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Abstract 
 
 
The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow 
strongly in the next decades. It covers areas of food and medical research, plant and 
pests’ research, and environmental research. In each research area, engineers try to 
find equations that model a certain life science problem. Once found, they research 
different numerical techniques to solve for the unknown variables of these equations. 
Afterwards, solution improvement is examined by adopting more accurate 
conventional techniques, or developing novel algorithms. In particular, signal and 
image processing techniques are widely used to solve those LSE problems require 
pattern recognition. However, due to the continuous evolution of the life science 
problems and their natures, these solution techniques can not cover all aspects, and 
therefore demanding further enhancement and improvement. 
 
The thesis presents numerical algorithms of digital signal and image processing to help 
in improving the pattern recognition based solution of some LSE problems. These 
problems are selected randomly from the different areas covered by LSE, including 
those involved in hidden animal detection, biological tissues recognition, animal 
taxonomy, and bioprocess monitoring problems. 
Hidden weevils are traditionally detected by pheromone traps which are not able to 
perform the task in an early stage of infestation. Hardly seen animals such like bats are 
usually detected through their echolocations, with the need of accurate handling and 
filtration of the recorded sound streams for correct detection. In this thesis, a signal 
processing system is developed including the extraction of large list of 
conventional/unconventional bioacoustics features. The filtration process and 
application of window functions are investigated, and different algorithms for the 
selection of distinctive features are proposed. The system is applied to accurately 
detect the existence of red palm weevils through the analysis of recordings made by an 
insertion sensor into palm trees. 
 
Meanwhile, automatic recognition of objects in biological tissues is achieved with 
image processing by detecting objects’ boundaries in over surface picture, x ray 
image, ultrasound image, or magnetic resonance image. Nevertheless, the main 
challenge is to apply a robust edge detector. In this direction, a novel edge detector 
based on the energy and skewness features of the original image is developed. These 
features behave as smoothed versions of the image and avoid the application of prior 
smoothing filters and their corrupting influence on the boundaries.  Non-maximum 
suppression approach with sub-pixel accuracy is established to thin out the detected 
boundaries to one pixel width. Flux equilibrium check is conducted to fill any 
discontinuities take place in the constructed edges image. With respect to subjective 
and objective measures, the developed edge detector presents competitive results in 
comparison to other commonly used approaches. Several two dimensional features 
are extract from the edges image to completely define the objects boundaries. And the 
developed edge detector has been applied efficiently to recognize the intramuscular fat 
contents in non-living animal slices images. 
 
Animal taxonomy can also be performed by image processing through the analysis of 
their bioacoustics calls represented in spectrogram images. It is a modern method 
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which presents fast and accurate classification down to species levels. However, the 
collections of bioacoustics calls in animal natural environment add more difficulties to 
the classification process due to the attached field noise. Many enhancement 
approaches have been considered to suppress this background noise, but their 
common challenge is the degradation of the produced temporal and/or spectral 
accuracies. Hence, an improved spectrogram enhancement approach has been 
developed. The approach limits the dynamic range of the spectrogram to the enclosed 
high energy patterns. The crest factor image is extracted as a smoothed version of the 
spectrogram. The developed edge detector is applied to detect the boundaries of 
sound patterns, at which their surrounding noise are eliminated. The method is 
compared to other enhancement methods, and applied successfully to classify some 
birds/bats species through their bioacoustics calls spectrograms. 
 
Alternatively, several in situ sensors and techniques are applied to monitor 
bioprocesses. However, some challenges are accompanying regarding the biofouling 
formation on the sensor surface, limited measuring range, base line drift, cost of 
application, and calibration complications. Particularly, ultrasound sensors are 
promising tools to perform online, noncontact, and non-invasive monitoring. The main 
parameters obtained by these sensors are the time of flight of the propagating echoes, 
and its corresponding speed of sound. Numerical approaches to calculate these 
parameters are mostly the threshold method and cross correlation method. Whereas 
with the first method echoes reach the threshold level sometimes after their exact 
starts, while with the second method the calculation is highly affected by existent noise 
spikes. In this thesis, a time of flight and speed of sound calculation approach is 
presented. The ultrasound signal is restricted to its dominant frequency. The involved 
power spectrum and phase shift distributions are handled to detect the time of flight 
between echoes corrected by their individual phase shifts. Afterwards the speed of 
sound is calculated by the information of the signal path length. Validations and 
sensitivity analyses are conducted to check the consistency and repeatability of the 
results. The proposed method is applied to estimate the time of flight and to monitor 
the speed of sound variation during online yeast fermentation process. Furthermore, 
the signal features are combined with temperature measurements in an artificial neural 
network to instantaneously predict the mixture density with high accuracy. 
 
The developed approaches enlighten the passage which help in decreasing the 
challenges of LSE problems, and open the horizon to think in more improvements for 
the already existent solutions. Therefore, further applications of these approaches as 
well as their limitations and constrained are discussed.  
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1. Introduction 

 
 

Life Science Engineering (LSE) is a research field for the intersection between 
engineering and life science, with the focus of finding technical solutions for existing 
life science problems. It became an increasingly important subject area during the last 
few years due to its implementation in food technology, pharmacy, biology, metabolic 
engineering, bioreactors design and operation, pollution abatement technology, 
environmental impact assessment and life cycle analysis. LSE can be divided into three 
major areas, as clarified in figure (1.1).  The red area is engaged in the research of food 
and medical technologies containing their production processes, analysis, 
instrumentation, automation and robotics. The green area is for the plant and pests 
research, including the methods of cultivation and resistance to grain weevils. While 
the grey area concerns with the protection of the environment, covering research in 
topics such as water, air pollution, as well as their analysis techniques. 
 

 

Figure (1.1): The three major fields covered by 
Life Science Engineering (LSE) research. 

 
1.1 Problem Formulation 
 
The thesis is oriented to help in improving the solution of some LSE problems by signal 
and image processing techniques. These problems are the difficulties in detecting 
hidden or hardly seen animals, difficulties in objects recognition in biological tissues, 
difficulties in animal taxonomy in species level, and difficulties in instantaneous 
monitoring of bioprocesses.  
 
