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Abstract
In this paper, the problem of an inverted pendulum with vertical oscillation of its
pivot is treated. The equation of motion is developed, and the stability of the pendulum
is studied, through both analytical and numerical means.

1 Introduction

A pendulum has two critical points in its swing: the lowest position and the highest. When
placed in either of these positions with no rotational speed, the pendulum will remain mo-
tionless. What is radically different between these two positions is their stability. The lower
position, one of the classic examples of an approximate harmonic oscillator, is completely
stable. The upper position is unstable, falling with even the slightest change in the position
or velocity of the pendulum.

Both may change stability, however, if the anchor of the pendulum is moved in a vertical,
oscillatory motion. The lower position’s instability at certain frequencies is a result of para-
metric resonance, treated very eloquently in Arnol’d’s Ordinary Differential Equations [1].
(For more on parametric resonance, see “Parametric Resonance” by Butikov [2]) The upper
position’s stability at certain frequencies is the opposite, the oscillation nullifying instead of
amplifying movement. This paper will focus on the latter of the two phenomena.

This paper starts the examination of the stability of a hanging pendulum first by deriving
and simplifying the differential equation that represents the motion of the pendulum, using
the summations of forces and torques. Then, definitions and explanations of certain key
tools, which are put into use further on, are given. These tools include stability and its
characteristics, linear systems and matrices, and Floquet Theory.

The original problem is examined, first analytically, and then numerically. The analytical
section includes the key approximations of the true, nonlinear equation, linearization and
square wave approximations (the first turning the nonlinear equation into the so called
Mathieu equation.) The condition for stability for the square wave approximation is found
easily by using Floquet Theory. The condition for stability for the linearized equation,
the Mathieu equation (as well as for a broader class of equations, Hill’s Equation,) is then
derived, also using Floquet Theory. Also included is a brief look at the corresponding damped
equations. The numerics section includes comparisons between the three equations and the
form that their stability /instability takes. Finally, approximations of an analytical solution
to stability for the linearized equation and for the damped linear equation, are given.



Figure 1: Inverted Pendulum



2 Derivation of the Equation of Motion

Assuming that the pendulum is a straight, thin, stiff rod, the forces are I}, in the x direction
and [}, in the y direction on the lower end of the rod, and the force of gravity, mg on the

center of the rod. (xg,yo) are the coordinates of the pivot. For brevity, let % = w and
2w
Az T

Yy =1y + lcosb xr =x9+ [sinf

i = vy — 1% cos — 10 sin 6 i =ay— 16%sinb + 10 cos O
Newton’s Second Law and torque equations:
mi=F, mj=F, I.0=F,lsinf— F,cosf

Where I, is the moment of inertia of the rod about the center. Solving and substituting for
F, and F} in the torque equations:

1.6 = ml(jj + g) sin @ — mili cos f

I .
—0 = (Yo + g)sinf — 7 cos 0
ml

Where I. + mi? = I is the general moment of inertia for any complex pendulum, so the
pendulum need not be a straight, thin, stiff rod, as was assumed. Now, if the oscillation of
the anchor is a vertical harmonic motion, then

To = X; Yo = Y; + Acoswt

To=0 7o =—Aw?coswt
. ml , _
0 = T(g — Aw* coswt) sin (1)

This is the general equation of motion. However, it is useful to introduce dimensionless
variables instead of m, I, g, etc. So instead, o = mIlA, = ;’;—lg, and 7 = wt will be used. «
is the nondimensionalized amplitude of the motion of the pivot, § is the nondimensionalized
gravity acceleration, and 7 is the nondimensionalized time unit.

1 d%0 mlg mIA )
= — coswt | sinf

w2 dez T \Tw? T
becomes
d2e
i (6 — acosT)sinf
Once again, 0" = %, so that
0" = (3 — acosT)sinf (2)

In order to find the stability conditions for this equation, the tools of stability are needed.



3  Stability

3.1 Definitions of Stability

Consider the homogeneous, autonomous differential equation
dx
— =v(x), x € R? 3
G 3
Assume that (3) has an equilibrium position and choose the coordinates z; so that the

equilibrium position is the origin, v(0) = 0

Definition 1 The equilibrium position x = 0 is called stable (or Lyapunov stable) if for
every € > 0, there exists § > 0 (depending only on € and not on t) such that for every xq
for which ||xo|| < 0 the solution v (t) of (3) with the initial condition ¥ (0) = xq satisfies the
inequality ||4(t)|| < € for allt > 0.

Definition 2 The equilibrium position is called asymptotically stable if it is (Lyapunov)
stable and

lim ¥ (t) =0

t—o0

for every solution 1 (t) with an initial condition lying within a sufficiently small neighborhood
of 0.

Definition 3 The equilibrium position is called unstable if it is not stable.

(Definitions directly from Arnol’d’s Ordinary differential Equations [1].)

By these definitions, stable positions are asymptotically stable for all linear, homoge-
neous, ordinary differential equations (or ODEs) except for neutral centers, physically, har-
monic oscillators with no friction.

3.2 Linear Systems

The easiest way to determine stability for second order, linear, homogeneous, autonomous
ODEs is to examine the determinant and trace of their matrix, and then to fit them into the
Trace-Determinant Plane.

"o / x’ o 01 xT
Y —ar bl = (y)( b) (y)

Any n x n matrix A of a system of linear, homogeneous, autonomous, differential equations
has n complex eigenvalues, A1, Ag, ...\, corresponding to linearly independant solutions

2/11 (t) = Cle)‘lt, wz(t) = 026)\2t, ce Ql}n(t> = Cne)\nt
These eigenvalues are such that

detA:)\l/\Q...)\n, trA:)\1+/\2+—|—>\n
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For real differential equations, the trace and determinant must be real. Note that the
solutions, 1; are such that

Re)\i>O:>wi—>oo, Re)\i<0:>wi—>0, Re)\1:O:>wl—>Cz

If one real part of an eigenvalue is greater than zero, then the system is unstable. If all
real parts are less than or equal to zero, then the system is Lyapunov stable. If all real
parts are less than zero, then the system is asymptotically stable. For n=2, the trace and
determinant completely determine the eigenvalues, and so determine the stability of the
differential equations. If det < 0, then the eigenvalues are real and have different signs, and
one or the other is greater than zero, so the system is unstable. If det > 0 and tr > 0, then
the real parts of the eigenvalues have the same sign and both are positive, so the matrix is
unstable. If det > 0 and tr < 0, then the real parts of the eigenvalues are both negative,
and the matrix is stable. The eigenvalues for all cases are given by

1
A= (tr A Vitr(A)2 —4det A)

If the ODE’s determinant is positive and its trace is less than or equal to zero, the ODE
is stable. If its determinant is positive and its trace is negative, the ODE is asymptotically
stable. Otherwise, it is unstable. A very simple, easy test of stability. This even applies to
nonlinear ODEs, because within a certain neighborhood of an equilibrium point, a nonlinear
equation usually acts like a linear equation. (This linear equation is found through the
linearization of the nonlinear equation.) The only nonlinear equation for which this method
does not work is the neutral center, with positive determinant and zero trace. In this case,
the nonlinearity must be taken into account.

