Background 00 The FLARES algorithm 0000000 0000000 000

Experiments

0000

э

Fast SSP Solvers Using Short-Sighted Labeling

Luis Pineda, Kyle H. Wray and Shlomo Zilberstein

College of Information and Computer Sciences, University of Massachusetts, Amherst, USA

July 9th

Fast SSP Solvers Using Short-Sighted Labeling

Introduction ●000	Background 00	The FLARES algorithm 0000000 00000000 000	Experiments 0 00 00 0
Introduction			
Motivation			

- SSPs are a highly-expressive model for sequential decision making
- They can be used for decision-making in the presence of multiple goals

Caveat: solving SSPs optimally is a very computationally intensive task

- 4 同 6 - 4 三 6 - 4 三 6

3

Introduction ●000	Background 00	The FLARES algorithm 0000000 00000000 000	Experiments 0 00 00 0
Introduction			
Motivation			

- SSPs are a highly-expressive model for sequential decision making
- They can be used for decision-making in the presence of multiple goals

Caveat: solving SSPs optimally is a very computationally intensive task

Introduction 0●00	Background 00	The FLARES algorithm 0000000 00000000 000	Experiments 0 00 00 0
Introduction			
Motivation			

- A range of model reduction and heuristic search techniques for solving SSPs are available
- But even restricting only to states in optimal policies can be prohibitive

Introduction 0000	Background 00	The FLARES algorithm 0000000 00000000 000	Experiments 0 00 00 0
Introduction			
Motivation			

- Recent approaches attempt to reduce the reachable state space even more and use re-planning during execution
- However, they still have several drawbacks:
 - Restricted to particular problem representations (e.g., RFF and FF-Replan)
 - Involve pre-processing (e.g., \mathcal{M}_{I}^{k} reduction)
 - Result in moderate reductions in time (e.g., SSiPP)

Introduction 000●	Background 00	The FLARES algorithm 0000000 00000000 000	Experiments o oo oo o
Introduction			
In this work			

- We introduce a new algorithm called FLARES (Fast Labeling from Residuals Using Samples)
- Modifies LRTDP to find high-performing policies much faster
- It can be extended to also find optimal policies

Background ●0 The FLARES algorithm 0000000 00000000 000 Experiments 0

Background

Stochastic Shortest Path Problems

An SSP is a tuple $\langle S, A, T, C, s_0, s_g \rangle$, where:

- S is a finite set of states
- A is a finite set of actions
- $T(s'|s,a) \in [0,1]$ is a transition function
- $C(s, a) \in (0, \infty)$ is a cost function
- s₀ is an initial state
- s_g is a goal state

Introduction 0000	Background 0●	The FLARES algorithm 0000000 00000000 000	Experiments 0 00 00 0
Background			
Solutions t	o SSPs		

The optimal value function for an SSP can be found using:

$$BU(s) := \min_{a \in A} \left\{ C(s, a) + \sum_{s' \in S} T(s'|s, a) V(s') \right\}$$
(1)
$$\pi(s) = \arg\min_{a \in A} \left\{ C(s, a) + \sum_{s' \in S} T(s'|s, a) V(s') \right\}$$
(2)

・ロト ・回ト ・ヨト ・ヨト

ъ.

Background

Experiments

00000

Ξ.

Motivation for FLARES

Problems with optimal heuristic search algorithms

Background 00 The FLARES algorithm 000000 000000 000

Experiments

00000

Motivation for FLARES

Depth-limited search

Fast SSP Solvers Using Short-Sighted Labeling

Background 00 The FLARES algorithm ○○●○○○○ ○○○○○○○

Experiments

00000

Motivation for FLARES

Depth-limited search

Fast SSP Solvers Using Short-Sighted Labeling

Background 00 The FLARES algorithm 000000 0000000 000 Experiments

00000

Motivation for FLARES

Depth-limited search

Background 00 The FLARES algorithm 0000000 0000000 000 Experiments

0000

Motivation for FLARES

RTDP with short-sighted SSPs

Background 00 The FLARES algorithm 0000000 0000000 000 Experiments

00000

Motivation for FLARES

RTDP with short-sighted SSPs

Background 00 The FLARES algorithm 000000● 0000000 000 Experiments

00000

Motivation for FLARES

RTDP with short-sighted SSPs

Background

The FLARES algorithm

Experiments

0000

FLARES

Labeling states (LRTDP)

Background

The FLARES algorithm

Experiments

00000

FLARES

Labeling states

Introd	

Background

The FLARES algorithm

Experiments

00000

FLARES

Labeling states

Introduction 0000	Background 00	The FLARES algorithm ○○○○○○○ ○○○●○○○○○ ○○○	Experiments 0 00 00 0
FLARES			
But			

...to label s, all states reachable from s must be checked...

