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Abstract

In this paper, the problem of an inverted pendulum with vertical oscillation of its

pivot is treated. The equation of motion is developed, and the stability of the pendulum

is studied, through both analytical and numerical means.

1 Introduction

A pendulum has two critical points in its swing: the lowest position and the highest. When
placed in either of these positions with no rotational speed, the pendulum will remain mo-
tionless. What is radically different between these two positions is their stability. The lower
position, one of the classic examples of an approximate harmonic oscillator, is completely
stable. The upper position is unstable, falling with even the slightest change in the position
or velocity of the pendulum.

Both may change stability, however, if the anchor of the pendulum is moved in a vertical,
oscillatory motion. The lower position’s instability at certain frequencies is a result of para-
metric resonance, treated very eloquently in Arnol’d’s Ordinary Differential Equations [1].
(For more on parametric resonance, see “Parametric Resonance” by Butikov [2]) The upper
position’s stability at certain frequencies is the opposite, the oscillation nullifying instead of
amplifying movement. This paper will focus on the latter of the two phenomena.

This paper starts the examination of the stability of a hanging pendulum first by deriving
and simplifying the differential equation that represents the motion of the pendulum, using
the summations of forces and torques. Then, definitions and explanations of certain key
tools, which are put into use further on, are given. These tools include stability and its
characteristics, linear systems and matrices, and Floquet Theory.

The original problem is examined, first analytically, and then numerically. The analytical
section includes the key approximations of the true, nonlinear equation, linearization and
square wave approximations (the first turning the nonlinear equation into the so called
Mathieu equation.) The condition for stability for the square wave approximation is found
easily by using Floquet Theory. The condition for stability for the linearized equation,
the Mathieu equation (as well as for a broader class of equations, Hill’s Equation,) is then
derived, also using Floquet Theory. Also included is a brief look at the corresponding damped
equations. The numerics section includes comparisons between the three equations and the
form that their stability/instability takes. Finally, approximations of an analytical solution
to stability for the linearized equation and for the damped linear equation, are given.
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Figure 1: Inverted Pendulum
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2 Derivation of the Equation of Motion

Assuming that the pendulum is a straight, thin, stiff rod, the forces are Fx in the x direction
and Fy in the y direction on the lower end of the rod, and the force of gravity, mg on the
center of the rod. (x0, y0) are the coordinates of the pivot. For brevity, let dw

dt
= ẇ and

d2w
dt2

= ẅ.

y = y0 + l cos θ x = x0 + l sin θ

ÿ = ÿ0 − lθ̇2 cos θ − lθ̈ sin θ ẍ = ẍ0 − lθ̇2 sin θ + lθ̈ cos θ

Newton’s Second Law and torque equations:

mẍ = Fx mÿ = Fy Icθ̈ = Fyl sin θ − Fxl cos θ

Where Ic is the moment of inertia of the rod about the center. Solving and substituting for
Fx and Fy in the torque equations:

Icθ̈ = ml(ÿ + g) sin θ −mlẍ cos θ

I

ml
θ̈ = (ÿ0 + g) sin θ − ẍ0 cos θ

Where Ic + ml2 = I is the general moment of inertia for any complex pendulum, so the
pendulum need not be a straight, thin, stiff rod, as was assumed. Now, if the oscillation of
the anchor is a vertical harmonic motion, then

x0 = xi y0 = yi + A cosωt

ẍ0 = 0 ÿ0 = −Aω2 cosωt

θ̈ =
ml

I
(g − Aω2 cosωt) sin θ (1)

This is the general equation of motion. However, it is useful to introduce dimensionless
variables instead of m, I, g, etc. So instead, α = mlA

I
, β = mlg

Iω2 , and τ = ωt will be used. α
is the nondimensionalized amplitude of the motion of the pivot, β is the nondimensionalized
gravity acceleration, and τ is the nondimensionalized time unit.

1

ω2

d2θ

dt2
=

(

mlg

Iω2
− mlA

I
cosωt

)

sin θ

becomes

d2θ

dτ 2
= (β − α cos τ) sin θ

Once again, θ′′ = d2θ
dτ2 , so that

θ′′ = (β − α cos τ) sin θ (2)

In order to find the stability conditions for this equation, the tools of stability are needed.
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3 Stability

3.1 Definitions of Stability

Consider the homogeneous, autonomous differential equation

dx

dt
= v(x), x ∈ R

2 (3)

Assume that (3) has an equilibrium position and choose the coordinates xi so that the
equilibrium position is the origin, v(0) = 0

Definition 1 The equilibrium position x = 0 is called stable (or Lyapunov stable) if for
every ε > 0, there exists δ > 0 (depending only on ε and not on t) such that for every x0

for which ||x0|| < δ the solution ψ(t) of (3) with the initial condition ψ(0) = x0 satisfies the
inequality ||ψ(t)|| < ε for all t > 0.

Definition 2 The equilibrium position is called asymptotically stable if it is (Lyapunov)
stable and

lim
t→∞

ψ(t) = 0

for every solution ψ(t) with an initial condition lying within a sufficiently small neighborhood
of 0.

Definition 3 The equilibrium position is called unstable if it is not stable.

(Definitions directly from Arnol’d’s Ordinary differential Equations [1].)
By these definitions, stable positions are asymptotically stable for all linear, homoge-

neous, ordinary differential equations (or ODEs) except for neutral centers, physically, har-
monic oscillators with no friction.

3.2 Linear Systems

The easiest way to determine stability for second order, linear, homogeneous, autonomous
ODEs is to examine the determinant and trace of their matrix, and then to fit them into the
Trace-Determinant Plane.

x′′ = ax+ bx′ =⇒
(

x′

y′

)

=

(

0 1
a b

)(

x

y

)

Any n× n matrix A of a system of linear, homogeneous, autonomous, differential equations
has n complex eigenvalues, λ1, λ2, . . . λn corresponding to linearly independant solutions

ψ1(t) = C1e
λ1t, ψ2(t) = C2e

λ2t, . . . ψn(t) = Cne
λnt

These eigenvalues are such that

detA = λ1λ2 . . . λn, trA = λ1 + λ2 + . . .+ λn
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For real differential equations, the trace and determinant must be real. Note that the
solutions, ψi are such that

Reλi > 0 ⇒ ψi → ∞, Reλi < 0 ⇒ ψi → 0, Reλi = 0 ⇒ ψi → Ci

If one real part of an eigenvalue is greater than zero, then the system is unstable. If all
real parts are less than or equal to zero, then the system is Lyapunov stable. If all real
parts are less than zero, then the system is asymptotically stable. For n=2, the trace and
determinant completely determine the eigenvalues, and so determine the stability of the
differential equations. If det < 0, then the eigenvalues are real and have different signs, and
one or the other is greater than zero, so the system is unstable. If det > 0 and tr > 0, then
the real parts of the eigenvalues have the same sign and both are positive, so the matrix is
unstable. If det > 0 and tr < 0, then the real parts of the eigenvalues are both negative,
and the matrix is stable. The eigenvalues for all cases are given by

λi =
1

2
(trA ±

√

tr (A)2 − 4 detA)

If the ODE’s determinant is positive and its trace is less than or equal to zero, the ODE
is stable. If its determinant is positive and its trace is negative, the ODE is asymptotically
stable. Otherwise, it is unstable. A very simple, easy test of stability. This even applies to
nonlinear ODEs, because within a certain neighborhood of an equilibrium point, a nonlinear
equation usually acts like a linear equation. (This linear equation is found through the
linearization of the nonlinear equation.) The only nonlinear equation for which this method
does not work is the neutral center, with positive determinant and zero trace. In this case,
the nonlinearity must be taken into account.

Unfortunately, this method does not apply to the problem at hand, even after lineariza-
tion, because (2) is nonhomogeneous. Since the ODE depends on time, its trace and deter-
minant are changing. The behaviors predicted by the Trace-Determinant Plane will hold for
small changes in time, but in general, the behavior of the equation will be vastly different,
due to crossing boundaries in the Plane or parametric resonance.

There is a way, however, to analyze the stability of periodic, nonhomogeneous ODEs, as
this one is.

3.3 Floquet Theory

Consider the nonhomogeneous, periodic ODE

dx

dt
= v(t,x), v(t+ T,x) = v(t,x), x ∈ R

2 (4)

with solution x = ψ(t).
The solution ψ(t2) can be related to ψ(t1) by a map such that

ψ(t2) = At2
t1
ψ(t1)

This map is linked directly to v(t,x), so that it, too, is not affected by period changes:
At2+nT

t1+nT = At2
t1

because v(t,x) is periodic in T . Of special importance is the transformation

over one period, At+T
t . This will be denoted by G = At+T

t .
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Figure 2: Trace Determinant Plane
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Note that At+nT
t = Gn, since

AnT+t
t ·ψ(t) = ψ(nT + t) = AnT+t

(n−1)T+t
·ψ((n− 1)T + t)

= AnT+t
(n−1)T+t

· A(n−1)T+t

(n−2)T+t
· . . . · A2T+t

T+t · AT+t
t ·ψ(t)

= (AT+t
t )n ·ψ(t) = Gn ·ψ(t)

so

At+nT
t = Gn

The importance of the mapping G is demonstrated in how properties of (4) correspond
to properties of G:

Theorem 1

1. The point x0 is a fixed point of the mapping G (i.e., Gx0 = x0) iff the solution ψ(t)
with the initial condition ψ(0) = x0 is periodic of period T .