Unfortunately, this method does not apply to the problem at hand, even after lineariza-
tion, because (2) is nonhomogeneous. Since the ODE depends on time, its trace and deter-
minant are changing. The behaviors predicted by the Trace-Determinant Plane will hold for
small changes in time, but in general, the behavior of the equation will be vastly different,
due to crossing boundaries in the Plane or parametric resonance.

There is a way, however, to analyze the stability of periodic, nonhomogeneous ODEs, as
this one is.

3.3 Floquet Theory

Consider the nonhomogeneous, periodic ODE
dx 9
n =v(t,x), v(t+T,x)=v(tx), x€R (4)
with solution x = 1(t).
The solution 4 (t2) can be related to (¢;) by a map such that

Y(ty) = A2 (1)

This map is linked directly to v(¢,x), so that it, too, is not affected by period changes:
AEIZ; = Aif because v(t,x) is periodic in T'. Of special importance is the transformation

over one period, AT, This will be denoted by G = AT,
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Note that A" = G”, since
AP p(t) = (0T + 1) = AL, (= 1T + 1)

A nT+t (n=1)T+t 2T+t T+t
- A(n—Jrl)Tth ’ A(n—2)T+t Tt AT+J2 Ay . P(t)

= (A" () = G" (1)
SO
A§+HT — Q"

The importance of the mapping G is demonstrated in how properties of (4) correspond
to properties of G:

Theorem 1

1. The point x¢ is a fixed point of the mapping G (i.e., Gxo = Xg) iff the solution 1 (t)
with the initial condition ¥ (0) = xq is periodic of period T

2. A periodic solution 1(t) is Lyapunov stable (or asymptotically stable) iff the fized point
xo of G is Lyapunov stable (or asymptotically stable).

3. If the equation x' = v(t,x) is linear, i.e. v(t,x) = V(t)x), then G is linear.
4. If the trace of V() is zero, then G preserves volume: det(G) = 1.

Assertion four follows from Louville’s Theorem:

ﬂ:/ divvdx:/ trGde=0=V(t)=C
dt D(t) D(t)

where D(t) is the region under the action of the phase flow and V() is the volume of the
region.

Relating these maps to stability is Floquet Theory. As t approaches infinity, the solution
of an unstable ODE generally approaches infinity, while every solution of a stable ODE
remains finite. This relates directly to the map G.

Unstable:

[ (t)] = 0o = [Ag - ¥(0)] = 00 = |G" - (0)] = o0 = |AT| = o0 or [Aj] — o0
Stable:
lp(c0)| » 0= ...... |IAT| = oo and |A}| -+ oo

where Ay and Ay are the eigenvalues of G. Since \;\s = det G = 1, either A\; and )y are real
inverses of each other, i.e. A\; = /\iz, or they are complex conjugates where [A\| = |\ = 1.
If they are real inverses, then either |Ai| or |Ag| is larger than 1 (except for the case \; =
Ay = £1, trivial), and so the mapping G and the equilibrium point of the original ODE are
unstable. If they are complex conjugates, then |A;| = [A2| = 1, and the mapping G and the
equilibrium point are Lyapunov stable. So the only information that is needed to determine
stability is whether the eigenvalues are real inverses or complex conjugates. There is an
extremely easy method for determining this.
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Theorem 2 Let G be the matriz of an area preserving linear transformation, i.e., det G = 1.
Then the mapping G is Lyapunov stable if the absolute value of the trace of that mapping
is less than two, |tr G| < 2, and is unstable if the absolute value of the trace is greater than
two, |tr G| > 2.

Real eigenvalues:

|trG| = |>\1 + )\2| =

|
T+ —|>2
x
Complex eigenvalues:

tr G|l =M+ Xe| =z +iy+oz—idy|=22], l=vV2?+ 2= |z| < 1= [tr G| < 2

This is the method that will be used in the forthcoming sections. (For more on stability, see
Arnol’d Section 23 [1] or Verhulst [3].)

4 Analytic Methods

4.1 Linearization

0" = (8 — acosT)sinb

This equation is short and exact, but is difficult, if not impossible, to solve analytically.
Even the simple question of stability or instability around € = 0 at a certain « and 8 may
be impossible to answer analytically. The equation is nonlinear, depending on sin#, and,
perhaps worse, is nonautonomous, depending on cos .

First and foremost, the nonlinearity will be eliminated by approximation. Linearization,
while uncomfortable, is necessary, sinf ~ 6 near § = 0, thus arriving at

0" = (8 — acosT)d (5)



Figure 3: squr vs. cosT

This equation is known as the Mathieu equation, or at least one of its forms. Now, already,
the results are only approximate, since this can only be done if § does not stray too far
from zero, as it does in some cases. The nonautonomous part of the equation is harder
to deal with. There is one application of Floquet Theory that works well, and solves for
stability /instability, but only for a different, even more approximate equation, the square
wave equation. Thus the application will show the “form” of how the (5) acts, but will give
different values of a and [ for stability than the linearized equation would. It is correct in
principle, but not in the actual numeric values. There is also a different application, which
would solve exactly for the linearized equation’s stability /instability, but requires an infinite
summation of infinite products of hyperbolic sines and cosines. It is not useful until this
difficulty is worked out.