Background

The FLARES algorithm

Experiments

FLARES

Labeling states can also be costly

Introduction 0000	Background 00	The FLARES algorithm ○○○○○○○ ○○○○●○○ ○○○	Experiments 0 00 00 0
FLARES			
FLARES			

Proposed approach: Move the short-sightedness to the labeling

Introduction 0000	Background 00	The FLARES algorithm ○○○○○○○ ○○○○○○○○○○ ○○○	Experiments 0 00 00 0
FLARES			
FLARES			

Labeled states up to horizon t

G

Fast SSP Solvers Using Short-Sighted Labeling

S

Background

The FLARES algorithm

Experiments

00000

FLARES

• Similar to the RTDP approach mentioned before...

- except that now computation can be reused and...
- there is a crisp termination condition that exploits short-sightedness

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Background

The FLARES algorithm

Experiments

FLARES

- Similar to the RTDP approach mentioned before...
- except that now computation can be reused and...
- there is a crisp termination condition that exploits short-sightedness

Background

The FLARES algorithm

Experiments

FLARES

- Similar to the RTDP approach mentioned before...
- except that now computation can be reused and...
- there is a crisp termination condition that exploits short-sightedness

Background 00 The FLARES algorithm

Experiments

00000

Theoretical properties of FLARES

Correctness of labeling procedure

Proposition

FLARES labels a state s with s.SOLV = true only if all states s' that can be reached from following the greedy policy satisfy $R(s') < \epsilon$.

Proposition

As long as a Bellman update of s' with $R(s') < \epsilon$ never results in $R(s') \ge \epsilon$, then FLARES labels a state s with s.D-SOLV = true only if s is depth-t-solved.

Background 00 The FLARES algorithm

Experiments

00000

Theoretical properties of FLARES

Correctness of labeling procedure

Proposition

FLARES labels a state s with s.SOLV = true only if all states s' that can be reached from following the greedy policy satisfy $R(s') < \epsilon$.

Proposition

As long as a Bellman update of s' with $R(s') < \epsilon$ never results in $R(s') \ge \epsilon$, then FLARES labels a state s with s.D-SOLV = true only if s is depth-t-solved.

Background 00 The FLARES algorithm

Experiments

00000

Theoretical properties of FLARES

FLARES is guaranteed to terminate

Theorem

If the heuristic is admissible and monotone, FLARES terminates after at most $\epsilon^{-1} \sum_{s \in S} V^*(s) - V(s)$ trials.

Background 00 The FLARES algorithm ○○○○○○○ ○○● Experiments 0

Theoretical properties of FLARES

An optimal version of FLARES

An optimal version of FLARES can be produced by calling FLARES multiple times with increasing horizon t

Theorem

If the initial heuristic is admissible and monotone, and ρ satisfies $\forall V, t, \rho(V, t) > t$, with $t_0 \ge 0$, then OPT-FLARES computes an optimal policy.

▲ロ > ▲ 圖 > ▲ 画 > ▲ 画 > 一 画 … の Q ()

Fast SSP Solvers Using Short-Sighted Labeling

Background 00 The FLARES algorithm ○○○○○○○ ○○● Experiments 0

Theoretical properties of FLARES

An optimal version of FLARES

An optimal version of FLARES can be produced by calling FLARES multiple times with increasing horizon t

Theorem

If the initial heuristic is admissible and monotone, and ρ satisfies $\forall V, t, \rho(V, t) > t$, with $t_0 \ge 0$, then OPT-FLARES computes an optimal policy.