Problem of hidden animal detection 
The importance of detecting hidden or hardly seen animals is gained in from the 
exchanged influence between these objects and environment. One example of these 
animals is the night-flying bat, which is primary predator of night-flying insects. These 
include cucumber, potato, and snout beetles; corn-earworm, cotton-bollworm, and 
grain moths; leafhoppers; and mosquitoes. A mine roosting colony of only 150 bats eat 
about 33 million cucumber beetles each summer. This saves huge amount of 
pesticides which could cost the farmers an estimated billion dollars [1]. Despite their 
critical role in our environment and economy, available studies suggest that millions of 
bats have already been lost. The loss of bats can increase our reliance on chemical 
pesticides, which often threaten both environmental and human health.  
There is a rapidly growing body of evidence indicating that bat fatalities at wind mills 
are considerably high enough to endanger their existence, especially for those 
presented in figure (1.2). the lungs of bats as typical mammalian unlike those of birds, 
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and it has been hypothesized they are more sensitive to sudden air pressure changes 
in their immediate vicinity such as wind turbines, and are more liable to rupture them to 
explain their apparent higher rate of mortality with such devices. 
 

   
Figure (1.2): Three of the most frequently killed bats at windmills. (a) Hoary bat 

(Lasiurus cinereus), (b) eastern red bat (Lasiurus borealis), and (c) silver-haired bat (Lasionycteris 
noctivagans). 

 
About 48 bats are killed per wind blade annually at mountaineer [2]. From the other 
side, bats destroy these blades, as shown in figure (1.3), which offer source of 
renewable and pollution-free energy. Clearly, further construction of wind farms on 
wooded ridge tops, prior to finding solutions to prevent or minimize bat kills, poses 
potentially devastating cumulative threats to bats and wind turbines [3]. 

 

 

Figure (1.3): Thermal 
infrared image for a wind 

turbine, showing the 
trajectory of a bat that 

was struck by a moving 
blade (lower left).[3] 

 
Automatic accurate detection of bats’ existence can lead to excellent progress toward 
identifying causes and possible solutions for the problem. One primitive solution is to 
stop or reduce the turbine speed when bats are detected in the near zone. However, 
due to the unique behaviours of bats to fly in late night, it is difficult to visually detect 
their species. The recognition is always subject to the external characteristics and its 
accuracy was dependent on the experience and ability of the observer [4]. 
Governments and mammal rights organizations cannot condone further turbine 
construction until solutions are found to minimize or prevent bat kills. 
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Meanwhile, an example for hidden weevils is the red palm weevil (Rhynchophorus 
ferrugineus), shown in figure (1.4), which spends its approximately four month’s life 
cycle into the trunk of trees.  It is the most destructive pest of date palms in the world 
and a serious pest of coconuts.  
 

 

 
Figure (1.4): The complete life cycle stages of the Red Palm Weevil, and its larva in date palm trunk. 

 
Red palm weevil (RPW) has caused up to 20% loss of these plantations in Asia and 
Middle East. Since 1980s, it has rapidly expanded its geographical range westwards. It 
reached Saudi Arabia and the United Arab Emirates in 1985, spreading throughout the 
Middle East and into Egypt. Between 1994 and 1999, it was detected in Spain, Israel, 
Jordan and Palestine. Then it is appeared in Italy in 2004, Canary Islands in 2005, 
Balearic Islands, France, and Greece in 2006, and Turkey in 2007 [5]. It has been 
reported in several other countries as schematically shown in figure (1.5). The hidden 
kind of its living enables the spread of infestation without visual appearance on the 
tree, and therefore no treatment is considered. European Commission is in the process 
of introducing emergency measures to prevent the further spread of RPW within the 
community. 
 

 
Figure (1.5): worldwide map showing the reported infested regions (in grey) by red palm weevils in 

2007. 

 
The females deposit about 300 eggs in separate holes or injuries on the palm trunk. 
Eggs hatch in 2 to 5 days into legless grubs which bore into the interior of the palms, 
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moving by peristaltic muscular contractions of the body and feed on the soft succulent 
tissues, discarding all fibrous material. The larval period varies from 1 to 3 months. The 
grubs pupate in an elongate oval, cylindrical cocoon made out of fibrous strands. At 
the end of the pupation period which lasts 14 to 21 days, the adult weevils emerge [6]. 
Larvae and adults destroy the interior of the palm tree, often without the plant showing 
signs of deterioration unless damage is severe. Hollowing out of the trunk reduces its 
mechanical resistance, making the plant susceptible to collapse and a danger to the 
public, as given in figure (1.6), [7]. In most cases, attack leads to the mortality of trees 
whatever their sizes.  
 

 

Figure (1.6): Mortality and fall of the palm tree 
due to the Red Palm Weevil infestation. 

 

 
Problem of biological tissue recognition 
The second problem is elaborating in recognition of objects in biological tissues, which 
can be divided into two categories; living and non-living tissues. One example for the 
problem in living tissues is the diagnosis of Adrenoleukodystrophy [8], which is 
inherited disorder that leads to progressive brain damage, failure of the adrenal glands 
and eventually death, as shown in figure (1.7). It is essential to diagnose this disease as 
early as possible. Once the disease has progressed, there are currently no treatments 
that can replace the lost myelin. The diagnosis is mainly established by blood test for 
the detection of serum very long chain free fatty acid levels [9]. The test has the highest 
accuracy in males, however, it sometimes present negative results in women who carry 
the disease.  
 

 

Figure (1.7):  The 
Adrenoleukodystrophy effects which 
are (1) damaging the white matter of 

the brain and (2) impairing the 
adrenal glands. 
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On the other hand, an example for the problem in non-living tissues is the recognition 
of fat areas in an animal’s meat slice, as shown in figure (1.8). The intramuscular fat 
content is one of the most important criteria for quality in meat grading systems. It has 
a large influence on the meat nutrition, functional properties, sensory quality, storage 
conditions and commercial value [10].  
 

  

Figure (1.8): An approximate relationship between fat content and carcass weight in Japanese black 
x Holstein cows, [11]. 

 
This problem can be also solved by visual inspection or chemical investigation. 
However, visual inspection has historically been performed by use of the only “tool” 
available, the human eye. The process accompanying data acquisition, automatic 
evaluation and direct control of the ambient conditions is possible only to a very limited 
extent, because the human assessment furnishes above all qualitative but hardly 
quantitative data and, on top of this, such inspection is time consuming and cost-
intensive. Instead, the chemical investigation is performed through the gravimetric 
ether extraction method [12], which is known as a standard reference analysis method 
for measuring the fat contents in simple, accurate, and robust technique [13]. But it has 
several drawbacks such as its long drying and extraction times, lack of automation, 
and the amount of solvent used per sample. Furthermore, the method is considered as 
expensive, destructive, and tedious method, because meat as a raw material is 
extremely variable and may range from 1 to 65% fat. 
 
Problem of animal taxonomy 
The third problem involved in the difficulty of animal classification down to species 
level (i.e., animal taxonomy). Using morphological, behavioural, genetic and 
biochemical observations, taxonomists identify species following the taxonomy tree 
shown in figure (1.9). Unfortunately, taxonomic knowledge is far from complete. In the 
past 250 years of research, taxonomists have named about 1.78 million species of 
animals, while the number of species is expected to be between 5 and 30 million, 
according to the Guide to the Global Taxonomy Initiative on 2007.  
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Figure (1.9): Basic taxonomy tree up to species level, with an example for the classification of Grizzly 
bear (Ursus arctos). 