4.2 Square Wave Approximation

It is the cos 7 in (5) that is causing trouble, so it will be exchanged for a function that acts
somewhat like the cosine, but to which it is easier to apply Floquet Theory: the square wave.
Thus (5) becomes

0" = (8 — asqur)d (6)
1 2nm — S <7< 2 z

where squrT =< Ty ST mr—l-gj nez
=1, 2nm+ 5 <7 <2nwm+

This equation is easier to use for the problem because Floquet Theory becomes extremely



unwieldy when dealing with linear ODEs for which the solution is not known. This square
wave approximation is solvable. We write the ODE in matrix form:

(09) - <ﬁ s (1)) @

To find A*™T it is beneficial to choose x such that it reduces the computation required.
3m 3

Without loss of generality, we can choose 7 = —7, G = A ?;. Also, finding A *: is equivalent

2 2

T 3
to finding A2. and A7 and multiplying them together.
2

N

AL tp(a) = 1p(c) = Af - p(b) = Af- AL 9(a)

woperss (E8)-av ()

cosh w7 wil sinh w7 (9(—

So

wisinhwit  coshwy T

)= (o)

B ( cosh w7 isinhwﬂ 0(%)
B )

<
—~

|
SIELIE!
~— —
~

wy sinh weT  cosh wyT o'(

SIELE]

where w1 = /3 — a, wy = v/a + 3. Therefore

1 - . 1 .
s — 3 —
z < cosh mwq o sinh le) ’ ( cosh mws o sinh 7rw2>

wi sinhw;  cosh mwy we sinh mws  cosh wwy

- T
2

INERY

w 1 1
A%’ o Cc1Cy + w—;8182 oy S1C2 + 0y €152
. =
2 W1S1C2 + WaC1S2 Cc1Cy + :}—38182

where

¢; = cosh mw;, s; = sinh Tw;

3m
tr A 2.
2

(7)

According to Theorem 2, if this quantity is smaller than two, then (6) is stable. If it is
greater than two, then (6) is unstable.

It might be thought that this quantity is never less than two, but this is the case only if
6 > a. If, however, a > 3, then ¢; = cosmy/a — (3, 1 = isinmy/a — 3, and w; = iva — 3,

and (7) becomes:

Wa w1
2cico + | — 4+ — ] 5159
Wi W2

37
trA 2,
2

(8)

%) w1
2c1c9 + <— — —) 5182

w1 %)
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where

€] = COS w1 ¢y = cosh 7wy

$1 = sin mwq S9 = sinh 7wy
w1:\/a_/8 w2:1/04_|_6

For a choice of o and  such that o > 3, the quantity is sometimes less than two. Note that
the cases @ < 0 and 3 < 0 have not been discussed, though (7) still applies. The case v < 0
is a reflection of v > 0, since it can be thought of as a phase change of 7 in cos 7, which does
not change the stability domains. The case § < 0 is not quite so simple, for it represents not
an inverted pendulum undergoing vertical oscillation, but a hanging pendulum undergoing
vertical oscillation. (7) and (8) work as well for this case as they do for f > 0, giving
Figure 4.2, a graph of stability in the entire a-( plane. Stability is represented by white area
and instability by black.
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4.3 Floquet for a Linear, Frictionless ODE

The square wave approximation could be seen as an approximation of cos7 by its values
at two points. However, cos7 is more accurately approximated by using more points. If
approximated by a very large amount of points, cos 7 is modeled exactly. This is applied to
find the solution matrix for (5) over one period, A7+

To+T _ AT0+T A TO+T—€ | . ATo+2e | A Tote
A’T'() - A'T0+T—E ATU+T—2€ AT0+6 AT()

For very small changes of €, the solution matrix is known:
O(t+¢)\ [ cosh(we) Lsinh(we)) [6(r) +O(e)
0(r+¢€)) \wsinh(we) cosh(we) o' (1) ‘

= () ). g

where w=+/0 —acosT

In order to find A;g*T, an infinite number of these matrices, from 7 =715 to 7 =719 + T,
must be multiplied together. The period T is once again 27, and without loss of generality,
7o 1s chosen to be —m. Notations used:

27

k = — = number of “A”s to be multiplied
€

¢; = coshwje, s; =sinhwe, w; = \/ﬂ — acos(2 — )

1 1 k 1
AT — Cp o Sk ) ) C1 o1 S1 _ H C; " S;
—T
WSk Ck w181 C1 s wis; G

1

- w1 w1 wWiws
(Afﬂ.)u =C1C2...Ck_1C +—8182C3C4 ...+—81C283C4 .. .+. ..+ 51898384C5 . . .+. ..
%) Ws Woldy
W2 ) Waldy
(Aiﬂ_)gg = C1Cy...CL_1Ck +—81820364 - .+—816283C4 e §15253854C5 . . R
W1 W1 wiws

The top right and bottom left corners of the matrix do not matter. All that matters is the
trace of the matrix:

w w w W
tr (Azﬂ_) = 2616203 .o F (—1—|— —2) 5§182C3C4 . . .+ (—1—1— —3) 81C283C4 . .. + ...
Wy Wi w3 Wi

wWiw Wol
+ < 1%3 + 2 4) 81828384C5 ...+ ...... (10)
Woly Wiws

This infinite summation of infinite products of hyperbolic sines and cosines is difficult, but
there is some order to it. There are several properties that this summation exhibits:

13



1. If a term includes wj;, then it also includes s;; if it does not include w;, then it includes
C;.

2. There are 2n ws in each term, n € N, n on the top of each ratio and n on the bottom
of each ratio.

3. If wg and w, are on one side of a ratio, d > e, then there is at least one w; on the other
side, such that d > f > e.

4. No w; is represented twice in the same ratio (no w?).
5. Every term within these rules is represented in the summation.
Also, (10) can be simplified for small e, like in our case:
CiCiCl ...~ 1 and S; A WieE,
hence

tr (A7) = 2+(wi + w3)e® + (Wi +w3)e + ...+ (w3 +wi)e? + ...

oo (Wi + Wi et + (WiwE + wawd)et ..

Each level of € (¢2, €!, etc.) contributes to the summation. A pattern must be found in
order to integrate. Using property 3 of the summation and the Product Rule, this pattern
is found.