Background

The FLARES algorithm 0000000 0000000 000 Experiments

00000

Gridworld domain

Gridworld domain results

algorithm	cost	time
LRTDP	135	34.02
FLARES(0)	134.07 ± 0.84	0.586
FLARES(1)	135.63 ± 0.99	0.589
HDP(0,0)	208.9 ± 10.92	0.195
HDP(4,0)	135.22 ± 1.09	0.610
HDP(4,4)	133.91 ± 0.83	0.593
SSiPP(16)	441.12 ± 4.87	10.87
SSiPP(32)	400.87 ± 1.85	51.49
SSiPP(64)	136.49 ± 0.76	9.49

Background

The FLARES algorithm 0000000 0000000 000 Experiments

0 00 00

Racetrack domain

Racetrack domain - Average costs

▲ロ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ めんの

Background 00 The FLARES algorithm 0000000 00000000 000 Experiments

Racetrack domain

Racetrack domain - Average planning time (seconds)

	square-4	square-5	ring-5	ring-6
LRTDP	49.89	262.84	11.64	65.02
FLARES(0)	0.276	1.637	0.052	0.341
FLARES(1)	0.260	1.645	0.058	0.362
HDP(0,0)	23.71	151.15	5.50	37.15
HDP(0,1)	26.84	145.12	5.84	37.08
HDP(1,0)	27.50	145.83	6.09	36.09
HDP(1,1)	28.41	142.02	6.10	38.27
SSiPP(4)	16.24	76.11	4.78	25.11
SSiPP(8)	48.61	178.98	20.13	89.72

Background

The FLARES algorithm 0000000 0000000 000 Experiments

Sailing domain

Sailing domain - Average costs

▲ロ ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ … のへで

Background 00 The FLARES algorithm 0000000 00000000 000 Experiments

Sailing domain

Sailing domain - Average planning time (seconds)

	s=20 g=corner	s=40 g=corner	s=20 g=middle	s=40 g=middle
LRTDP	1.81	14.65	1.37	12.09
FLARES(0)	0.33	3.15	0.138	1.142
FLARES(1)	1.01	7.79	0.417	3.065
FLARES(2)	1.47	9.51	0.731	4.094
HDP(0,0)	1.33	11.93	0.854	7.034
HDP(0,1)	1.33	12.04	0.854	7.245
HDP(1,0)	1.35	11.85	0.853	7.133
HDP(1,1)	1.33	11.88	0.853	7.159
SSiPP(4)	3.05	8.83	1.60	5.69
SSiPP(8)	7.14	52.47	3.93	19.77

Introduction 0000	Background 00	The FLARES algorithm 0000000 00000000 000	Experiments
Conclusions			
Conclusions			

- We present an approach for short-sightedness in SSPs that applies it only for labeling
- Allows larger sections of the state to be explored and accelerate running times
- Based on this idea, we introduce a novel extension of LRTDP called FLARES
- Experimental results suggest that FLARES can produce near-optimal policies orders of magnitude faster than other state-of-the-art MDP solvers

Introduction 0000	Background 00	The FLARES algorithm 0000000 00000000 000	Experiments ° ° ° ° ° ° ° ° °
Conclusions			
Conclusions			

- We present an approach for short-sightedness in SSPs that applies it only for labeling
- Allows larger sections of the state to be explored and accelerate running times
- Based on this idea, we introduce a novel extension of LRTDP called FLARES
- Experimental results suggest that FLARES can produce near-optimal policies orders of magnitude faster than other state-of-the-art MDP solvers

Introduction 0000	Background 00	The FLARES algorithm 0000000 00000000 000	Experiments ° ° ° ° ° ° ° ° ° °
Conclusions			
Conclusions			

- We present an approach for short-sightedness in SSPs that applies it only for labeling
- Allows larger sections of the state to be explored and accelerate running times
- Based on this idea, we introduce a novel extension of LRTDP called FLARES
- Experimental results suggest that FLARES can produce near-optimal policies orders of magnitude faster than other state-of-the-art MDP solvers

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Introduction 0000	Background 00	The FLARES algorithm 0000000 00000000 000	Experiments ° ° ° ° ° ° ° ° °
Conclusions			
Conclusions			

- We present an approach for short-sightedness in SSPs that applies it only for labeling
- Allows larger sections of the state to be explored and accelerate running times
- Based on this idea, we introduce a novel extension of LRTDP called FLARES
- Experimental results suggest that FLARES can produce near-optimal policies orders of magnitude faster than other state-of-the-art MDP solvers

Introduction 0000	Background 00	The FLARES algorithm 0000000 00000000 000	Experiments ° ° ° ° ° ° ° ° °
Conclusions			
Conclusions			

- We present an approach for short-sightedness in SSPs that applies it only for labeling
- Allows larger sections of the state to be explored and accelerate running times
- Based on this idea, we introduce a novel extension of LRTDP called FLARES
- Experimental results suggest that FLARES can produce near-optimal policies orders of magnitude faster than other state-of-the-art MDP solvers