 

The secretariat of convention on biological diversity stated that taxonomists start by 
sorting specimens to separate sets they believe represent species. The next job is to 
see whether or not they already have names. This may involve working through 
identification guides to check similarity of physical structure, evolutionary relationships, 
homologies and analogies features. Such comparison should cover all of these checks 
because specimen may be similar to a known species in some features but differ in 
others. If there is no match the specimens may be considered as new species, not 
previously given a name. The taxonomist then has to write a description, including 
ways in which the new species can be distinguished from others, and make up a name 
for it. From finding the specimens to the name appearing in print can take several 
years. Due to the continuous evolutionary process of many specimens, they may 
achieve sensitive changes before they are already being classified. Therefore, a fast 
and accurate identification approach is missing, which can help the taxonomists 
classify specimens in reasonable times. 
 

Problem of bioprocess monitoring 
Nevertheless, the fourth problem appears through the difficulties accompanying online 
monitoring of bioprocesses in an accurate, non-invasive, and non-destructive policy. 
Microorganisms, plant and animal cells supply wide range of pharmaceutical and food 
products, and maximum economic benefit can only obtained if the involved 
bioprocesses are well monitored and controlled. The bioprocess, as displayed in figure 
(1.10), is a process applied on any kind of living cells (e.g., bacteria, enzymes, 
chloroplasts) to obtain the desired product. And bioprocess monitoring means access 
to continuous real-time information about all relevant variables of the process. 
Therefore, a detailed monitoring of bioprocess is necessary to optimize the recovery 
process with regard to both the quantity (e.g., microorganism growth rate) and quality 
(e.g., biological activity), [14].  
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Figure (1.10): Main steps of a bioprocess consist of upstream processing stage through the 

substrate tank and fermenter, and the downstream processing stage through the storage tank and 
isolation/purification operation of the final product. 

 
In general, bioprocesses are considered complex for monitoring due to the intricate 
nature of biological system and its interaction with the surrounding physical and 
chemical environment [15]. 
Furthermore, since bioprocess is harsh environment for sensors, they should not 
contaminate the process and be able to operate over the process period which may 
take weeks without recalibration. Meanwhile, one major challenge in bioprocess 
monitoring is the shortage of sensors which measure the key process variables that 
requires finding robust relationships from the sensed variables to detect the non-
sensed variables. Also, offline analysis is function of the ability of automating the 
sample removal and preparation, which is not an easy task. This sample removal 
increases the risk of contamination and could perturb the physiology of the organism 
[16].  
Software sensors (i.e., virtual sensors) may be implemented to monitor traditional 
bioprocess variables, suchlike pH, temperature, dissolved oxygen, pressure, and level. 
However, their performance depends on the initial conditions applied and 
understanding of the start-up procedure. As a result, the reliability of these sensors 
during product synthesis is low, as substantial cell death and product inhibition may 
occur [17]. 
Direct tools in bioprocess monitoring are possible through techniques like bio-sensing, 
using biosensors, as shown in figure (1.11), which detect an analyst that combines a 
biological component with a physicochemical component. They help to generate 
database for elucidating origin effect mechanisms of the underlying cells, and facilitate 
the developing of better process model for state estimation. However, biosensors 
usage in bioreactors is scarce owing to drift and fouling. Hence they operate under 
conditions not adapted for noncontact and continuous measurements [18]. 
 

 
Figure (1.11): The blood glucose meter as example of the common biosensors, which uses the 

glucose oxidase enzyme to break blood glucose. The produced value is a measure of the glucose 
concentration. 
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1.2 Solution Approaches 
 
Hidden animals detection approaches 
There are many approaches have been developed to detect animals having hidden 
kind of living. For grain weevils, these approaches are pheromone based traps, as seen 
in figure (1.12a). However, this method is unsuitable for quarantine inspections of 
planting material [19]. Consequently, infested planting material is often transported to a 
new location before the first detectable symptoms of infestation appear. Moreover, x 
rays technology enables the detection of early phases of infestation, as shown in figure 
(1.12b), but its usage is dramatically expensive. 
 

 

 

Figure (1.12): (a) Pheromone trap used for detection of adults Red Palm Weevil. (b) X ray image for 
two mango fruits at which the left fruit is identified as infested (as evidenced by the dark areas in the 

seed kernel) [20]. 

 
Several approaches are also applied to detect bats such as visual observation, infrared 
cameras [21], thermal imaging [22], and radar [23]. However, the visual observation can 
only be done in daylight, and with infrared cameras the deriving of a count from the 
recordings is tedious and time consuming. Thermal imaging and radar based detectors 
are very costly in equipment and man hours. 
All of the hidden animals produce sounds in form of direct call, feeding sound, 
movement sound, spinning a cocoon sound, etc. Therefore bioacoustics analysis 
presents simple and quick solution to the detection problem. With bioacoustics, 
scientists are able to detect and study animals in dense vegetation and over distances 
in a non-invasive and economic way. Making acoustic recording very useful in aquatic 
habitats and where visual observations are difficult or impossible [24]. In recent years, 
the new technologies have improved the way that sounds can be sampled, analysed, 
stored and accessed. As a consequence, currently the collections of animal sounds 
are widely used and applied for research. The analysis is based on defining dominant 
features in these sounds, and search for these features whenever a sound is listened to 
detect the existence of an animal. This approach is widely used to detect bats through 
their echolocation calls [25, 26, 27], as expressed in figure (1.13), and can be also used 
in the case of RPW as will be explained in chapter 3. The challenges to this direction 
are the correct handling and filtration of sound streams with the available signal 
processing technology. And the extraction and selection of dominant features which 
completely and sufficiently define a sound.  
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Figure (1.13): detection of Noctula bat 
(Nyctalus noctula) by reviewing the 

dominant features of its echolocation 
call. 

 
Biological tissues recognition approaches 
In the meantime, for many years computer vision techniques have been applied to 
recognize objects in biological tissues. These techniques include magnetic resonance 
imaging (MRI), computed tomography (CT), x ray, ultrasound imaging (USI) for under 
layer detection, and ordinary camera imaging for over surface detection. For example, 
MRI analysis on the brain is a must – beside a blood test – to assure the correctness of 
Adrenoleukodystrophy diagnosis. Lesions on the brain caused by the destruction of 
the myelin appear on MRI, as shown in figure (1.14), before any neurological or 
psychological symptoms appear [9].  
 