On the order of €*" (n different ws in each product)

P = number of ways to havew -w. -w «... w; :
=ar-(ag—ay) ... (ap —ap_1)+ (a2 —ay) - (a3 —ag) ...  (ap —an_1) - (k—ay)
= (k+a1—ay) (a2 —a1) (a3 —az) ... (an — ay_1)

So for the part of the trace on the order of €2
ko ok k k
DD DETED DD DR A
a1=1az=a1 Ap—1=0p—2 Gn=0n—1

ko k k
= Z Z . Z (ke + are — an€)(ane — an_1€) ... (aze — ar€)w, wo ... .wo we "

™ K s
= / / : / Cr+7—T0) (T — Toe1) oo (o — M)W w2 wiw? dr, ATy ... d7e dr
— Tn—



tr (A7) = 2+/27rw dﬁ—I—// 27+ 71 — 1)) (12 — T)wiw? d7adry (11)
nd T

+ / / 27T + 71— 7'3) (13 — 7o) (T2 — Tl)wzdwﬁwﬁ drsdrdm +.
—7J T T2

where

w; =/ — «acosi

The remarkable thing about this formula is that at no point in its derivation is the fact
that w, = v/f — acos7 used. This means that the formula can be used not only for (5),

Mathieu’s Equation, but for a broader class of equations.
0" = w(7)%0, (12)
where
w(t+T) =w(r)

This ODE is known as Hill’s Equation. For any equation that falls into this category of
ODEs, stability can be calculated using the derived formula.

To+T To+Tp710+T
‘2 + / Tw dTl + / / T + 71— Tg) (7'2 - Tl)wmwﬁ d7'2 d7'1

To+ 1T pro+Tprm0+T
/ / / (T+ 71 —73) (13 — 22) (T2 — M)wiwiw? drsdmdr +...| <2 (13)

Where 73 is any real number. So for any linear, frictionless, periodically nonautonomous sec-
ond order differential equation, this summation of integrals determines stability or instability.
This is a very important class of differential equations.

It was noted before that changing 7y does not change the value of the summation. This
is not a property of the summation, but of each integral. It can be shown that changing
To to 7 does not affect the value of the integrals, and so does not affect the value of the
summation.

The derived integral summation can be generalized to higher order ODEs, though it loses
much of its power for ODEs of order higher than two.

4.4 Higher Order ODEs

The purpose here is to develop an expression for the trace of the matrix from one period to
the next of the following ODE:

6" = f(r)6, where f(r +T) = f(r) (14)
Or in matrix form:
0 \' 0 1 0 0 0
0 o 0 1 off
- : 1 :
gln—1) f(7) 0 . 0/ \o"Y

15



First, the solution matrix over a small change in time is needed. As the solution matrix for
second order ODEs was written in terms of hyperbolic cosines and hyperbolic sines, we will
need a generalization of these. Define w, such that w! = f(7). Now define

hyp (n, j,x) = e*Te(eT)x, where n € N, j € Z (15)

Several nice properties of this function are listed below.
1. hyp(1,0,z) =€

2. hyp(2,0,z) = coshx
hyp (2,1,z) = sinhz

4. hyp(n,j +n,z) = hyp(n,j,z)

5. 307 hyp(n,j,z) = e

6. < hyp (n,j,z) = hyp(n,j — 1, )

In addition, the Taylor Series about z = 0 for these functions (with 0 < j <n) is

hyp (n, j, x) i i
yp\n,J,x) = ;
= (mn + j)!
e.g.
" IQn I?m
hyp (n,0,2) =14+ — + + +...

n!  (2n)!  (3n)!

The identity generalizing cosh® z — sinh? z = 1 is now developed:

n—1 n—1 n—1
n— 2mim 2mim i
m=0 m=0 j=0
But
n—1 L. 2mit n : 2mit
Tim 1 2mity im 1 Qﬂz(t—m)] &7t
hyp(n,jen o)=Y —e n elem)ema N 2 o7 ple n )x
n n
=0 t=1
2mwimg
=e = hyp(n,j )
So
n—1 n—1 i
[I> e hypnja)=1 (16)
m=0 j=0

16



With these, we have the solution matrix. Label hyp (n, j,w,€) with h;.

O(1 +¢) ho ihl e fhnfl 0(7)
0 (1T +e) wrhpy_1 ho . ﬁhn,g o' (1)
0D (7 +¢) W hy W 2hy L ho 0C=1(7)

Once again we are concerned with multiplying these matrices to acquire a full period map.
The determinant of the map is 1, either by Louiville’s Theorem or by noting that the de-

terminant is exactly the identity acquired above. The trace of the matrix is what is now

explored. Let k = L, let A; = [a;;]; be the map from 7 = % to % + ¢, and let G be the map

€’

from one period to the next. Then by definition of matrix multiplication,

G = [gzy]AnAn—l . Al = [ Z amn_la%_lxn_z e al,lj]

1<zp_1,...,z1<n

n
tr G = z :g” = z : aixn—laxn—lxn—2 M axli = z : axnxn—la‘xn—lxn—Q e a’xlxn
=1

1<i@n—1,...,z1<n 1<zp,xn—1,...,x1<n
And
R T T
A, = W, hyp (n, x;—1 — z, wie)

Let’s approximate now with

J i
wy € .
l.‘ ) 0<j3j<n
hyp (TL, jv UJlE) ~ WZL+J6n+]
o n<j<0
(n+7)!
Then
Tl—1—7]
" ) ey T 2@
TixTi—1 nentr -z
wnj—xl_l—azl)! s T—1 <
Finally, we organize the trace into orders of e. Only €, €, €2, ... terms exist. The number
of ways to have wj, -wy, -...w; is given by
a2 a2 as as as as k+a1 k+ai k+aq
11=a1 12=1%1 In=1ln_1 i1=ag i2=11 in=1ln_1 11=0m 12=11 In=1ln_1

1 a2 a2 (ay —a)" (ag —ag)™ ' (k+a; —a,)" !
:em_”(/al .../Tn1(1)drn...dﬁ-...): (= 1)l CES =)
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Thus the trace of the solution matrix over a period for the ODE of the form of (14) is given
by:

G L [T 1)
tr :n+—/ T tdn 17
(TL - 1)' 0
1 T+71o T+71o " )
+ / / (T_|_7_1_7_2)n7 (7_2_7_1)n7 dTldTQ
(n - 1)‘2 0 sl

1 T+t T+t T+t
+—( 1 '3/ / / (T+T1—7'3)n_1(7'3—Tg)n_l(Tg—Tl)n_ldngTQdTl—f-...
n— ) T0 T1 T2

Unfortunatly, this does not have as much power for ODEs higher than second order. The
eigenvalues of second order ODEs can be described fully by the determinant and trace, and
the determinant is known, so the trace of the period map fully describes stability. However,
the eigenvalues of third or higher order ODEs cannot be described fully by the determinant
and trace, and so we cannot acquire a stability condition with this trace alone.