2. A periodic solution ψ(t) is Lyapunov stable (or asymptotically stable) iff the fixed point
x0 of G is Lyapunov stable (or asymptotically stable).

3. If the equation x′ = v(t,x) is linear, i.e. v(t,x) = V(t)x), then G is linear.

4. If the trace of V(t) is zero, then G preserves volume: det(G) = 1.

Assertion four follows from Louville’s Theorem:

dV

dt
=

∫

D(t)

div v dx =

∫

D(t)

trG dx = 0 ⇒ V (t) = C

where D(t) is the region under the action of the phase flow and V (t) is the volume of the
region.

Relating these maps to stability is Floquet Theory. As t approaches infinity, the solution
of an unstable ODE generally approaches infinity, while every solution of a stable ODE
remains finite. This relates directly to the map G.

Unstable:

|ψ(t)| → ∞ ⇒ |An
0 ·ψ(0)| → ∞ ⇒ |Gn ·ψ(0)| → ∞ ⇒ |λn

1 | → ∞ or |λn
2 | → ∞

Stable:

|ψ(∞)| 9 ∞ ⇒ . . . . . . |λn
1 | 9 ∞ and |λn

2 | 9 ∞
where λ1 and λ2 are the eigenvalues of G. Since λ1λ2 = detG = 1, either λ1 and λ2 are real
inverses of each other, i.e. λ1 = 1

λ2
, or they are complex conjugates where |λ1| = |λ2| = 1.

If they are real inverses, then either |λ1| or |λ2| is larger than 1 (except for the case λ1 =
λ2 = ±1, trivial), and so the mapping G and the equilibrium point of the original ODE are
unstable. If they are complex conjugates, then |λ1| = |λ2| = 1, and the mapping G and the
equilibrium point are Lyapunov stable. So the only information that is needed to determine
stability is whether the eigenvalues are real inverses or complex conjugates. There is an
extremely easy method for determining this.
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Theorem 2 Let G be the matrix of an area preserving linear transformation, i.e., detG = 1.
Then the mapping G is Lyapunov stable if the absolute value of the trace of that mapping
is less than two, |trG| < 2, and is unstable if the absolute value of the trace is greater than
two, |trG| > 2.

Real eigenvalues:

|trG| = |λ1 + λ2| =

∣

∣

∣

∣

x+
1

x

∣

∣

∣

∣

> 2

Complex eigenvalues:

|trG| = |λ1 + λ2| = |x+ iy + x− iy| = |2x|, 1 =
√

x2 + y2 ⇒ |x| < 1 ⇒ |trG| < 2

This is the method that will be used in the forthcoming sections. (For more on stability, see
Arnol’d Section 23 [1] or Verhulst [3].)

4 Analytic Methods

4.1 Linearization

θ′′ = (β − α cos τ) sin θ

This equation is short and exact, but is difficult, if not impossible, to solve analytically.
Even the simple question of stability or instability around θ = 0 at a certain α and β may
be impossible to answer analytically. The equation is nonlinear, depending on sin θ, and,
perhaps worse, is nonautonomous, depending on cos τ .

First and foremost, the nonlinearity will be eliminated by approximation. Linearization,
while uncomfortable, is necessary, sin θ ≈ θ near θ = 0, thus arriving at

θ′′ = (β − α cos τ)θ (5)
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Figure 3: squ τ vs. cos τ

This equation is known as the Mathieu equation, or at least one of its forms. Now, already,
the results are only approximate, since this can only be done if θ does not stray too far
from zero, as it does in some cases. The nonautonomous part of the equation is harder
to deal with. There is one application of Floquet Theory that works well, and solves for
stability/instability, but only for a different, even more approximate equation, the square
wave equation. Thus the application will show the “form” of how the (5) acts, but will give
different values of α and β for stability than the linearized equation would. It is correct in
principle, but not in the actual numeric values. There is also a different application, which
would solve exactly for the linearized equation’s stability/instability, but requires an infinite
summation of infinite products of hyperbolic sines and cosines. It is not useful until this
difficulty is worked out.

4.2 Square Wave Approximation

It is the cos τ in (5) that is causing trouble, so it will be exchanged for a function that acts
somewhat like the cosine, but to which it is easier to apply Floquet Theory: the square wave.
Thus (5) becomes

θ′′ = (β − α squ τ)θ (6)

where squ τ =

{

1, 2nπ − π
2
< τ ≤ 2nπ + π

2

−1, 2nπ + π
2
< τ ≤ 2nπ + 3π

2

, n ∈ Z

This equation is easier to use for the problem because Floquet Theory becomes extremely
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unwieldy when dealing with linear ODEs for which the solution is not known. This square
wave approximation is solvable. We write the ODE in matrix form:

(

θ

θ′

)′

=

(

0 1
β − α squ τ 0

)(

θ

θ′

)

To find Ax+T
x , it is beneficial to choose x such that it reduces the computation required.

Without loss of generality, we can choose x = −π
2
, G = A

3π
2

−π
2

. Also, finding A
3π
2

−π
2

is equivalent

to finding A
π
2

−π
2

and A
3π
2

π
2

and multiplying them together.

Ac
a ·ψ(a) = ψ(c) = Ac

b ·ψ(b) = Ac
b · Ab

a ·ψ(a)

So

for − π
2
< τ ≤ π

2
,

(

θ(τ − π
2
)

θ′(τ − π
2
)

)

= A
τ−π

2

−π
2

·
(

θ(−π
2
)

θ′(−π
2
)

)

=

(

coshω1τ
1
ω1

sinhω1τ

ω1 sinhω1τ coshω1τ

)

·
(

θ(−π
2
)

θ′(−π
2
)

)

for π
2
< τ ≤ 3π

2
,

(

θ(τ + π
2
)

θ′(τ + π
2
)

)

= A
τ+π

2
π
2

·
(

θ(π
2
)

θ′(π
2
)

)

=

(

coshω2τ
1
ω2

sinhω2τ

ω2 sinhω2τ coshω2τ

)

·
(

θ(π
2
)

θ′(π
2
)

)

where ω1 =
√
β − α, ω2 =

√
α + β. Therefore

A
π
2

−π
2

=

(

coshπω1
1
ω1

sinhπω1

ω1 sinhπω1 cosh πω1

)

, A
3π
2

π
2

=

(

coshπω2
1
ω2

sinhπω2

ω2 sinhπω2 cosh πω2

)

A
3π
2

−π
2

=

(

c1c2 + ω1

ω2
s1s2

1
ω1
s1c2 + 1

ω2
c1s2

ω1s1c2 + ω2c1s2 c1c2 + ω2

ω1
s1s2

)

where

ci = coshπωi, si = sinhπωi

∣

∣

∣trA
3π
2

−π
2

∣

∣

∣ =

∣

∣

∣

∣

2c1c2 +

(

ω2

ω1

+
ω1

ω2

)

s1s2

∣

∣

∣

∣

(7)

According to Theorem 2, if this quantity is smaller than two, then (6) is stable. If it is
greater than two, then (6) is unstable.