 

Figure (1.14): MRI showing axial scan at the level 
of the caudate heads demonstrates the 

adrenoleukodystrophy with marked loss of 
posterior white matter. 

 

 
Some cases for the implementation of other computer vision techniques are presented 
in figure (1.15), implying how they added a great value and enriched the recognition of 
different objects in biological tissues. Over surface imaging approaches are mainly 
used to define objects and accurately recognize their areas and boundaries 
distributions, such like the fat contents in a meat slice of a non-living animal, as will be 
explained in chapter 3. 
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Figure (1.15): Recognition of objects in some biological tissues by computer vision techniques. (a) Ct 
images for a human right knee showing fracture, (b) x ray image of an amalgam filling (the white spot) 

with a significant decay in the tooth, and (c) USI shows a polypoid gallbladder cancer. 

 
Automatic investigation of the collected images produced by these techniques is 
achieved by image processing methods, especially those concern with detecting the 
objects boundaries.  
Edges are mostly detected using either the first derivatives, called gradient, or the 
second derivatives, called Laplacien. Laplacien is more sensitive to noise since it uses 
more information due to the nature of the second derivatives [28]. Various gradient 
based detectors were developed suchlike Prewitt, Roberts, and Sobel detectors, as 
seen in figure (1.16b, c, and d); respectively, for a finger print image given in figure 
(1.16a). They compute an estimation of gradient for the pixels, and look for local 
maxima to localize step edges. Typically, they are simple in computation and capable 
to detect the edges and their orientations, but due to lack of smoothing step, they are 
sensitive to noise and inaccurate [29]. 
 

 
          (a)                                (b)                               (c)                             (d)                            (e)   

Figure (1.16): (a) Finger print image, (b) Edges image by 3*3 Prewitt edge detector, (c) Edges image 
by 2*2 Roberts detector, (d) Edges image by 3*3 Sobel detector, and (e) Edges image by Canny 

detector with filter size of 1.5 

 
Therefore, Canny edge detector was developed, as shown in figure (1.16d), which is 
probably the most widely detector and considered to be the standard edge detection 
algorithm in the computer vision applications [30]. 
The main drawback in Canny detector is its inclusion of adjustable parameter which 
can affect the computational time and effectiveness of the algorithm [31]. This 
parameter is the size of the implemented smoothing Gaussian filter which is hardly to 
take generic value that works well on all images. 

 
Animal taxonomy approaches 
For the difficulties involved in animal taxonomy process, the implementation of 
bioacoustics based classifier – for sound producing animals – has the potential to 
squeeze up the process in a non-invasive and noncontact approach [32]. Since 
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bioacoustical signals are species specific, the technique is further increase the 
classification accuracy. Moreover, several new species have been discovered because 
of their distinct vocalizations, after being wrongly classified according to their 
morphologically similarity with other species.  
The produced sound is usually analysed through its spectrogram representation, which 
is a 2D image for the sound power distribution with time and frequency, as given in 
figure (1.17). Thus the structure of the enclosed sound patterns is measured and 
correlated to known species database.   
 

(a) 

 
 

(b) 

  

(c) 

 
 

(d) 

 
 

Figure (1.17): Spectrogram representation for the sound calls produced by four species. (a) 
Gryllotalpa gryllotalpa, (b) Eumodicogryllus bordigalensis, (c) Gryllus bimaculatus, and (d) 

Acheta domesticus. 

 

To ensure the efficiency of the animal sound databases, sounds must be collected in 
the animal natural environment [33]. This will add more restrictions to the collected 
sounds in the form of attached field noises, which directly reduce the quality of the 
waveform, deteriorate the worth of the extracted features and thus lead to inaccuracy 
in classification of the sound patterns [34]. Many enhancement approaches have been 
considered to suppress spectrogram background noise, but the common challenge is 
the degradation in temporal and/or spectral accuracy of the output spectrogram. 
Further difficulty is added to the problem due to variability of the sound patterns 
structure, which can vary greatly including vertical straight, sloped straight, sinusoidal 
type and random patterns. 
Widely applied techniques are basic band pass filtering [35], spectral subtraction [36], 
Wiener filter [37], and wavelet packet decomposition [38]. The band pass filtering is 
successful when removing low or high frequency noise and does not provide 
satisfactory results for sound patterns overlapped with their attached noises [39]. The 



12 
 

multi-band spectral subtraction method is simple and efficient, but can produce 
sounds with musical artefacts that are often more objectionable than the original noise. 
The Wiener filter technique basically considers the beginning of a signal is noise, and 
its adaptive type removes noise based on a training data [40]. However, during the 
operation on data with unknown noise, the noise level can be underestimated and the 
enhancement can be slightly milder [41]. The wavelet packet decomposition is effective 
in removing background noise in the spectrogram. But it cannot suppress much of the 
noise generated during the Fourier transformation, because the former noise is usually 
random Gaussian distribution while the latter may be modelled by Rayleigh distribution 
[42]. An example for spectrogram filtration by the above four approaches is given in 
figure (1.18). 
 

  

  

 

Figure (1.18):  (a) One of Sitta Canadensis bird 
calls at SNR = 20 dB, and its enhanced 

spectrogram by (b) Band pass, (c) Multi-band 
spectral subtraction, (d) Wiener filter, and (e) 

Wavelet packet decomposition. 

 
Bioprocess monitoring approaches 
For the bioprocess monitoring problems, some improvements have been made to both 
biosensors and virtual sensors. However, their implementations still very challenging 
because of either bio-fouling of the surface and irreversible inactivation of the affinity 
probe due to fermentation additives, or the complex nature of the cell culture 
environment [43]. Other routinely applied in situ monitoring techniques are classical 
electrochemical sensors, optical density measurement, fluorescent spectrophotometry, 
infrared spectroscopy, Raman spectroscopy, and ultrasound measurements. 
The classical electrochemical sensors, as described in figure (1.19a), provide the 
bioprocess data of temperature, pH, dissolved oxygen, dissolved CO2, etc., that a 
biotechnologist relies on to determine the process status. Often they are systematic 
with limited mathematical models which relate measured parameters to some 
important process variables. Hence there is a strong need for more sensors to 
measure other important variables [44]. Optical density measurement is the most used 
method for biomass monitoring [45], but it suffers from limited measuring range and its 
sensitivity to bubbles and suspended solids. Fluorescent spectrophotometry measure 
the colour intensity of a pH sensitive fluorescent dye adsorbed on a tip of a light 
conducting optical fibre [46]. General weakness of this approach is photo bleaching 
which causes base line drift. Infrared spectroscopy, seen in figure (1.19b), can be used 
for glucose, ammonia, and CO2 measurements in bioprocess media. But this method is 
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expensive and calibrations can be complicated [45]. Meanwhile, the Raman 
spectroscopy clarified in figure (1.19c) is not very developed because of interference of 
some cells which fluoresce in the Raman bands. Shifted subtracted Raman spectra 
method is developed to reduce these interferences, but it is a non-economic solution 
[47]. 
 

