writes stories. In
International Joint Conference on AI, volume 77,
91–98.

[O’Neill and Riedl, 2014] O’Neill, B., and Riedl,
M. 2014. Dramatis: A computational model of
suspense. In Association for the Advancement of
AI, volume 2, 2–2.

[Pratt, 1977] Pratt, M. L. 1977. Toward a speech
act theory of literary discourse.

[Propp, 1968] Propp, V. 1968. The morphology of
the folktale.

[Radvansky et al., 2014] Radvansky, G. A.; Tam-
plin, A. K.; Armendarez, J.; and Thompson,
A. N. 2014. Different kinds of causality in event
cognition. Discourse Processes 51(7):601–618.

[Riedl and Young, 2010] Riedl, M. O., and Young,
R. M. 2010. Narrative planning: Balancing plot
and character. Journal of Artificial Intelligence
Research 39(1):217–268.

[Schank, 1995] Schank, R. C. 1995. Tell me a
story: Narrative and intelligence. Northwestern
University Press.

[Turner, 1993] Turner, S. R. 1993. Minstrel: a
computer model of creativity and storytelling.

[Ware et al., 2014] Ware, S. G.; Young, R. M.;
Harrison, B.; and Roberts, D. L. 2014. A
computational model of plan-based narrative
conflict at the fabula level. IEEE Transactions
on Computational Intelligence and AI in Games
6(3):271–288.

[Weld, 1994] Weld, D. S. 1994. An introduction
to least commitment planning. AI magazine
15(4):27.

[Young et al., 2014] Young, R. M.; Ware, S.; Cas-
sell, B.; and Robertson, J. 2014. Plans and
planning in narrative generation: a review of
plan-based approaches to the generation of story,
discourse and interactivity in narratives. SDV.
Sprache und Datenverarbeitung.