It might be thought that this quantity is never less than two, but this is the case only if
β > α. If, however, α > β, then c1 = cos π

√
α− β, s1 = i sin π

√
α− β, and ω1 = i

√
α− β,

and (7) becomes:

∣

∣

∣trA
3π
2

−π
2

∣

∣

∣ =

∣

∣

∣

∣

2c1c2 +

(

ω2

ω1

− ω1

ω2

)

s1s2

∣

∣

∣

∣

(8)
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where

c1 = cos πω1 c2 = coshπω2

s1 = sinπω1 s2 = sinhπω2

ω1 =
√

α− β ω2 =
√

α + β

For a choice of α and β such that α > β, the quantity is sometimes less than two. Note that
the cases α < 0 and β < 0 have not been discussed, though (7) still applies. The case α < 0
is a reflection of α > 0, since it can be thought of as a phase change of π in cos τ , which does
not change the stability domains. The case β < 0 is not quite so simple, for it represents not
an inverted pendulum undergoing vertical oscillation, but a hanging pendulum undergoing
vertical oscillation. (7) and (8) work as well for this case as they do for β > 0, giving
Figure 4.2, a graph of stability in the entire α-β plane. Stability is represented by white area
and instability by black.
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Figure 4: Stability and Parametric Resonance (α < 0 trivial)
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4.3 Floquet for a Linear, Frictionless ODE

The square wave approximation could be seen as an approximation of cos τ by its values
at two points. However, cos τ is more accurately approximated by using more points. If
approximated by a very large amount of points, cos τ is modeled exactly. This is applied to
find the solution matrix for (5) over one period, Aτ0+T

τ0
:

Aτ0+T
τ0

= Aτ0+T
τ0+T−ε · Aτ0+T−ε

τ0+T−2ε · . . . · Aτ0+2ε
τ0+ε · Aτ0+ε

τ0

For very small changes of ε, the solution matrix is known:
(

θ(τ + ε)
θ′(τ + ε)

)

=

(

cosh(ωε) 1
ω

sinh(ωε)
ω sinh(ωε) cosh(ωε)

)(

θ(τ)
θ′(τ)

)

+O(ε2)

Aτ+ε
τ =

(

cosh(ωε) 1
ω

sinh(ωε)
ω sinh(ωε) cosh(ωε)

)

, (9)

where ω =
√
β − α cos τ

In order to find Aτ0+T
τ0

, an infinite number of these matrices, from τ = τ0 to τ = τ0 + T ,
must be multiplied together. The period T is once again 2π, and without loss of generality,
τ0 is chosen to be −π. Notations used:

k =
2π

ε
= number of “A”s to be multiplied

ci = coshωiε, si = sinhωiε, ωi =
√

β − α cos( 2πi
k
− π)

Aπ
−π =

(

ck
1

ωk
sk

ωksk ck

)

· . . . ·
(

c1
1
ω1
s1

ω1s1 c1

)

=
k
∏

i=1

(

ci
1
ωi
si

ωisi ci

)

(Aπ
−π)11 = c1c2 . . . ck−1ck +

ω1

ω2

s1s2c3c4 . . .+
ω1

ω3

s1c2s3c4 . . .+. . .+
ω1ω3

ω2ω4

s1s2s3s4c5 . . .+. . .

(Aπ
−π)22 = c1c2 . . . ck−1ck +

ω2

ω1

s1s2c3c4 . . .+
ω3

ω1

s1c2s3c4 . . .+. . .+
ω2ω4

ω1ω3

s1s2s3s4c5 . . .+. . .

The top right and bottom left corners of the matrix do not matter. All that matters is the
trace of the matrix:

tr (Aπ
−π)= 2c1c2c3 . . .+

(

ω1

ω2

+
ω2

ω1

)

s1s2c3c4 . . .+

(

ω1

ω3

+
ω3

ω1

)

s1c2s3c4 . . .+ . . .

. . .+

(

ω1ω3

ω2ω4

+
ω2ω4

ω1ω3

)

s1s2s3s4c5 . . .+ . . . . . . (10)

This infinite summation of infinite products of hyperbolic sines and cosines is difficult, but
there is some order to it. There are several properties that this summation exhibits:
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1. If a term includes ωi, then it also includes si; if it does not include ωi, then it includes
ci.

2. There are 2n ωs in each term, n ∈ N, n on the top of each ratio and n on the bottom
of each ratio.

3. If ωd and ωe are on one side of a ratio, d > e, then there is at least one ωf on the other
side, such that d > f > e.

4. No ωi is represented twice in the same ratio (no ω2
i ).

5. Every term within these rules is represented in the summation.

Also, (10) can be simplified for small ε, like in our case:

cicjck . . . ≈ 1 and si ≈ ωiε,

hence

tr (Aπ
−π) = 2+(ω2

1 + ω2
2)ε

2 + (ω2
1 + ω2

3)ε
2 + . . .+ (ω2

2 + ω2
3)ε

2 + . . .

. . .+ (ω2
1ω

2
3 + ω2

2ω
2
4)ε

4 + (ω2
1ω

2
3 + ω2

2ω
2
5)ε

4 + . . . . . .

Each level of ε (ε2, ε4, etc.) contributes to the summation. A pattern must be found in
order to integrate. Using property 3 of the summation and the Product Rule, this pattern
is found.

On the order of ε2n (n different ωs in each product)

P = number of ways to haveω2
a1
· ω2

a2
· ω2

a3
· . . . · ω2

an
:

= a1 · (a2 − a1) · . . . · (an − an−1) + (a2 − a1) · (a3 − a2) · . . . · (an − an−1) · (k − an)

= (k + a1 − an) · (a2 − a1) · (a3 − a2) · . . . · (an − an−1)

So for the part of the trace on the order of ε2n:

k
∑

a1=1

k
∑

a2=a1

. . .

k
∑

an−1=an−2

k
∑

an=an−1

Pω2
an
ω2

an−1
. . . ω2

a2
ω2

a1
ε2n

=
k
∑

a1=1

k
∑

a2=a1

. . .

k
∑

an=an−1

(kε+ a1ε− anε)(anε− an−1ε) . . . (a2ε− a1ε)ω
2
an
ω2

an−1
. . . ω2

a2
ω2

a1
εn

=

∫ π

−π

∫ π

τ1

. . .

∫ π

τn−1

(2π + τ1 − τn)(τn − τn−1) . . . (τ2 − τ1)ω
2
τn
ω2

τn−1
. . . ω2

τ2
ω2

τ1
dτn dτn−1 . . . dτ2 dτ1

14



tr (Aπ
−π) = 2 +

∫ π

−π

2πω2
τ1

dτ1 +

∫ π

−π

∫ π

τ1

(

2π + τ1 − τ2)
)

(τ2 − τ1)ω
2
τ2
ω2

τ1
dτ2 dτ1 (11)

+

∫ π

−π

∫ π

τ1

∫ π

τ2

(

2π + τ1 − τ3
)

(τ3 − τ2)(τ2 − τ1)ω
2
τ3
ω2

τ2
ω2

τ1
dτ3 dτ2 dτ1 + . . .

where

ωi =
√

β − α cos i

The remarkable thing about this formula is that at no point in its derivation is the fact
that ωτ =

√
β − α cos τ used. This means that the formula can be used not only for (5),

Mathieu’s Equation, but for a broader class of equations.

θ′′ = ω(τ)2θ, (12)

where

ω(τ + T ) = ω(τ)

This ODE is known as Hill’s Equation. For any equation that falls into this category of
ODEs, stability can be calculated using the derived formula.

∣

∣

∣

∣

2 +

∫ τ0+T

τ0

Tω2
τ1

dτ1 +

∫ τ0+T

τ0

∫ τ0+T

τ1

(

T + τ1 − τ2
)

(τ2 − τ1)ω
2
τ2
ω2

τ1
dτ2 dτ1

+

∫ τ0+T

τ0

∫ τ0+T

τ1

∫ τ0+T

τ2

(

T + τ1 − τ3
)

(τ3 − τ2)(τ2 − τ1)ω
2
τ3
ω2

τ2
ω2

τ1
dτ3 dτ2 dτ1 + . . .

∣

∣

∣

∣

< 2 (13)

Where τ0 is any real number. So for any linear, frictionless, periodically nonautonomous sec-
ond order differential equation, this summation of integrals determines stability or instability.
This is a very important class of differential equations.

It was noted before that changing τ0 does not change the value of the summation. This
is not a property of the summation, but of each integral. It can be shown that changing
τ0 to τ1 does not affect the value of the integrals, and so does not affect the value of the
summation.

The derived integral summation can be generalized to higher order ODEs, though it loses
much of its power for ODEs of order higher than two.

4.4 Higher Order ODEs

The purpose here is to develop an expression for the trace of the matrix from one period to
the next of the following ODE:

θ(n) = f(τ)θ, where f(τ + T ) = f(τ) (14)

Or in matrix form:










θ

θ′

...
θ(n−1)











′

=











0 1 0 . . . 0
0 0 1 . . . 0
...

. . . . . . . . . 1
f(τ) 0 . . . . . . 0





















θ

θ′

...
θ(n−1)










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First, the solution matrix over a small change in time is needed. As the solution matrix for
second order ODEs was written in terms of hyperbolic cosines and hyperbolic sines, we will
need a generalization of these. Define ωτ such that ωn

τ = f(τ). Now define

hyp (n, j, x) =
n−1
∑

t=0

1

n
e−

2πitj

n e(e
2πit
n )x, where n ∈ N, j ∈ Z (15)

Several nice properties of this function are listed below.

1. hyp (1, 0, x) = ex

2. hyp (2, 0, x) = cosh x

3. hyp (2, 1, x) = sinhx

4. hyp (n, j + n, x) = hyp (n, j, x)

5.
∑n−1

j=0 hyp (n, j, x) = ex

6. d
dx

hyp (n, j, x) = hyp (n, j − 1, x)

In addition, the Taylor Series about x = 0 for these functions (with 0 ≤ j < n) is

hyp (n, j, x) =
∞
∑

m=0

xmn+j

(mn+ j)!

e.g.

hyp (n, 0, x) = 1 +
xn

n!
+

x2n

(2n)!
+

x3n

(3n)!
+ . . .