4.5 Applications of the Integral Summation

Returning to second order ODEs, the integral summation can be calculated directly in a
select few cases, such as the case f(7) = k, where k is constant. The summation is calculated
by induction.

First, take the nth integral term. 74 is —7T so that the upper bounds of the integrals will
be zero, and T is any positive number, since k is periodic of any period.

I = /0 /0‘--/0 (T+71 —7)(Th — Tn-1) ... (e — m)E" A7y, ... dTodmy
-7 Jn —
After integrating n — m — 1 times, the integral will be something like
= /(; o /O (CraTmar + -+ CraTonr + Co) (Tt = ) -+ K" AT dmy
Where C?, 41 18 th";z constant multiplying 77 +1- Taking the next integral,

0 0

=T
_CP

m

0 0 1 1 o
= - _— | C? 7P -
/T /7:m1 ( <p+ 1 p+ 2) m+17—m +

1 1 1
+ (5 — g) CraTo + (1 — 5) C’&HTi) kK" dry, ... dn

0 n
+1Tm+1Tm — C +1)]€ dTm+1 R d7'1

p 1
T — - —C '

m

So

C}H—?: L_L CP



And
02:T+1’1, C}L:—

The final integration is

0
J = / (01271—27_1271—2 + CIQn—lTIQn—l)k:n dTl
-T

1 1 1 1 1 1
C = — ==z
<2n—2 2n—1) <2n—4 2n—3) (2 3) "

1 1 1 1 1
2n—2 __ _ _ 1= = 0
@ (2n—3 2n—2) <2n—5 2n—4) ( 2) Cn

_/0 LTQn—2+M 2n—1 k‘"dT
o\ @2n =2 (2n — 1)1

B T2n N (2 - Qn)Tan _ I T2n k
 (2n—1)! (2n)! (2n)!

This is the value of the nth integral in the summation. If the integrals are now summed, a

familiar expression arises.

T2n n
Z 2= = 2cosh(TVk)

This is less than two if the argument 27v/k is imaginary, and is greater than two if the
argument is real. So the equation is stable if £ < 0 and unstable if £ > 0. In actuality, this
equation is autonomous, so can be placed in the Trace Determinant Plane. Its place is on
the Det-axis, either a harmonic oscillator or a saddle. A harmonic oscillator (stable) if k < 0

and a saddle (unstable) if k£ > 0.

A more difficult application of the integral summation (13) is the square wave equation.
The process, while more complicated, uses the same basic idea. First take the nth integral

term, setting 79 = —m and T = 27.

I:/ / 2r+7 —7,) ... (1 —7)(B—asqury,)...(f—asqun)dr,...dn
—T Tn—1
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The squ functions can be taken out to simplify the integral, changing it to

=0

where

Rj:/i.../:Q/OW/T;.../T:_I(%JFTR—71)...(72—n)(ﬁ—a)"‘j(ﬁJra)den...dﬁ

To change the upper bounds of the integrals to zero, shift every 7;, i > j, up by .

0 0 0
By=[ o[ tn )t ) (- )8 - )3 P d

The integration should be separated into four parts: ¢ > 7, i =5, j > > 1, i = 1. For the
first and third parts, the integration is as simple as that of the earlier application. All that
is left is to begin.

1
P = —— O
plp—1) ™"

Letl=n—j

0 0 0
[ / . / / (C2H2H L G2 (r oy — 7). (B — @) (B + ) dry.. dmy

Y .
/7r / / ( 2l_|_n1 ! J25+1+(2—ZTS!T]2Z) (ﬂ-+7—j_Tj—l)'“(ﬁ—a)l(ﬁjta)dej,” dTl

CO 2042 017T2l+3 C’Oﬂ.ZlJrl Cl 2042 . )
/7r /T 2( 20+ 2) (20 +3) ((21+ 1)! (2l+2)) T 1) (B —a)f(B+a)drj... dn

CO B (2l 4 4)7T2l+3 N 7T21+27_1 ) B (21 4 3)7T2l+2 7T21+17_1
LT @I+ 20+ 2)! N T TR A T I DT
Rj :/ (CQJ —4 2] C2l 3 2l 3)(6 . Oé>l<ﬁ+ Oé)j dflfl
e 20+ 4 o 23 20 +3 - 20— 2
I\ @ 3 (2222 (22242 (2) - DI+ 1)
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After simplification, this becomes

T (2n +1)(2n + 2)
(20 + 1)1(25 + 1)!

R; = (8—a)(8+ )

So the nth integral term is

n

B 2 (2n + 1)(2n + 2) i i
v AR

Summing over n gives the trace:

n

" (2n + 1)(2n + 2) e i
;%Jz% (2n—2j+1) (2]+1).(ﬁ_a) (B+a)

Finally, switching the sums and simplifying gives:

7=0 n=0
X, gl 2j—1 e 2ntl m+1+/B — o
+ -« VO+a
;(2]—1)’ p ;(2n+1)! b B+«
2, gl 241 e 201 -1/ + «
+ -« + o
;(2j+1)' g ;(Qn—l)' g 0 — «
w1 Wa
= C1Cy + $1S9— + S189—
Wa w1
w1 )
=ci1co + 8182( + —)
W2 w1

This is the same value attained using the earlier method.

(18)

Obviously this method works. Its power, however, is not in finding a solution for these
almost trivial cases, but in approximating, perhaps even finding an exact solution, for more

difficult cases such as Mathieu’s Equation.