 
(a) 

 
(b) 

 
(c) 

Figure (1.19): Basics of (a) the electrochemical 
sensor, (b) infrared spectrometer, and (c) Raman 

spectrometer. 

 
Ultrasound sensor systems are of increasing interest in bioprocess monitoring because 
they are very sensitive and offer the possibility of online noncontact and non-invasive 
monitoring. Many non-sensed process key variables can be monitored through the 
variation of the ultrasound signal features, such like the mixture density which may be 
estimated from speed of sound and acoustic impedance information. The main 
ultrasound parameter for process monitoring and control is the speed of sound, as 
shown in figure (1.20). It is calculated by dividing the signal path length over the time of 
flight between the propagated ultrasound echoes. Time of flight is estimated by the 
threshold method or the cross correlation method. The first method detects the indices 
corresponding to the time instants when the signal amplitude crosses certain 
threshold, and the time of flight is then the interval between these two instances [48]. 
The second method searches for the instant at the relative maximum in the correlation 
function between the first echo and the rest of the signal, and define the time of flight 
to be the interval between this instant and the start of first echo [49]. 
Although the results obtained in the previous studies lead to the practical conclusion 
that the cross correlation method ensures up to 40% increasing in the accuracy of time 
of flight estimation with respect to the threshold method, it requires a greater 
computational cost and highly influenced by noise spikes in the signal. Moreover, the 
overall accuracy depends as well on the phase shift between the selected echoes, 
which is hardly noticed in time domain and requires a spectral analysis in the frequency 
domain. 
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(a) (b) 

Figure (1.20): (a) Placement of ultrasound sensor to monitor bioprocess and (b) variation of the 
detected speed of sound for some mediums at different fermentation temperatures values [50]. 

 
 
1.3 Contribution of the thesis 
 

The thesis premises on the advances in signal and image processing which help to 
improve current solutions approaches of the above discussed LSE problems.  
For the detection of hardly seen animals and hidden weevils, a signal processing 
system is developed including the extraction of large list of 
conventional/unconventional bioacoustics features. The filtration process before 
extracting the time domain features, and the application of window functions before 
extracting the spectral features extraction are investigated. Several algorithms are 
presented for the selection of relevant and distinctive features. The developed system 
is employed to successfully detect the existence of hidden RPW through its feeding 
sound [51]. The system is thereafter engaged in various life science detection problems 
such as those presented in [52, 53, 54]. 
For the recognition of objects in biological tissues, a novel edge detector based on the 
energy and skewness features is developed. Each feature presents a smoothed version 
of the original image, avoiding the application of smoothing filters, and therefore 
prevents their accomplished drawbacks. Non-maximum suppression algorithm with 
sub-pixel accuracy is constructed and applied to suppress thick edges in both images 
(i.e., energy image and skewness image). Still discontinuities in the output images are 
filled by a flux equilibrium check. A reasonable combination between edges calculated 
by the energy image and those calculated by the skewness image is made; to produce 
an accurate edges image in comparison to those presented by other gradient based 
edge detectors. Several subjective and objective evaluation measures are formed and 
applied to define the accuracy of the final edges image. Afterwards, the method has 
been applied efficiently to recognize the intramuscular fat contents in non-living animal 
slices images [55]. 
Meanwhile, to increase the power of implementing bioacoustics spectrograms for 
animal taxonomy, an improved spectrogram enhancement approach has been 
developed. The dynamic power range of the spectrogram is restricted to avoid the 
problem of low level portions of the spectrogram expanding and thereby obscuring the 
detail of the energetic portions. Afterwards, the crest factor image is calculated as a 
smoothed version of the original spectrogram image. Sound patterns are detected by 
the above developed edge detector, while their surrounding noise are eliminated. The 
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method is compared to other filtration methods, and applied successfully to classify 
some bird species from their bioacoustics calls spectrograms [56]. 
Finally, for the instantaneous monitoring of bioprocesses by ultrasound techniques, an 
accurate time of flight estimation approach is established. The method initially limits 
the ultrasound signal to its dominant frequency through a high resolution spectral 
analysis based on short time Fourier transformation. Start times of consequent echoes 
are detected from the instantaneous power spectrum distribution. Afterwards, phase 
shift correction is applied to the detected times through the investigation of the 
instantaneous phase shift distribution. Validations and sensitivity analyses are 
conducted to check the consistency and repeatability of the results. The proposed 
method is applied to estimate the time of flight and to monitor the speed of sound 
variation during online yeast fermentation process. Furthermore, the signal features are 
combined with temperature measurements in an artificial neural network to predict 
instantaneously the mixture density with high accuracy [57]. 
 
 

1.4 Structure of the thesis 
 

The thesis starts in (chapter 1) with short overview of the areas covered by LSE, with 
focus to four associated problems (detection of hidden animals, objects recognition in 
biological tissues, animal taxonomy in species level, and instantaneous monitoring of 
bioprocesses). Their available engineering solutions, involved challenges, and the 
contribution of the current work to overcome these challenges are presented within 
this chapter. 
The remainder of the thesis is divided into three main chapters, starts with detailed 
explanation for the developed numerical models in both signal and image processing 
fields (chapter 2). The applications of these algorithms to the previously mentioned LSE 
problems are presented in (chapter 3), which is mainly formulated by sample of 
accepted peer-reviewed paper for each application. The first application is the 
detection of RPW in an early stage of infestation. Secondly, the noncontact recognition 
of intramuscular fat contents in meat slices. The third application is bioacoustics 
classification of bird species through their enhanced spectrograms. And the Fourth 
application is for robust online estimation of speed of sound and mixture density in 
yeast fermentation bioprocess. Afterwards, a conclusion of the presented work, 
outlook of the unsolved problems, and proposes for extended applications are given in 
(chapter 4). 
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2. Construction of The Mathematical Models 

 
 

The LSE difficulties discussed in chapter one are pattern recognition problems, and 
can be mathematically solved by designing adequate pattern recognition system. This 
system consists of sensor to gather the signals (e.g., bioacoustics sound or ultrasound 
signal) or camera to gather the images (e.g., image of meat slice contains 
intramuscular fat). In addition to, a feature extraction mechanism that computes 
informative numeric from the gathered data, and supervised learning schemes that 
perform the recognition job based on the extracted features, as schematically shown in 
figure (2.1). 
 