The identity generalizing cosh2 x− sinh2 x = 1 is now developed:

1 = e(
Pn−1

m=0
e

2πim
n )x =

n−1
∏

m=0

e(e
2πim

n )x =
n−1
∏

m=0

n−1
∑

j=0

hyp (n, j, e
2πim

n x)

But

hyp (n, j, e
2πim

n x) =
n−1
∑

t=0

1

n
e−

2πitj

n e(e
2πit
n ) e

2πim
n x =

n
∑

t=1

1

n
e−

2πi(t−m)j
n e(e

2πit
n )x

= e
2πimj

n hyp (n, j, x)

So

n−1
∏

m=0

n−1
∑

j=0

e
2πimj

n hyp (n, j, x) = 1 (16)
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With these, we have the solution matrix. Label hyp (n, j, ωτ ε) with hj.











θ(τ + ε)
θ′(τ + ε)

...
θ(n−1)(τ + ε)











=











h0
1

ωτ
h1 . . . 1

ωn−1
τ

hn−1

ωτhn−1 h0 . . . 1
ωn−2

τ
hn−2

...
...

. . .
...

ωn−1
τ h1 ωn−2

τ h2 . . . h0





















θ(τ)
θ′(τ)

...
θ(n−1)(τ)











Once again we are concerned with multiplying these matrices to acquire a full period map.
The determinant of the map is 1, either by Louiville’s Theorem or by noting that the de-
terminant is exactly the identity acquired above. The trace of the matrix is what is now
explored. Let k = T

ε
, let Al = [aij]l be the map from τ = T l

k
to T l

k
+ ε, and let G be the map

from one period to the next. Then by definition of matrix multiplication,

G = [gij]AnAn−1 . . .A1 = [
∑

1≤xn−1,... ,x1≤n

aixn−1
axn−1xn−2

. . . ax1j]

trG =
n
∑

i=1

gii =
∑

1≤i,xn−1,... ,x1≤n

aixn−1
axn−1xn−2

. . . ax1i =
∑

1≤xn,xn−1,... ,x1≤n

axnxn−1
axn−1xn−2

. . . ax1xn

And

axlxl−1
= ω

xl−xl−1

l hyp (n, xl−1 − xl, ωlε)

Let’s approximate now with

hyp (n, j, ωlε) ≈















ω
j
l ε

j

j!
, 0 ≤ j < n

ω
n+j
l εn+j

(n+ j)!
, −n < j < 0

Then

axlxl−1
=

{

ε
xl−1−xl

(xl−1−xl)!
, xl−1 ≥ xl

ωnε
n+xl−1−xl

(n+xl−1−xl)!
, xl−1 < xl

Finally, we organize the trace into orders of ε. Only ε0, εn, ε2n, . . . terms exist. The number
of ways to have ωn

a1
· ωn

a2
· . . . ωn

am
is given by

P =

a2
∑

i1=a1

a2
∑

i2=i1

. . .

a2
∑

in=in−1

(1) ·
a3
∑

i1=a2

a3
∑

i2=i1

. . .

a3
∑

in=in−1

(1) · . . . ·
k+a1
∑

i1=am

k+a1
∑

i2=i1

. . .

k+a1
∑

in=in−1

(1)

=
1

εmn
(

∫ a2

a1

. . .

∫ a2

τn−1

(1) dτn . . . dτ1 · . . . ) =
(a2 − a1)

n−1

(n− 1)!

(a3 − a2)
n−1

(n− 1)!
. . .

(k + a1 − am)n−1

(n− 1)!
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Thus the trace of the solution matrix over a period for the ODE of the form of (14) is given
by:

trG = n+
1

(n− 1)!

∫ T+τ0

τ0

T n−1 dτ1 (17)

+
1

(n− 1)!2

∫ T+τ0

τ0

∫ T+τ0

τ1

(T + τ1 − τ2)
n−1(τ2 − τ1)

n−1 dτ1 dτ2

+
1

(n− 1)!3

∫ T+τ0

τ0

∫ T+τ0

τ1

∫ T+τ0

τ2

(T + τ1 − τ3)
n−1(τ3 − τ2)

n−1(τ2 − τ1)
n−1 dτ3 dτ2 dτ1 + . . .

Unfortunatly, this does not have as much power for ODEs higher than second order. The
eigenvalues of second order ODEs can be described fully by the determinant and trace, and
the determinant is known, so the trace of the period map fully describes stability. However,
the eigenvalues of third or higher order ODEs cannot be described fully by the determinant
and trace, and so we cannot acquire a stability condition with this trace alone.

4.5 Applications of the Integral Summation

Returning to second order ODEs, the integral summation can be calculated directly in a
select few cases, such as the case f(τ) = k, where k is constant. The summation is calculated
by induction.

First, take the nth integral term. τ0 is −T so that the upper bounds of the integrals will
be zero, and T is any positive number, since k is periodic of any period.

I =

∫ 0

−T

∫ 0

τ1

. . .

∫ 0

τn−1

(T + τ1 − τn)(τn − τn−1) . . . (τ2 − τ1)k
n dτn . . . dτ2 dτ1

After integrating n−m− 1 times, the integral will be something like

I =

∫ 0

−T

. . .

∫ 0

τm

(Cp
m+1τ

p
m+1 + . . .+ C1

m+1τm+1 + C0
m+1)(τm+1 − τm) . . . kn dτm+1 . . . dτ1

Where Cp
m+1 is the constant multiplying τ p

m+1. Taking the next integral,

I =

∫ 0

−T

. . .

∫ 0

τm

(Cp
m+1τ

p+1
m+1 + . . .+ C1

m+1τm+1 + C0
m+1

− C
p
m+1τ

p
m+1τi − . . .− C1

m+1τm+1τm − C0
m+1)k

n dτm+1 . . . dτ1

=

∫ 0

−T

. . .

∫ 0

τm−1

((

1

p+ 1
− 1

p+ 2

)

C
p
m+1τ

p+2
m + . . .

+

(

1

2
− 1

3

)

C1
m+1τ

3
m +

(

1 − 1

2

)

C0
m+1τ

2
m

)

kn dτm . . . dτ1

So

Cp+2
m =

(

1

p+ 1
− 1

p+ 2

)

C
p
m+1
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And

C0
n = T + x1, C1

n = −1

The final integration is

I =

∫ 0

−T

(C2n−2
1 τ 2n−2

1 + C2n−1
1 τ 2n−1

1 )kn dτ1

C2n−1
1 =

(

1

2n− 2
− 1

2n− 1

)(

1

2n− 4
− 1

2n− 3

)

. . .

(

1

2
− 1

3

)

C1
n

C2n−2
1 =

(

1

2n− 3
− 1

2n− 2

)(

1

2n− 5
− 1

2n− 4

)

. . .

(

1 − 1

2

)

C0
n

C2n−1
1 = − 1

(2n− 1)!
, C2n−2

1 =
1

(2n− 2)!
(T + τ1)

I =

∫ 0

−T

(

1

(2n− 2)!
(T + τ1)τ

2n−2
1 − 1

(2n− 1)!
τ 2n−1
1

)

kn dτ1

=

∫ 0

−T

(

T

(2n− 2)!
τ 2n−2
1 +

2n− 2

(2n− 1)!
τ 2n−1
1

)

kn dτ1

=
T 2n

(2n− 1)!
+

(2 − 2n)T 2n

(2n)!
kn = 2

T 2n

(2n)!
kn

This is the value of the nth integral in the summation. If the integrals are now summed, a
familiar expression arises.

∞
∑

n=0

2
T 2nkn

(2n)!
= 2 cosh(T

√
k)

This is less than two if the argument 2π
√
k is imaginary, and is greater than two if the

argument is real. So the equation is stable if k < 0 and unstable if k > 0. In actuality, this
equation is autonomous, so can be placed in the Trace Determinant Plane. Its place is on
the Det-axis, either a harmonic oscillator or a saddle. A harmonic oscillator (stable) if k < 0
and a saddle (unstable) if k > 0.

A more difficult application of the integral summation (13) is the square wave equation.
The process, while more complicated, uses the same basic idea. First take the nth integral
term, setting τ0 = −π and T = 2π.

I =

∫ π

−π

. . .

∫ π

τn−1

(2π + τ1 − τn) . . . (τ2 − τ1)(β − α squ τn) . . . (β − α squ τ1) dτn . . . dτ1
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The squ functions can be taken out to simplify the integral, changing it to

I =
n
∑

j=0

Rj

where

Rj =

∫ 0

−π

. . .

∫ 0

τj−2

∫ π

0

∫ π

τj

. . .