For Mathieu’s Equation, the trace is not exactly solved. It can be approximated with
any amount of precision, simply by evaluating further integrals. The first two are presently

solved.
(tr . is the integral term in the trace including n ws.)

try, = / 27(3 — accosa) da = [27Ba — asina|™, = 47°3

T
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tro, = [ﬂ/ﬂ (2 — (b—a))(b—a)(B — acosb)(B — acosb) dbda

= / [ﬂﬁbQ — 27 Bab — %ﬁb?’ — Ba®b + PBab® — 2rabsinb — 2wacosb

T

+ 27asinb + ab®sinb + 2abcosb — 2asinb — aa’ sin b
+ 2aabsin b + 2aa cos b] Z(ﬁ — acosa)da

:/(§7T3ﬁ + 27 cos a + odd functions) (6 —acosa)da= %7r452—27r2042

™

_ 37452 _9r2,2

As can be seen, calculating the integrals very quickly becomes difficult as more ws are taken
into account. Fortunately, computing only the first two of the integrals gives a reasonably
accurate description of stability for a limited range of a and 3. With further computation,
the next two integrals may be evaluated:

trs, = Sa°6° — (37* — 87%)a’3

tr g4, = (%71‘4 — %772)&4 — (14—57r6 — %67?4 + 321 a?f% + 34T57r8ﬁ4
These were computed using Mathematica, as were the integrals up to tr g, though these
were far to large to include here.
So for limited o and (3, the linear ODE (5) is stable if the following condition is met:

2> |2+ 473 + %7r4ﬁ2 — 21202
Or, for greater accuracy and larger domain:

2> 2+ 477 + 5’ — 2mta® + fm°0° — (5m —8n%)a”p (19)

+ (%7?4 — %71’2)044 — (14—577'6 — ?71‘4 + 321%)a? 5% + %7?854
This is a fair way to approximate the stability, but there is more than one way to do so.
Using iterative integration once again, the condition for stability can be approximated as
a Taylor Series for just «, as opposed to both a and 3. Of course, the Taylor’s Series is
dependant only on even powers of «, since a sign change of o can be thought of as a phase
change of 7, and so should not affect the stability.

Mathieu’s Equation has f(7) = B—acos 7. In the previous two applications, a term being
integrated in some integral of the nth term of the trace summation could be fully described
by the subscript of the variable being integrated over, m, and the power of the variable, p.
In application to Mathieu’s Equation, however, the cos 7 is a severe complication.
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First, set T' = 27 and 79 = —2m in order for the upper limits of the integrals to be 0,
and define k0 = 27 + 71, k1 = —1 as the initial coefficients. Also, it simplifies the problem
to change cos T to its exponential form and to define ¢ = —%a. The nth term in the trace
summation then becomes:

0 0
I:/ . /(27r +71 = T) (e —T)(BHeeT™ + ™). (B+ee ™ +ee™)dr, ... dn
—27 Tn—1

And a term can be fully described by four numbers: the variable power, p, the power of
the exponential, r, the power of €, z, and the variable subscript, m. Define [ = n — m and
s=1—r=n—m —r to be used later. Let’s integrate an arbitrary term:

0
F = / "CP P T (T — Ti1) (B 4 €€’ ™ + e ™) drp,
Tm—1

0
— ZC’?{J’L/ (7_7]7)1-4-1 o T%Tm_l)(ﬁezr'rm + Eez(r—l)Tm + 662(r+1)7m)
Tm—1

Since for r # 0,

p+1 .
., i e+,
F_Zcf”[z<1_p+1) o

=0

i p+2—j (1) i p+2—j (1) i p+2—j
. WrTm—1 [ W(r—1)7Tm—1 W(r+1)Tm—1
(ﬁe (7‘) e (7“—1> e (7“+1) )
i p+1 i p+1 i p+1
—1 — 1 - !
Hlma o >>(6(r> +€(r+1> “(r—l) )4

when r # 0, —1,1. When r = 0, —1, or 1, remove the undefined terms and add onto the end

vy B (ore) 2
T+ +2)

Taking these, we can find a term in the mth integral of the nth set of integrals of the trace
summation from terms in the (m + 1)th integral. There are four distinct forms for this
relation:

2s—p+1 . p—q+2
+ 1) —q(p)!
op= > (PELEIE () (Bren b et O ) A0

q=0 ¢

(20)
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1

OCp —

(ﬁ OCp+1+€z 10p+1+62 1Cm+1) p=>2 (21)

z 2541 .\ p+1
20, = QRe[Z Zp'( > (ﬁ SO Tels 1C£1+1 +elt) m+1):| (22)

r=1 p=0

z 2s+1 —+2
0co — 2Re{22 p+1)! () (ﬂzca+1+ez 10fn+1+er+1ca+l)] (23)

r=1 p=0

Where s =1 —r =n—m —r. Note that for p > 2s +1, 7C? = 0 (integration raises the
power only so fast). Remember that the exponentials all came from trigonometric functions,
and so they must add together at each step to give trigonometric functions once again. Thus
Z"CP? is the complex conjugate of C? . so only one need be found. From now on, assume
r > 0 unless otherwise stated.

The object is to acquire the trace of the period map in the form of a Taylor Series for e.
We divide the work by the value of z — |r|. If 2/ —|r'| > z — |r|, then QC’;}’ cannot have any
effect upon 7C? . So we will begin at z — 7 =0, » > 0. First of all,

P

0 3 0 Bp—fko, p even
OCm = Cerl p—g—l
p<p - ) —ﬁp! kl; p odd

since jC,’;fl = L or2 P o1 =0. So the a” part of the trace is the simple harmonic oscillator
encountered prev1ously Thus we have

tr (A%, ) = 2cosh(2m+/3) + O(a?)

Now we proceed to z =7, r > 0.

Proposition

{(22')23—;00&23—;0) + (2i)2s—p+lc£2s—p+1)} , (24)

1 Tn—1
CW:ZLZ%-" $—1n (25)

The number 07(«”) is known as the rth harmonic number of order n. For more on harmonic
numbers, see [4]. The natural way to write it is as given, but at times we will employ the

following identity to simplify:
r i—1
w5 (=D
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pf:
Proof by induction. Suppose that for all p’, ’, and m’ > m, we have

o~ o Erlﬂl’—r’ o (25'—p 28— 28" —p/ +1
VO = {(27,)2 VTP L (24)2 LYY
From (20), we have
2S+1*p . q+2
. p+a) (i . r— .
O = Z <Q+1)( D) ) (;) (5 TOn e 1O 4 e +1C£m:q1)
q=0 '

The power of the exponential can never be greater than the power of €, so H1CP = 0.