 

Figure (2.1): Schematic diagram for a pattern recognition system. The features are extracted from the 
training data, followed by selection of the most dominant features. These features build a refernece 

model which is compared (or matched) with the one obtained for a test data to be classified (or 
identified). 

 
A supervised learning algorithm is similar to the “concept learning” in human and 
animal psychology. It analyses the extracted features from the training data and 
produces an inferred function, which is called a classifier (if the output is discrete) or a 
regression function (if the output is continuous). The inferred function should predict 
the correct output value for any valid test data.  
In the following sections, the mathematical models which have been used to design 
the recognition system for each LSE problem are constructed. All training and test data 
are numerically handled by digital signal and/or image processing techniques for data 
filtration, features extraction, features selection, up to the recognition stage.   
 
 

2.1. Extracted temporal and spectral features  
 

Some unconventional features to those usually extracted during signal processing 
analysis, are explained in this section. Typical procedure follows the one given in figure 
(2.2), starting from the signal wave form (𝑥) at discrete time samples (𝑛), and ending 
with few features which are carefully selected to represent the important information of 
this signal (i.e., data mining). Signal samples are regularly spaced by sampling 
time( 𝑇𝑆), which is determined by the sampling rate (i.e., sampling frequency) of the 
signal, 𝐹𝑆 = 1/𝑇𝑆, as expressed in the sinusoidal signal shown in figure (2.3) 



17 
 

 

Figure (2.2): Flowchart for the typical feature extraction procedure. 

 

 

Figure (2.3) Discrete wave form of 
a sinusoidal signal in time domain, 

where samples are equally 
separated by an interval equals to 

the sampling time 𝑇𝑆. 

 
Signal filtering 
The first step is to explore the essential characteristics of the signal by eliminating 
attached parasitic frequencies. The three main filters are low-pass, band-pass, and 
high-pass filters, as described in figure (2.4), are individually implemented in the 
applications of this thesis when applicable.  
  

(a) 
 

(b) (c) 

Figure (2.4):  Typical performance of (a) low-pass, (b) band-pass, and (c) high-pass filters. The cutoff 
frequency 𝑓𝑐 is determined by the bandwidth which is measured at half-power (associated to gain of -3 

dB, or 0.707 relative to peak). 

 
One advantage of the digital signal processing is the possibility to design digital filters 
that are impractical to be made in analogue processing. Therefore, the ideal filters 
described in figure (2.4) are directly implemented to filter the digital signals, as 
schematically shown in figure (2.5). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure (2.5): An example for applying ideal low-pass filter to a digital signal. (a) sinusoidal 
signal: 𝑥(𝑡) = sin(2𝜋 ∗ 0.13 ∗ 𝑡) + sin (2𝜋 ∗ 0.93 ∗ 𝑡). (b) frequency domain representation shows two 

frequencies at 0.13 and 0.93 Hz with 𝐹𝑆 = 2 Hz. (c) ideal low-pass filter permits all frequencies smaller 
than 0.5 Hz. (d) the filtered signal with one frequency at 0.13 Hz. 

 
Temporal Features Extraction 
The unconventional time domain features which have been extracted and implemented 
to the applications of this thesis are: temporal roll-off, temporal slope, and temporal 
spread. Temporal roll-off (𝑛𝑟𝑓) describes the time below which 90% of the energy 

distribution is concentrated, as given in figure (2.6a) and equation (2.1). Temporal slope 
(𝑡𝑠𝑙𝑜𝑝𝑒) represents the decreasing or increasing of the signal amplitudes which is 

computed by linear regression, as described in figure (2.6b) and equation (2.2). And 
temporal spread (𝑡𝑠𝑝) which denotes the variance of the signal amplitudes around its 
mean value, as expressed in figure (2.6c) and equation (2.3). 
 

𝑛𝑟𝑓 : ∑|𝑥(𝑛)|2

𝑛𝑟𝑓

𝑛=1

= 0.9 ∗∑|𝑥(𝑛)|2
𝑁

𝑛=1

 (2.1) 

𝑡𝑠𝑙𝑜𝑝𝑒 = 
𝑁∑ (𝑛 ∗ 𝑥(𝑛)) −𝑁

𝑛=1 ∑ 𝑛𝑁
𝑛=1 ∗ ∑ 𝑥(𝑛)𝑁

𝑛=1

∑ 𝑥(𝑛)𝑁
𝑛=1 ∗ (∑ 𝑛2𝑁

𝑛=1 − (∑ 𝑛𝑁
𝑛=1 )2)

 (2.2) 

𝑡𝑠𝑝 = ∫ (𝑡(𝑛) − 𝑡(𝐶𝑡))
2
∗ 𝑡𝑝𝑚𝑓(𝑛). 𝑑𝑡

𝑡(𝑁)

𝑡(1)

 (2.3) 

 
Where 𝑥(𝑛) is the signal amplitude at sample 𝑛, 𝑛𝑟𝑓 is the sample number for the 

temporal roll-off, 𝑁 is the number of samples, 𝑡𝑝𝑚𝑓(𝑛) is the temporal probability mass 

function =
|𝑥(𝑛)|

∑ |𝑥(𝑛)|𝑁
𝑛=1

, and 𝐶𝑡 is the temporal centroid, given in equation (2.7).  
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(a) 

 
(b) 

 
(c) 

Figure (2.6): Schematic diagrams for the three unconventional time domain features which are 
implemented in this thesis. (a) temporal roll-off, (b) temporal slope, and (c) temporal spread. 

 
Additionally, other conventional and commonly used time domain features are also 
extracted, following their mathematical forms presented in table (2.1). The graphical 
and physical descriptions of all time domain features are given in appendix A. 
 

Table (2.1): List of the extracted conventional temporal features. 