∫ π

τn−1

(2π + τn − τ1) . . . (τ2 − τ1)(β − α)n−j(β + α)j dτn . . . dτ1

To change the upper bounds of the integrals to zero, shift every τi, i ≥ j, up by π.

Rj =

∫ 0

−π

. . .

∫ 0

−π

. . .

∫ 0

τn−1

(π + τ1 − τn) . . . (π + τj − τj−1) . . . (τ2 − τ1)(β − α)n−j(β + α)jdτn. . . dτ1

The integration should be separated into four parts: i > j, i = j, j > i > 1, i = 1. For the
first and third parts, the integration is as simple as that of the earlier application. All that
is left is to begin.

Cp
m =

1

p(p− 1)
C

p−2
m+1

Let l = n− j

I =

∫ 0

−π

. . .

∫ 0

τj−2

∫ 0

−π

(C2l+1
j τ 2l+1

j + C2l
j τ

2l
j )(π + τj − τj−1) . . . (β − α)l(β + α)j dτj . . . dτ1

=

∫ 0

−π

. . .

∫ 0

τj−2

∫ 0

−π

(

C1
n

(2l + 1)!
τ 2l+1
j +

C0
n

(2l)!
τ 2l
j

)

(π + τj − τj−1) . . . (β − α)l(β + α)j dτj . . . dτ1

=

∫ 0

−π

. . .

∫ 0

τj−2

(

C0
nπ

2l+2

(2l + 2)!
− C1

nπ
2l+3

(2l + 3)!
−
(

C0
nπ

2l+1

(2l + 1)!
− C1

nπ
2l+2

(2l + 2)!

)

τj−1

)

. . . (β − α)l(β + α)jdτj−1 . . . dτ1

C0
j−1 =

(2l + 4)π2l+3

(2l + 3)!
+

π2l+2τ1

(2l + 2)!
C1

j−1 = −(2l + 3)π2l+2

(2l + 2)!
τj−1 −

π2l+1τ1

(2l + 1)!
τj−1

Rj =

∫ 0

−π

(C2j−4
1 x

2j−4
1 + C2l−3

1 x2l−3
1 )(β − α)l(β + α)j dx1

Rj = π2n

(

2l + 4

(2j − 3)!(2l + 3)!
− 2j − 3

(2j − 2)!(2l + 2)!
+

2l + 3

(2j − 2)!(2l + 2)!
− 2l − 2

(2j − 1)!(2l + 1)!

)
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After simplification, this becomes

Rj =
π2n(2n+ 1)(2n+ 2)

(2l + 1)!(2j + 1)!
(β − α)l(β + α)j

So the nth integral term is

I =
n
∑

j=0

π2n(2n+ 1)(2n+ 2)

(2n− 2j + 1)!(2j + 1)!
(β − α)n−j(β + α)j

Summing over n gives the trace:

tr (Aπ
−π) =

∞
∑

n=0

n
∑

j=0

π2n(2n+ 1)(2n+ 2)

(2n− 2j + 1)!(2j + 1)!
(β − α)n−j(β + α)j

Finally, switching the sums and simplifying gives:

tr (Aπ
−π) =

∞
∑

j=0

∞
∑

n=0

2π2jπ2n

(2j)!(2n)!
(18)

+
∞
∑

j=0

π2j−1

(2j − 1)!

√

β − α
2j−1

∞
∑

n=0

π2n+1

(2n+ 1)!

√

β + α
2n+1

√
β − α√
β + α

+
∞
∑

j=0

π2j+1

(2j + 1)!

√

β − α
2j+1

∞
∑

n=0

π2n−1

(2n− 1)!

√

β + α
2n−1

√
β + α√
β − α

= c1c2 + s1s2
ω1

ω2

+ s1s2
ω2

ω1

= c1c2 + s1s2

(

ω1

ω2

+
ω2

ω1

)

This is the same value attained using the earlier method.
Obviously this method works. Its power, however, is not in finding a solution for these

almost trivial cases, but in approximating, perhaps even finding an exact solution, for more
difficult cases such as Mathieu’s Equation.

For Mathieu’s Equation, the trace is not exactly solved. It can be approximated with
any amount of precision, simply by evaluating further integrals. The first two are presently
solved.

(tr nω is the integral term in the trace including n ωs.)

tr 1ω =

∫ π

−π

2π(β − α cos a) da = [2πβa− α sin a]π−π = 4π2β
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tr 2ω =

∫ π

−π

∫ π

a

(

2π − (b− a)
)

(b− a)(β − α cos b)(β − α cos b) db da

=

∫ π

−π

[

πβb2 − 2πβab− 1
3
βb3 − βa2b+ βab2 − 2παb sin b− 2πα cos b

+ 2πa sin b+ αb2 sin b+ 2αb cos b− 2α sin b− αa2 sin b

+ 2αab sin b+ 2αa cos b
]π

a
(β − α cos a) da

=

∫ π

−π

(

2
3
π3β + 2πα cos a+ odd functions

)

(β − α cos a) da= 4
3
π4β2−2π2α2

= 4
3
π4β2 − 2π2α2

As can be seen, calculating the integrals very quickly becomes difficult as more ωs are taken
into account. Fortunately, computing only the first two of the integrals gives a reasonably
accurate description of stability for a limited range of α and β. With further computation,
the next two integrals may be evaluated:

tr 3ω = 8
45
π6β3 − (4

3
π4 − 8π2)α2β

tr 4ω = (1
3
π4 − 25

8
π2)α4 − ( 4

15
π6 − 16

3
π4 + 32π2)α2β2 + 4

315
π8β4

These were computed using Mathematica, as were the integrals up to tr 10ω, though these
were far to large to include here.

So for limited α and β, the linear ODE (5) is stable if the following condition is met:

2 >

∣

∣

∣

∣

2 + 4π2β + 4
3
π4β2 − 2π2α2

∣

∣

∣

∣

Or, for greater accuracy and larger domain:

2 >

∣

∣

∣

∣

2 + 4π2β + 4
3
π4β2 − 2π2α2 + 8

45
π6β3 − (4

3
π4 − 8π2)α2β (19)

+ (1
3
π4 − 25

8
π2)α4 − ( 4

15
π6 − 16

3
π4 + 32π2)α2β2 + 4

315
π8β4

∣

∣

∣

∣

This is a fair way to approximate the stability, but there is more than one way to do so.
Using iterative integration once again, the condition for stability can be approximated as
a Taylor Series for just α, as opposed to both α and β. Of course, the Taylor’s Series is
dependant only on even powers of α, since a sign change of α can be thought of as a phase
change of τ , and so should not affect the stability.

Mathieu’s Equation has f(τ) = β−α cos τ . In the previous two applications, a term being
integrated in some integral of the nth term of the trace summation could be fully described
by the subscript of the variable being integrated over, m, and the power of the variable, p.
In application to Mathieu’s Equation, however, the cos τ is a severe complication.
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First, set T = 2π and τ0 = −2π in order for the upper limits of the integrals to be 0,
and define k0 = 2π + τ1, k1 = −1 as the initial coefficients. Also, it simplifies the problem
to change cos τ to its exponential form and to define ε = − 1

2
α. The nth term in the trace

summation then becomes:

I=

∫ 0

−2π

. . .

∫ 0

τn−1

(2π + τ1 − τn). . .(τ2 − τ1)(β + εe−iτn + εeiτn) . . . (β + εe−iτ1 + εeiτ1) dτn . . . dτ1

And a term can be fully described by four numbers: the variable power, p, the power of
the exponential, r, the power of ε, z, and the variable subscript, m. Define l = n −m and
s = l − r = n−m− r to be used later. Let’s integrate an arbitrary term:

F =

∫ 0

τm−1

r
zC

p
mτ

p
me

irτm(τm − τm−1)(β + εeiτn + εe−iτn) dτm

= r
zC

p
m

∫ 0

τm−1

(τ p+1
m − τ p

mτm−1)(βe
irτm + εei(r−1)τm + εei(r+1)τm)

Since for r 6= 0,

∫ 0

y

xpeirx dx =

p
∑

q=0

(

i

r

)p−q+1
p!

q!
yqeirx −

(

i

r

)p+1

p!,

F = r
zC

p
m

[ p+1
∑

j=0

(

1 − j

p+ 1

)

(p+ 1)!

j!
τ

j
m−1

·
(

βeirτm−1

(

i

r

)p+2−j

+ εei(r−1)τm−1

(

i

r − 1

)p+2−j

+ εei(r+1)τm−1

(

i

r + 1

)p+2−j)

+ (τm−1 − (p+ 1))

(

β

(

i

r

)p+1

+ ε

(

i

r + 1

)p+1

+ ε

(

i

r − 1

)p+1)

p!