Forq=2s—p,2s —p+1, ’“C’pH—Obecausethenp > 25’ 4+ 1. Define j = 2s — p + 1.

J . .\ g2
:CQS_]+1 § :(q 1) ( §—] : q) (%) <ﬁ :C2 +i7+1+q r— 102 +1]+1+q)

= (2s —7+1)!
J . )
_ <q+1)<23—]+1+Q)‘ 3 ! r— 1025 1j+1+q
= (2s—7+1)! \r mE
Jj—2 q+2
+ 28—.]+1+q> ﬁTCQS J+1+q
q:0 25 — ] + 1) r r~m+1

rﬁl r J i q+2 ‘ ) . ‘ )
— (- >l (5) e o apec )
q=

r|2p|
Jj—2 .\ g2
+) (g+1) ( ) {(2¢)j-q—3cgj—q—3>+(2¢)J’—q—2c9—q—2>D
q=0
rﬁl r
= (-1)"—5+
rep:

(@i)j1k0{§(6}+1)(é>ﬁ2(22) 2 3)+Z g+1 (%) (20) 791 1>}

+ (2i)ky rz;(q +1) (%)M(m)—q—%gj—q—?) + zj%(q +1) (;)q(m) acl- ;0D

Thus, it will be sufficient to prove that



Using the fact that

We have

(00 (@) Benn(a) e -sf0(3) ]
—

By induction, because

065

0 0

[(2 e ko + (20)'Vk }

0 6060

0Cr =k = (-1) 0211 [(22) el Wk + (20)c (0)k1]7

it is true that

€r l—r

'52 ' |:<2i>2spc£2sp)+(2i>2sp+1c£2sp+1):|m
rep:

The r = 1 and r = 2 values for this will be most useful to us later. Using the fact that

M =1, M= )& - () =25~ for n >0 and A" =0 for n < 0, we have

1 v20—j—1 ! N j—1 i
1Cm = —m (53‘0(22) kO + (2@) k1

2502 C9i 1 9i+l _q
2 v2l—j—3 _ p 12 \
5Co —(21 By ((22) 5T (2i) 5 kl)

With these in hand, we now find {C? . First, {C} and {C?. Using (22),

201

o= QRe{z:p!ipJrl (ﬁ 1CP i +e Cmﬂ)}
p=0

2[—-3 Eﬁlil
= 2Re { > plirt < -— ((2i)2l‘p‘4k0 + (2¢)2’—P—3k1>)
D

p=0
20—1

|1 ﬁl B s, B s
+ZPZ —9)1 (20-2) m p(20—1)
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Similarly using (23),

=2¢37H(=1)k1 [mf(zﬂﬂ) - 11

p=0

— (_1)l€ﬁl71 . 22[*11{:1

(l)CgL — <_1)l7166l71 . 22l71k0

Now using (21), for j odd,

ljl€ﬂ

= (-1 L2271

The coefficient for j even is found in the same manner. So

' -1 | I . 92l—j .
OC] _ 65 {( ) _ ) odd (26)

(—=1)271.22-7-1 jeven

At this point, we have all of the coefficients for terms with e! and lower power, so we could
integrate the appropriate terms and find the coefficient of € in the Taylor Series expansion
of the trace. However, recognizing that the Taylor Series only includes even powers of ¢, this
is unnecessary. The next two coefficients are given, proof left to the reader.

e =(=1)

6261—2

2

i1 62ﬁl—2 .9

12|

(27)
C(20)2 2 2k 4 (24)25-9- 12 o k:l] j odd

—(20)2579 7 ST PR 4 (20) 2 T m] j even

(—1)-% {(z R L R B i@'(zl—l)} k1, jodd
(28)
l

. ( +%—g)4l—%—1+%—16 91— 2}]{:0 j even

Finally, we sum and integrate the appropriate terms to get the part of the trace that is

multiplied by €.
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2n—3 2n—5 2n—5
T e —Z/ ( > Scid —|—ﬁZ2Re (3C{e™) + 8 2Re( 3C{r ™)
7=0
2n 3 2n—3

+2€ecos Ty Z OC’J |+ 2¢cos Ty Z 2Re( 10]7'1 ”1)) dr
7=0

§=0
After much manipulation, this has a remarkably simple form:
o0 n 27T)2k+2 )
tre = —2e23" —4 ”_kg(
=2 (2 e

Switching the sums gives

. (2m)2k+2 (27T)2k+1
tre = -2 2 ﬁn ” A2 4ge? ﬁn n \em)—
r Ez;; (2k +1)! m,;nz; 2k + 1)
27r\/_ 2 & o Arsinh(2mVB3) ,
So the trace of the period mapping is
tr (&) = 2cosh(zny/B) - IRV & o (29)

Though not proven, the e* part of the trace seems to be

fr . <472 cosh(27+/3) 27 sinh(27/) _ 16w sinh(27/f) L sinh(27+/3) >64
6 BU+497 F(1+4B2 VB +4BP VBT B)(1+ 487

If «v is preffered, a simple substitution here of € = —%Oz can be made. A couple of interesting
things to note are

2
Lt
1+43 ag <

tI'62 = —

1 d ¢ 97 sinh(27/)3)
— —tre —
1+45 dp VB(1+ B)(1 +4p)?
The terms exhibit enough pattern for there to perhaps be an exact equation. Anyways,

these have an advantage over the noniterative approximations used above in that these are
accurate for all §. There is only error in €, or a.

trea =—
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5 Friction

Analysis of equations (2), (5), and (6) is very interesting, but to study more real systems,
friction must be taken into account. Three equations will be studied.

0" =2~ + (B — acosT)sind (30)
9" = 240"+ (8 — accos )6 (31)
0" =240 + (B — asqu7)b (32)

The first equation is nonlinear, so once again, it will be analyzed by numerical means. The
second equation is of more interest, but the third equation is easier, so it will be analyzed
first. Before even this, however, it must be known how Floquet Theory applies to systems
with damping.

5.1 Floquet Theory with Damping

In Section 4.3, a condition for stability for Hill’'s Equation was found. The goal of this section
should be to find a similar condition for the damped Hill’s Equation.