Name Equation 

Zero 
crossing 

rate 

1

2 ∗ 𝑁
∑|𝑠𝑖𝑔𝑛(𝑥(𝑛)) − 𝑠𝑖𝑔𝑛(𝑥(𝑛 − 1))|

𝑁

𝑛=2

,

{

𝑠𝑖𝑔𝑛 = 1     ; 𝑥(𝑛) > 0

𝑠𝑖𝑔𝑛 = 0     ; 𝑥(𝑛) = 0

𝑠𝑖𝑔𝑛 = −1  ; 𝑥(𝑛) < 0

 

(2.4) 

Short time 
energy 

∫(𝑥(𝑛))
2
𝑑𝑛 (2.5) 

Energy root 
mean 

square 
√∑ (𝑥(𝑛))

2𝑁
𝑛=1

𝑁
 (2.6) 

Temporal 
centroid 

𝐶𝑡 =
∑ 𝑛 ∗ (𝑥(𝑛))

2𝑁
𝑛=1

∑ (𝑥(𝑛))
2𝑁

𝑛=1

 (2.7) 

Temporal 
entropy 

−∑(
|𝑥(𝑛)|

∑ |𝑥(𝑛)|𝑁
𝑛=1

)

2

𝑙𝑛 (
|𝑥(𝑛)|

∑ |𝑥(𝑛)|𝑁
𝑛=1

)

2𝑁

𝑛=1

 (2.8) 

Temporal 
flux 

∑(
|𝑥(𝑛)|

𝑚𝑎𝑥(|𝑥(𝑛)|)
|
𝑡

−
|𝑥(𝑛)|

𝑚𝑎𝑥(|𝑥(𝑛)|)
|
𝑡−1

)

2𝑁

𝑛=1

 (2.9) 

Temporal 
crest-factor 

𝑚𝑎𝑥 (|𝑥(𝑛)|)

1
𝑁
∑ |𝑥(𝑛)|𝑁
𝑛=1

 (2.10) 

Temporal 
decrease 

(
1

∑ |𝑥(𝑛)|𝑁
𝑛=2

) ∗∑
|𝑥(𝑛)| − |𝑥(1)|

𝑛 − 1

𝑁

𝑛=2

 (2.11) 

Temporal 
skewness 

𝑚3 = ∫ (𝑡(𝑛) − 𝑡(𝐶𝑡))
3
∗ 𝑡𝑝𝑚𝑓(𝑛). 𝑑𝑡

𝑡(𝑁)

𝑡(1)

 

temporal skew =
𝑚3
𝑡𝑠𝑝3/2

 
(2.12) 
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Temporal 
smoothness 

20 ∗ ∑ |𝑙𝑜𝑔|𝑥(𝑛)| −
𝑙𝑜𝑔|𝑥(𝑛 − 1)| + 𝑙𝑜𝑔|𝑥(𝑛)| + 𝑙𝑜𝑔|𝑥(𝑛 + 1)|

3
|

𝑁−1

𝑛=2

 (2.13) 

 
Windowing and frequency domain representation 
Wave form of a signal in time domain is not always the best representation in most 
signal processing related applications. In many cases, the distinguished information is 
hidden in the frequency spectrum, which shows which frequencies exist in the signal. 
Hence, there are only two ways that are common for information to be represented in 
naturally occurring signals. These are information represented in time domain, and 
information represented in frequency domain [58], and information that cannot be 
readily seen in time domain can be seen in the frequency domain. The signal can be 
transformed to frequency domain by several approaches, but the best known and 
commonly used approach is the Fast Fourier transform (FFT), performed through 
equation (2.14). 
 

𝑋(𝑚) = ∑𝑥(𝑛)𝑒−𝑖2𝜋(𝑛−1)(𝑚−1)/𝑁
𝑁

𝑛=1

       , 𝑚 = 1,2,…𝑀 (2.14) 

 
Where 𝑋(𝑚) is the Fourier transform coefficient at 𝑚th frequency bin, and 𝑀 is the total 
number of frequency bins in power of 2 (e.g., 512, 1024, 2048,…).   
 
The FFT computations assume a signal is periodic [i.e., has integer number of 
complete cycles], and determines its frequency contents, as displayed in figure (2.7b) 
for a periodic sine wave given in figure (2.7a). However, since most of real signals are 
non-periodic, the resulting frequency spectrum by FFT suffers from leakage, as 
exposed in figure (2.7d) for non-periodic sine wave of figure (2.7c). Leakage results in 
the signal energy smearing out over a wide frequency range when it should be in a 
narrow frequency range. The dispersed shape of the FFT makes it more difficult to 
identify the frequency content of the measured signal and thereafter inaccurate 
information extraction. 
 

 

Figure (2.7): Illustration for the spectral leakage occurs when FFT is implemented to compute the 
frequency contents of non-periodic signal. (a) A (1/2𝜋) Hz periodic sine wave, (b) The resulting FFT 
shows one peak in a narrow band around (1/2𝜋) Hz, (c) A (1/2𝜋) Hz non-periodic sine wave, (d) The 

resulting FFT having more energy dispersion. 
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As a solution, before FFT computations a symmetrically shaped window function 𝑤(𝑛) 
is multiplied by the signal forcing it to be periodic. The most common window 
functions are Hamming (equation 2.15), Hanning (equation 2.16), Blackman (equation 
2.17), and Bartlett (equation 2.18). The time domain representations of these window 
functions are clarified in figure (2.8a), in comparison to the rectangular window (i.e., no-
window) function (equation 2.19).  
 

𝑤(𝑛) = 0.54 − 0.46 ∗ 𝑐𝑜𝑠 (
2𝜋𝑛

𝑁
) (2.15) 

𝑤(𝑛) = 0.5 − 0.5 ∗ 𝑐𝑜𝑠 (
2𝜋𝑛

𝑁
) (2.16) 

𝑤(𝑛) = 0.42 − 0.5 ∗ 𝑐𝑜𝑠 (
2𝜋𝑛

𝑁
) + 0.08 ∗ 𝑐𝑜𝑠 (

4𝜋𝑛

𝑁
) (2.17) 

𝑤(𝑛) = {

2𝑛

𝑁
        , 0 ≤ 𝑛 ≤

𝑁

2

2 −
2𝑛

𝑁
  ,
𝑁

2
< 𝑛 ≤ 𝑁  

 (2.18) 

𝑤(𝑛) = 1 (2.19) 
 
 

 

Figure (2.8a): Time domain representation for some of the commonly applied window functions. 

 
Each type of window affects the resultant spectrum in a slightly different way, with its 
own advantage and disadvantage over the others. The frequency domain 
representations of these window functions, as displayed in figure (2.8b), determine 
their performance on improving the spectrum of a signal. The major controlling 
parameters are the main lobe width, and the drop rate between the main and first side 
lobes. The tighter the main lobe width, the better the frequency resolution of the 
resulting FFT, makes it easier to detect the exact frequency of a peak in the spectrum. 
The higher the drop rate between main and first side lobes, the less spectral leakage 
occurs around the dominant frequency. An example for applying the above window 
function to obtain the spectrum of a non-periodic sinusoidal signal is shown in figure 
(2.9). 
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Figure (2.8b): Frequency 
domain representation 

for the window functions 
given in figure (2.7a) 

 
 

 
Figure (2.9): Overcoming the inefficiency in calculating the spectrum by applying window functions for 

non-periodic sinusoidal signal of 4 frequencies. 