]

when r 6= 0,−1, 1. When r = 0,−1, or 1, remove the undefined terms and add onto the end

r
zC

p
m

β (or ε)

(p+ 1)(p+ 2)
τ

p+2
m−1

Taking these, we can find a term in the mth integral of the nth set of integrals of the trace
summation from terms in the (m + 1)th integral. There are four distinct forms for this
relation:

r
zC

p
m =

2s−p+1
∑

q=0

(

(p+ 1)! − q(p)!

q!

)(

i

r

)p−q+2(

β r
zC

q
m+1 + ε r−1

z−1C
q
m+1 + ε r+1

z−1C
q
m+1

)

, r 6= 0

(20)
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0
zC

p
m =

1

p(p− 1)

(

β 0
zC

p−2
m+1 + ε −1

z−1C
p−2
m+1 + ε 1

z−1C
p−2
m+1

)

, p ≥ 2 (21)

0
zC

1
m = 2Re

[ z
∑

r=1

2s+1
∑

p=0

p!

(

i

r

)p+1(

β r
zC

p
m+1 + ε r−1

z−1C
p
m+1 + ε r+1

z−1C
p
m+1

)]

(22)

0
zC

0
m = −2Re

[ z
∑

r=1

2s+1
∑

p=0

(p+ 1)!

(

i

r

)p+2(

β r
zC

p
m+1 + ε r−1

z−1C
p
m+1 + ε r+1

z−1C
p
m+1

)]

(23)

Where s = l − r = n −m − r. Note that for p > 2s + 1, r
zC

p
m = 0 (integration raises the

power only so fast). Remember that the exponentials all came from trigonometric functions,
and so they must add together at each step to give trigonometric functions once again. Thus
−r
z Cp

m is the complex conjugate of r
zC

p
m, so only one need be found. From now on, assume

r ≥ 0 unless otherwise stated.
The object is to acquire the trace of the period map in the form of a Taylor Series for ε.

We divide the work by the value of z− |r|. If z ′ − |r′| > z− |r|, then r′

z′C
m′

p′ cannot have any
effect upon r

zC
p
m. So we will begin at z − r = 0, r ≥ 0. First of all,

0
0C

p
m =

β

p(p− 1)
0
0C

p−2
m+1 =







β
p
2

p!
k0, p even

β
p−1
2

p!
k1, p odd

since −1
−1C

p−2
m+1 = 1

−1C
p−2
m+1 = 0. So the α0 part of the trace is the simple harmonic oscillator

encountered previously. Thus we have

tr (A0
−2π) = 2 cosh(2π

√

β) +O(α2)

Now we proceed to z = r, r > 0.

Proposition

r
rC

p
m = (−1)r ε

rβl−r

r!2p!

[

(2i)2s−pc(2s−p)
r + (2i)2s−p+1c(2s−p+1)

r

]

, (24)

c(n)
r =

r
∑

x1=1

1

x1

x1
∑

x2=1

1

x2

. . .

xn−1
∑

xn=1

1

xn

. (25)

The number c
(n)
r is known as the rth harmonic number of order n. For more on harmonic

numbers, see [4]. The natural way to write it is as given, but at times we will employ the
following identity to simplify:

c(n)
r =

r
∑

i=1

(

r

i

)

(−1)i−1

in
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pf:

Proof by induction. Suppose that for all p′, r′, and m′ > m, we have

r′

r′C
p′

m′ = (−1)r′ ε
r′βl′−r′

r′!2p′!

[

(2i)2s′−p′c
(2s′−p′)
r′ + (2i)2s′−p′+1c

(2s′−p′+1)
r′

]

From (20), we have

r
rC

p
m =

2s+1−p
∑

q=0

(q + 1)
(p+ q)!

p!

(

i

r

)q+2(

β r
zC

p+q
m+1 + ε r−1

r−1C
p+q
m+1 + ε r+1

r−1C
p+q
m+1

)

The power of the exponential can never be greater than the power of ε, so r+1
r−1C

p+q
m+1 = 0.

For q = 2s− p, 2s− p+ 1, r
rC

p+q
m+1 = 0 because then p′ > 2s′ + 1. Define j = 2s− p+ 1.

r
rC

2s−j+1
m =

j
∑

q=0

(q + 1)
(2s− j + 1 + q)!

(2s− j + 1)!

(

i

r

)q+2(

β r
rC

2s−j+1+q
m+1 + ε r−1

r−1C
2s−j+1+q
m+1

)

=

j
∑

q=0

(q + 1)
(2s− j + 1 + q)!

(2s− j + 1)!

(

i

r

)q+2(

ε r−1
r−1C

2s−j+1+q
m+1

)

+

j−2
∑

q=0

(q + 1)
(2s− j + 1 + q)!

(2s− j + 1)!

(

i

r

)q+2(

β r
rC

2s−j+1+q
m+1

)

= (−1)r ε
rβl−r

r!2p!

(

−
j
∑

q=0

(q + 1)

(

i

r

)q+2

r2

[

(2i)j−q−1c
(j−q−1)
r−1 + (2i)j−qc

(j−q)
r−1

]

+

j−2
∑

q=0

(q + 1)

(

i

r

)q+2[

(2i)j−q−3c(j−q−3)
r + (2i)j−q−2c(j−q−2)

r

])

= (−1)r ε
rβl−r

r!2p!
(

(2i)j−1k0

[ j−2
∑

q=0

(q + 1)

(

i

r

)q+2

(2i)−q−2c(j−q−3)
r +

j
∑

q=0

(q + 1)

(

i

r

)q

(2i)−qc
(j−q−1)
r−1

]

+ (2i)jk1

[ j−2
∑

q=0

(q + 1)

(

i

r

)q+2

(2i)−q−2c(j−q−2)
r +

j
∑

p=0

(q + 1)

(

i

r

)q

(2i)−qc
(j−q)
r−1

])

Thus, it will be sufficient to prove that

c(j)r =

j−2
∑

q=0

(q + 1)

(

i

r

)q+2

(2i)−q−2c(j−q−2)
r +

j
∑

q=0

(q + 1)

(

i

r

)q

(2i)−qc
(j−q)
r−1
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Using the fact that

c
(n)
r−1 =

r−1
∑

x1=1

1

x1

. . .

xn−1
∑

xn=1

1

xn

= c(n)
r − 1

r
c(n−1)
r ,

We have
[ j
∑

q=2

(q − 1)

(

i

r

)q

(2i)−qc(j−q)
r +

j
∑

q=0

(q + 1)

(

i

r

)q

(2i)−q

(

c(j−q)
r − 1

r
c(j−q−1)
r

)]

=

[ j
∑

q=2

(q − 1)

(

1

2r

)q

c(j−q)
r +

j
∑

q=0

(q + 1)

(

1

2r

)q

c(j−q)
r − 2

j
∑

q=1

(q)

(

1

2r

)q

c(j−q)
r

]

= c(j)r

By induction, because

0
0C

0
n = k0 = (−1)0 ε

0β0

0!20!

[

(2i)0c
(0)
0 k0 + (2i)1c

(1)
0 k1

]

0
0C

1
n = k1 = (−1)0 ε

0β0

0!21!

[

(2i)−1c
(−1)
0 k0 + (2i)0c

(0)
0 k1

]

,

it is true that

r
rC

p
m = (−1)r ε

rβl−r

r!2p!

[

(2i)2s−pc(2s−p)
r + (2i)2s−p+1c(2s−p+1)

r

]

¤

The r = 1 and r = 2 values for this will be most useful to us later. Using the fact that
c
(n)
1 = 1, c

(n)
2 =

(

2
1

)

1
1n −

(

2
2

)

1
2n = 2n+1−1

2n for n ≥ 0 and c
(n)
r = 0 for n < 0, we have

1
1C

2l−j−1
m = − εβl−1

(2l − j − 1)!

(

δj0(2i)
j−1k0 + (2i)jk1

)

2
2C

2l−j−3
m =

ε2βl−2

(2l − j − 3)!

(

(2i)j−1 2j − 1

2j−1
k0 + (2i)j 2j+1 − 1

2j
k1

)

With these in hand, we now find 0
1C

p
m. First, 0

1C
1
m and 0

1C
0
m. Using (22),

0
1C

1
m = 2Re

[ 2l−1
∑

p=0

p!ip+1

(

β 1
1C

p
m+1 + ε 0

0C
p
m+1

)]

= 2Re

[ 2l−3
∑

p=0

p!ip+1

(

− εβl−1

p!

(

(2i)2l−p−4k0 + (2i)2l−p−3k1

))

+
2l−1
∑

p=0

p!ip+1

(

εβl−1

(2l − 2)!
k0δp(2l−2) +

εβl−1

(2l − 1)!
k1δp(2l−1)

)]
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= 2εβl−1(−1)lk1

[ 2l−3
∑

p=0

(22l−p−3) + 1

]

= (−1)lεβl−1 · 22l−1k1

Similarly using (23),

0
1C

0
m = (−1)l−1εβl−1 · 22l−1k0

Now using (21), for j odd,

0
1C

j
m =

1

j(j − 1)

(

β 0
1C

j−2
m+1

)

= . . . =
β

j−1

2

j!
0
1C

1
m+ j−1

2

= (−1)l− j−1

2

εβl−1

j!
· 22l−jk1

The coefficient for j even is found in the same manner. So

0
1C

j
m =

εβl−1

j!