0" =2~0" + f(1)0, f(r+T)= f(r) (33)

It should be noted that the 2v#’ term only represents friction if ~ is negative. If v is
positive, then energy is being added to the system, and not depleted. However, 2+v6’is a more
general way of writing the equation, and there is no reasonthat v < 0 cannot be asserted at
any time.

In Section 3.3, the condition for stability is that the trace of the solution matrix over
one period is less than two. However, this is only for second order, linear, periodic, area
preserving ODEs. This condition will not apply to an equation with a #’ term, because the
area is not preserved. The first step in finding stability for the damped Hill’sEquation will
be to find the new condition for Floquet Theory whenapplied to systems with friction.

Considering (33), the first three items of Theorem 1 still apply; it is only the last that
requires area/volume preservation. So the mapping over one period is still G. The difference
is that det(G) need not necessarily equal 1.

For any equation of the form of (33), the solution matrix over a small interval of time, e,
is

_ 1
AT+6 _ 676 Cr , (42)7 Sr wr St
T wr—y 0
T—S’T Cr + ——Sr

wWr wr

where

¢, = cosh(wy€), s, = sinh(w,€), w, = /72 + f(7)
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The solution matrix over one period is the product of % of these matrices, from 7 = x to
7 =1x+T. The determinant of this product is needed. But the determinant of a product is
the product of the determinants, det(AB) = det(A) det(B), and det ATT¢ = ¢, so
det AZYT = det A2t - ... det AZTT =€ e =TT

As before, the stability of the solution matrix can be determined by its trace. The real parts
of the eigenvalues are what determines stability /instability. If ReA; > 1 or ReAs > 1, then
the matrix is unstable. If ReA; < 1 and Re\y < 1, then it is stable. det AZtT = A\ \y = 77
so with complete generality, A\; = e* and \y = eVT *, where z is not necessarily real. Either
A1 and Ay are complex conjugates, or are both real numbers, since the trace must be real.
If they are complex conjugates, then e’7=2=% = ¢*=% 50 z = 1L and so \, = &7+,
Ao = e¥T=%_ Then the trace is A\; + Ay = 2’7 cosy. If they are real, then the trace is
)\1 + )\2 = €7T_x + e*.

Finding stability using the trace of the solution matrix must be separated into two cases:
v >0 and v < 0. If v is positive, then real eigenvalues will never both be smaller than one.
Since ReA; = Re),, then for complex conjugate eigenvalues, if the trace is less than two,
then Re\; and Re)y are smaller than one. If v is negative, then the real part of complex
eigenvalues will always be smaller than one. For the real eigenvalues, the point where one or
the other becomes greater than one is when the trace is e? + 1. So if the trace is less than
this, then the eigenvalues are both less than one.

Thus, the conditions for stability are

¥>0 and tr(A%tT) <2, (34)
or
v<0 and tr(AZtT) <147

The next task is to find, like in Section 4.3, an equation that gives the trace of any matrix
of the form (31).

As it turns out, the trace depends on v only through the e’ and through w,. Inputing
w; = /72 + f(7) into the trace for the frictionless Hill’s equation and multiplying by e’
gives the trace for damped Hill’s equation. The trace of the solution matrix over one period
for the damped Hill’s equation as written, (33), is

z+T z+T ac+T
tr (AZHT) = T (2 + / Tw? da + / / (b—a))(b—a)wiwidbda  (35)
z+T px+T px+T
—l—/ / / (T—(c—a))(c—b)(b—a)w?w?wﬁdcdbda—i—...)
T a b

where w, = /72 + f(7)
This, combined with the condition discovered earlier, allows the stability domains to be
found for any equation of the form of (33).
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5.2 Damped Equations

Using these results, the stability domains of both the damped square wave approximation
and the damped Mathieu Equation can be found. Simply transforming w, to /72 + f(7)
and multiplying by e'? gives the damped stability condition from the undamped stability
condition.

For the square wave equation, the undamped stability condition, (8), becomes

2 if v >0
e (20102 + (ﬂ + ﬂ)) <q 1 ’=
Wo Wi 1+e2™ ify <0

Or, equivalently,

272, ify >0
2oy + (D242 )< T (36)
We Wi 1+e 2™ ify <0
where
¢; = cosh(w;), s; = sinh(w;),

wi =V +0+a w=yVvy+8-a

Expanding the linearized equation, (31) to account for friction is no harder. The only required
step is multiplying by €*™ and changing f(7) = 8 —acosT to f(7) =v?*+ 3 —acosT. Thus,
any approximations made before can be made again, but multiplied by e?>™ and inputing,
instead of 3, v2 + 3. So the series approximation and Taylor approximation both still apply,
with the listed changes.

And so the previously mentioned ability to discover the stability of any linear, friction-
less, periodically nonautonomous second order differential equation has been expanded to
the ability to discover the stability of any linear, periodically nonautonomous second order
differential equation with autonomous friction. Still a specific class of ODEs, but now a little
more general.

6 Numerics

6.1 Comparison of Stability in the Undamped Equations

The square wave approximation is easy, and gives an intuition as to the form of stability in
the true problem, but does not give the actual limits of stability for the original inverted
pendulum. The solution to the linearized cosine equation, while difficult, gives stability
domains that are much closer. However, the stability domains are not exact. Because of
linearization, # must remain near zero for the linearized equation to accurately reflect the
true equation. It does not matter how close to zero 0(0) is set, (as long as 8(0) # 0) 6(7) will
still vary a certain amount, depending on a and 3. If a and 3 are fairly small, this deviance
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will be small enough to be neglected. If o or  are too large, however, it cannot be ignored,
and the linearized equation can no longer be trusted. Since nonlinear differential equations
can only rarely be solved analytically, the analysis of the true, nonlinear, nonautonomous
ODE must be left to numerics.

First graphs of stable and unstable equations in the phase plane (0 vs. 6’) for the three
ODEs, the square wave equation, the linear equation, and the nonlinear equation, top,
middle, and bottom, respectively. It should be noted that for all numerically solved ODEs,
the initial conditions are § = 0.005, 8/ = 0. The unstable are on the left, and the stable on
the right. (Evaluated to 7 = 647.)

Obviously, the stable equations stay near the origin in all cases, in fact, within 0.005
radians. This will almost always be the case for the two linear equations, and will usually
be the case for the nonlinear equation. If the