{

(−1)l− j−1

2 · 22l−j, j odd

(−1)l− j

2
−1 · 22l−j−1, jeven

(26)

At this point, we have all of the coefficients for terms with ε1 and lower power, so we could
integrate the appropriate terms and find the coefficient of ε in the Taylor Series expansion
of the trace. However, recognizing that the Taylor Series only includes even powers of ε, this
is unnecessary. The next two coefficients are given, proof left to the reader.

r+1
r Cj

m = (−1)r+1 ε
2βl−2 · 2
r!2j!

(27)














[

− (2i)2s−j−2
∑s− j+1

2
−1

t=0 c
(2t+1)
r k0 + (2i)2s−j−1

∑s− j+1

2

t=0 c
(2t)
r k1

]

, j odd
[

− (2i)2s−j−2
∑s− j

2
−1

t=0 c
(2t)
r k0 + (2i)2s−j−1

∑s− j

2
−1

t=0 c
(2t)
r k1

]

, j even

2
0C

j
m =

ε2βl−2

j!















(−1)l− j−1

2

[

(l + j

2
− 3

4
)4l− j−1

2
−1 − 1

2
− 1

4
δj(2l−1)

]

k1, j odd

(−1)l− j

2

[

(l + j

2
− 5

4
)4l− j

2
−1 + 1

2
− 1

4
δj(2l−2)

]

k0, j even
(28)

Finally, we sum and integrate the appropriate terms to get the part of the trace that is
multiplied by ε2.
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tr ε2 =
∞
∑

n=0

∫ 0

−2π

(

β

2n−3
∑

j=0

0
2C

j
1τ

j
1 + β

2n−5
∑

j=0

2Re( 1
2C

j
1τ

j
1e

iτ1) + β

2n−5
∑

j=0

2Re( 2
2C

j
1τ

j
1e

2iτ1)

+2ε cos τ1

2n−3
∑

j=0

0
1C

j
1τ

j
1 + 2ε cos τ1

2n−3
∑

j=0

2Re( 1
1C

j
1τ

j
1e

iτ1)

)

dτ1

After much manipulation, this has a remarkably simple form:

tr ε2 =
∞
∑

n=0

(

− 2ε2βn

n
∑

k=0

(−4)n−k (2π)2k+2

(2k + 1)!

)

Switching the sums gives

tr ε2 = −2ε2
∞
∑

k=0

∞
∑

n=k

βn(−4)n−k (2π)2k+2

(2k + 1)!
= −4πε2

∞
∑

k=0

∞
∑

n=0

βn(−4)n · βk (2π)2k+1

(2k + 1)!

= −4πε2
∞
∑

k=0

(2π
√
β)2k+1

√
β(2k + 1)!

∞
∑

n=0

(−4β)n = −4π sinh(2π
√
β)√

β(1 + 4β)
ε2

So the trace of the period mapping is

tr (A0
−2π) = 2 cosh(2π

√

β) − 4π sinh(2π
√
β)√

β(1 + 4β)
ε2 +O(ε4) (29)

Though not proven, the ε4 part of the trace seems to be

tr ε4 =

(

4π2 cosh(2π
√
β)

β(1 + 4β)2
− 2π sinh(2π

√
β)

β
3

2 (1 + 4β)2
− 16π sinh(2π

√
β)√

β(1 + 4β)3
− 9π sinh(2π

√
β)√

β(1 + β)(1 + 4β)2

)

ε4

If α is preffered, a simple substitution here of ε = − 1
2
α can be made. A couple of interesting

things to note are

tr ε2 = − 2

1 + 4β
· d

dβ
tr ε0

tr ε4 = − 1

1 + 4β
· d

dβ
tr ε2 −

9π sinh(2π
√
β)√

β(1 + β)(1 + 4β)2

The terms exhibit enough pattern for there to perhaps be an exact equation. Anyways,
these have an advantage over the noniterative approximations used above in that these are
accurate for all β. There is only error in ε, or α.
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5 Friction

Analysis of equations (2), (5), and (6) is very interesting, but to study more real systems,
friction must be taken into account. Three equations will be studied.

θ′′ = 2γθ′ + (β − α cos τ) sin θ (30)

θ′′ = 2γθ′ + (β − α cos τ)θ (31)

θ′′ = 2γθ′ + (β − α squ τ)θ (32)

The first equation is nonlinear, so once again, it will be analyzed by numerical means. The
second equation is of more interest, but the third equation is easier, so it will be analyzed
first. Before even this, however, it must be known how Floquet Theory applies to systems
with damping.

5.1 Floquet Theory with Damping

In Section 4.3, a condition for stability for Hill’s Equation was found. The goal of this section
should be to find a similar condition for the damped Hill’s Equation.

θ′′ = 2γθ′ + f(τ)θ, f(τ + T ) = f(τ) (33)

It should be noted that the 2γθ′ term only represents friction if γ is negative. If γ is
positive, then energy is being added to the system, and not depleted. However, 2γθ′is a more
general way of writing the equation, and there is no reasonthat γ < 0 cannot be asserted at
any time.

In Section 3.3, the condition for stability is that the trace of the solution matrix over
one period is less than two. However, this is only for second order, linear, periodic, area
preserving ODEs. This condition will not apply to an equation with a θ′ term, because the
area is not preserved. The first step in finding stability for the damped Hill’sEquation will
be to find the new condition for Floquet Theory whenapplied to systems with friction.

Considering (33), the first three items of Theorem 1 still apply; it is only the last that
requires area/volume preservation. So the mapping over one period is still G. The difference
is that det(G) need not necessarily equal 1.

For any equation of the form of (33), the solution matrix over a small interval of time, ε,
is

Aτ+ε
τ = eγε

(

cτ − γ

ωτ
sτ

1
ωτ
sτ

ω2
τ−γ2

ωτ
sτ cτ + γ

ωτ
sτ

)

where

cτ = cosh(ωτε), sτ = sinh(ωτε), ωτ =
√

γ2 + f(τ)
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The solution matrix over one period is the product of T
ε

of these matrices, from τ = x to
τ = x+ T . The determinant of this product is needed. But the determinant of a product is
the product of the determinants, det(AB) = det(A) det(B), and detAτ+ε

τ = eγε, so

detAx+T
x = detAx+ε

x · . . . · detAx+T
x+T−ε = eγε · eγε · . . . = eγT

As before, the stability of the solution matrix can be determined by its trace. The real parts
of the eigenvalues are what determines stability/instability. If Reλ1 > 1 or Reλ2 > 1, then
the matrix is unstable. If Reλ1 < 1 and Reλ2 < 1, then it is stable. detAx+T

x = λ1λ2 = eγT ,
so with complete generality, λ1 = ez and λ2 = eγT−z, where z is not necessarily real. Either
λ1 and λ2 are complex conjugates, or are both real numbers, since the trace must be real.
If they are complex conjugates, then eγT−x−iy = ex−iy, so x = γT

2
, and so λ1 = eγT+iy,

λ2 = eγT−iy. Then the trace is λ1 + λ2 = 2eγT cos y. If they are real, then the trace is
λ1 + λ2 = eγT−x + ex.

Finding stability using the trace of the solution matrix must be separated into two cases:
γ > 0 and γ < 0. If γ is positive, then real eigenvalues will never both be smaller than one.
Since Reλ1 = Reλ2, then for complex conjugate eigenvalues, if the trace is less than two,
then Reλ1 and Reλ2 are smaller than one. If γ is negative, then the real part of complex
eigenvalues will always be smaller than one. For the real eigenvalues, the point where one or
the other becomes greater than one is when the trace is eγT + 1. So if the trace is less than
this, then the eigenvalues are both less than one.

Thus, the conditions for stability are

γ ≥ 0 and tr (Ax+T
x ) < 2, (34)

or

γ < 0 and tr (Ax+T
x ) < 1 + eγT

The next task is to find, like in Section 4.3, an equation that gives the trace of any matrix
of the form (31).

As it turns out, the trace depends on γ only through the eγε and through ωτ . Inputing
ωτ =

√

γ2 + f(τ) into the trace for the frictionless Hill’s equation and multiplying by eγT

gives the trace for damped Hill’s equation. The trace of the solution matrix over one period
for the damped Hill’s equation as written, (33), is

tr (Ax+T
x ) = eγT

(

2 +

∫ x+T

x

Tω2
a da+

∫ x+T

x

∫ x+T

a

(T − (b− a))(b− a)ω2
bω

2
a db da (35)

+

∫ x+T

x

∫ x+T

a

∫ x+T

b

(T − (c− a))(c− b)(b− a)ω2
cω

2
bω

2
a dc db da+ . . .

)

where ωτ =
√

γ2 + f(τ)
This, combined with the condition discovered earlier, allows the stability domains to be

found for any equation of the form of (33).
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5.2 Damped Equations

Using these results, the stability domains of both the damped square wave approximation
and the damped Mathieu Equation can be found. Simply transforming ωτ to

√

γ2 + f(τ)
and multiplying by eγT gives the damped stability condition from the undamped stability
condition.

For the square wave equation, the undamped stability condition, (8), becomes

∣

∣

∣

∣

e2πγ

(

2c1c2 +

(

ω1

ω2

+
ω2

ω1

))∣

∣

∣

∣

<

{

2, if γ ≥ 0

1 + e2πγ , if γ < 0

Or, equivalently,

∣

∣

∣

∣

2c1c2 +

(

ω1

ω2

+
ω2

ω1

)∣

∣

∣

∣

<

{

2e−2πγ , if γ ≥ 0

1 + e−2πγ , if γ < 0
(36)

where

ci = cosh(ωi), si = sinh(ωi),

ω1 =
√

γ2 + β + α, ω2 =
√

γ2 + β − α

Expanding the linearized equation, (31) to account for friction is no harder. The only required
step is multiplying by e2πγ and changing f(τ) = β−α cos τ to f(τ) = γ2 +β−α cos τ . Thus,
any approximations made before can be made again, but multiplied by e2πγ and inputing,
instead of β, γ2 +β. So the series approximation and Taylor approximation both still apply,
with the listed changes.

And so the previously mentioned ability to discover the stability of any linear, friction-
less, periodically nonautonomous second order differential equation has been expanded to
the ability to discover the stability of any linear, periodically nonautonomous second order
differential equation with autonomous friction. Still a specific class of ODEs, but now a little
more general.

6 Numerics

6.1 Comparison of Stability in the Undamped Equations

The square wave approximation is easy, and gives an intuition as to the form of stability in
the true problem, but does not give the actual limits of stability for the original inverted
pendulum. The solution to the linearized cosine equation, while difficult, gives stability
domains that are much closer. However, the stability domains are not exact. Because of
linearization, θ must remain near zero for the linearized equation to accurately reflect the
true equation. It does not matter how close to zero θ(0) is set, (as long as θ(0) 6= 0) θ(τ) will
still vary a certain amount, depending on α and β. If α and β are fairly small, this deviance
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will be small enough to be neglected. If α or β are too large, however, it cannot be ignored,
and the linearized equation can no longer be trusted. Since nonlinear differential equations
can only rarely be solved analytically, the analysis of the true, nonlinear, nonautonomous
ODE must be left to numerics.

First graphs of stable and unstable equations in the phase plane (θ vs. θ′) for the three
ODEs, the square wave equation, the linear equation, and the nonlinear equation, top,
middle, and bottom, respectively. It should be noted that for all numerically solved ODEs,
the initial conditions are θ = 0.005, θ′ = 0. The unstable are on the left, and the stable on
the right. (Evaluated to τ = 64π.)

Obviously, the stable equations stay near the origin in all cases, in fact, within 0.005
radians. This will almost always be the case for the two linear equations, and will usually
be the case for the nonlinear equation. If the linear equations ever deviate more than the
given initial value from the origin, they must return to below that value by the end of one
period, or they are unstable; due to properties of linear equations, the next period would
see a similar increase, and so on, so that the position would diverge to infinity or negative
infinity. The nonlinear equation is not subject to this, but it will behave similarly to the
linearized equation near the origin, so if it gets very far from the origin, in general, it will
continue to diverge as well.

It is interesting to see the similarities and the differences between these graphs. On the
stable side, other than the very distinct corners on the square wave equation, all three look
strikingly similar. In fact, the nonlinear and linearized equations are almost imperceptively
different. This supports the assumption that the linearized and nonlinear equations act in
similar fashion when near the origin. On the unstable side, the square wave and linear
equations act similarly, except once again for the corners, but the nonlinear equation is
radically different. Not only is the behavior much more chaotic and asymmetrical, but also
the scales are completely different. While the linearized and square wave equations both
diverge at least to the order of 106, the nonlinear equation stays within the order of 101 in
θ and less in θ′. This reflects the more physical constraints of the pendulum, as well as the
chaos of nonlinear differential equations.

Of course, the most important result is stability and instability in the α − β plane. To
find if the equation is stable for a given α and β, one must test to see if its solution gets far
from θ = 0. I chose some angle θ0, chose initial conditions θa, θ

′
a, numerically calculated the

value of θ at T, 2T, ..., 8T , and tested at each time if θ < θ0, using Matlab. If so, then the
equation is stable, and if not, then it is unstable. First, a check on the accuracy of the exact
solution to the square wave is shown in Figure 7.

As can be seen, there is little, if any, difference between the two graphs. The differences
take shape in how long the program takes to create the graph, and in how easily it catches
the farther, smaller tongues of stability. The exact program takes much less time and catches
tongues more easily.

Next, the graphs of the three equations are compared in Figure 8.
In modeling the nonlinear equation for larger α and β, neither of the other two do an

accurate job. However, for smaller α and β, the linearized equation does provide a good
estimate of stability, while the square wave equation becomes unstable for α smaller than
the other two. When α and β are large, the linearization of the nonlinear equation is no
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Figure 5: Stable & Unstable Equations
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Figure 6: Square Wave: Exact vs. Test

Figure 7: Comparison of Stability
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Figure 8: Linearized: Test vs. Analytical Approximations

longer viable.
The linearized and square wave equations are stable or unstable at a certain α and β

regardless of the choice of initial conditions as long as those conditions are not zero, due to
properties of linear equations. However, the nonlinear equation is dependant on this choice.
This has a visible effect (even making the case α < 0 nontrivial,) but luckily aslong as θ(0)
and θ′(0) are near zero, the stability of the equation does not change too much.

6.2 The Linearized Equation

The nonlinear equation is the true problem, but due to a lack of ability to deal with nonlinear
ODEs, the linearized equation is of as much or more fascination.

It is interesting to see how the approximations yielded by (11) reflect the true stability
of the ODE. Figure 9 compares the numerically tested stability of Mathieu’s Equation to
approximations yielded by (11) up to αn−xβx, where n = 2, 4, 6, 8.

n = 2 gives a very rough approximation, good for small α and β, but useless otherwise.
n = 4 gives the first tongue almost exactly, and detects the second tongue, but one can see
that the second tongue is not even on the correct spot on the α axis, and that it is misshapen.
n = 6 and above gives the first tongue and improves accuracy even more.

These are good approximations for relatively small α and β, but the expressions, even for
the first accurate approximation, 4ω, are large and clumsy. Smaller expressions and larger
domains of accuracy result from using the Taylor approximations, (??).
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Figure 9: Linearized: Test vs. Taylor Approximations

Error lies in α, and cannot be ignored. Still, the error with only three terms of the Taylor
Series is surprisingly small compared with the error in the previous approximation. Since it
is valid up to terms of α4 and all β, maybe this shouldn’t be so surprising.

6.3 Damped Equations

The damped equations are interesting because they more accurately model real systems,
with an appropriate choice of γ. To see the effects of friction, γ will be chosen so that it is
negative and small. A change in γ has a large effect on the stability domains, so it will be
sufficient to change γ by 0.05 and see the effects. The stability of the three equations with
γ = −0.05 are now compared.

For the linearized and square wave equations, the effect of friction is similar. The tongues
of stability are widened, though only slightly. The main effect is that the sharpness with
which the instability touches the β axis is smoothed out into curves. For the nonlinear
equation, friction acts simply to broaden the range of stability.

Also, it is interesting to compare the analytical derivation of the linearized equation
(Taylor Approximation) and square wave equation stability to the numerically computed
stability. Once again, γ = −0.05.

As can be seen, even in the square wave graphs, the two differ slightly. This difference is
not due to a mistake in the analytical computation, but is actually an error on the numerical
side. The program designed to numerically find stability was unable to find correctly the
stability in a reasonable amount of time. The analytical program, at least with the square
wave equation, is the more accurate.

The difference in the cosine wave graphs is partially due to error in the numerically
computed graph, but most of the difference is due to the error of the Taylor approximation,
especially at points further from the α axis.
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Figure 10: Stability of Damped Equations

Figure 11: Comparison, Analytical to Numerical, Damped
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7 Thanks

I’d like to thank Dr. Nikola Petrov for my introduction to this consuming problem and the
methods of analysis. Linear algebra, stability, phase space, linearization, as well as most of
the programming I now know thanks to him.

Stability domains and the equations graphed in phase space were made using MatLab.
The more qualitative pictures used Adobe Illustrator. Figure 2 used both.
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