 

Spectral features extraction 
By selecting the appropriate window function, in correspondence to the required 
accuracy in the resulting spectrum, equation (2.20) is applied to calculate FFT 
coefficients which form the frequency domain representation of the signal.  
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𝑋(𝑚) = ∑𝑤(𝑛). 𝑥(𝑛). 𝑒−𝑖2𝜋(𝑛−1)(𝑚−1)/𝑁
𝑁

𝑛=1

       , 𝑚 = 1,2, …𝑀 (2.20) 

 
Afterwards, a list of spectral features is extracted from this representation, following an 
approach similar to that for temporal features extraction. Some of the unconventional 
spectral features are extracted suchlike spectral crest factor, spectral increase, ascent 
band, spectral decrease, and descent band. The crest factor measures the 
compactness of the spectrum and calculated by dividing the maximum spectrum over 
the average value, as given in (equation 2.21). The spectral increase defines how sharp 
the spectrum increases from 0.8% to 80% of its maximum value, and the ascent band 
is for the covered frequency range during this increment. The spectral decrease 
represents how sharp the spectrum decays from 80% to 0.8% of its maximum value, 
and the descent band is for the covered frequency range during this decay, as 
displayed in figure (2.10). 
 

spectral crest factor =
max (|𝑋(𝑚)|)

1
𝑀
∑ |𝑋(𝑚)|𝑀
𝑚=1

 (2.21) 

 

 

Figure (2.10): Schematic 
diagram for the spectral 

increase, spectral 
decrease, ascent band, 

and descent band. 

 
In the meantime, a list of conventional spectral features is also extracted following their 
mathematical forms given in table (2.2). Graphical and physical descriptions for all 
spectral features are presented in appendix A. 
 
Table (2.2): List of the extracted conventional spectral features. Where 𝐶𝑠 is the spectral centroid, 𝑝𝑚𝑓 is 
the probability mass function, 𝑚𝑟𝑓 is the frequency bin at spectral roll-off, and 𝑠𝑠𝑝 is the spectral spread. 

Name Equation 

Spectral 
Flux 

∑ (
|𝑋(𝑚)| − |𝑋(𝑚 + 1)|

𝑚𝑎𝑥(|𝑋(𝑚)|)
)

2𝑀−1

𝑚=1

 (2.22) 
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Spectral 
roll-off 

∑|𝑋(𝑚)|

𝑚𝑟𝑓

𝑚=1

= 0.9 ∗ ∑|𝑋(𝑚)|

𝑀

𝑚=1

 (2.23) 

Spectral 
Centroid 

𝐶𝑠 =
∑ 𝑛. |𝑋(𝑚)|𝑀
𝑚=1

∑ |𝑋(𝑚)|𝑀
𝑚=1

 (2.24) 

Spectral 
Root Mean 

Square 
√
∑ (|𝑋(𝑚)|)2𝑀
𝑚=1

𝑀
 (2.25) 

Spectral 
Slope 

𝑀 ∗ ∑ (𝑚 ∗ |𝑋(𝑚)|) −𝑀
𝑚=1 ∑ 𝑚𝑀

𝑚=1 ∗ ∑ |𝑋(𝑚)|𝑀
𝑚=1

∑ |𝑋(𝑚)|𝑀
𝑚=1 ∗ (∑ 𝑚2𝑀

𝑚=1 − (∑ 𝑚𝑀
𝑚=1 )2)

 (2.26) 

Spectral 
Energy 

∑|𝑋(𝑚)|2
𝑀

𝑚=1

 (2.27) 

Spectral 
Smoothness 

20 ∗ ∑ |𝑙𝑜𝑔|𝑋(𝑚)|

𝑀−1

𝑚=2

−
𝑙𝑜𝑔|𝑋(𝑚 − 1)| + 𝑙𝑜𝑔|𝑋(𝑚)| + 𝑙𝑜𝑔|𝑋(𝑚 + 1)|

3
| 

(2.28) 

Spectral 
Skewness 

∑ (𝑚 − 𝐶𝑠)
3 ∗ 𝑝𝑚𝑓(𝑚)𝑀

𝑚=1

𝑠𝑠𝑝3/2
   {

< 0       more energy on the right
= 0      symmetric distribution
> 0       more energy on the left

 (2.29) 

Spectral 
Entropy 

−∑ 𝑝𝑚𝑓(𝑚) ∗ 𝑙𝑛(𝑝𝑚𝑓(𝑚))

𝑀

𝑚=1

 (2.30) 

Spectral 
Spread 

𝑠𝑠𝑝 = ∑(𝑚 − 𝐶𝑠)
2 ∗ 𝑝𝑚𝑓(𝑚)

𝑀

𝑚=1

 , 𝑝𝑚𝑓(𝑚) =
|𝑋(𝑚)|

∑ |𝑋(𝑚)|𝑀
𝑚=1

 (2.31) 

Spectral 
Kurtosis 

∑ (𝑚 − 𝐶𝑠)
4 ∗ 𝑝𝑚𝑓(𝑚)𝑀

𝑚=1

𝑠𝑠𝑝2
   {
< 3     flatter distribution
= 3      normal distribution
> 3      peaker distribution

 (2.32) 

 
It is worth mentioning that signals do not maintain their characteristics constant over 
time, which means they are non-stationary and their features vary with time. Therefore, 
before extracting these features, the signal is divided into short time segments with 
10% overlapping, and each segment is considered “quasi-stationary”. The feature of 
each segment is then being extracted, and this process is called short term feature 
extraction, as shown in figure (2.11). Segment length should be large enough (e.g. > 50 
samples) for the feature calculation to have enough data, and short enough for the 
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assumption of stationary signal still valid. Afterwards, the extracted feature values can 
be written in a vector form with a size equal to the number of segments. The short term 
features extraction is followed by a midterm extraction process, at which the feature 
vector is implemented to calculate one of its statistics (typically its mean value), and 
this value is used to represent the feature over the whole signal. 
 

 

𝑀 = (
𝑁 − [𝐿 − 𝑃]

𝐿
) + 1 

𝐹1 = 𝑚𝑒𝑎𝑛[𝑓1𝑖] ∶ 𝑖 = 1,2, … ,𝑀 

𝐹2 = 𝑚𝑒𝑎𝑛[𝑓2𝑖] ∶ 𝑖 = 1,2, … ,𝑀 

⋮ 

𝐹𝐾 = 𝑚𝑒𝑎𝑛[𝑓𝐾𝑖] ∶ 𝑖 = 1,2, … ,𝑀 

Figure (2.11): Short term feature extraction algorithm for a signal.  Where 𝐿 is the segment length (i.e., 
number of its included samples), 𝑃 is the number of overlapped samples between two following 

segments, 𝑁 is the number of signal samples, and 𝑀 is the number of signal segments. 𝑓1𝑖 is the value of 

feature 𝐹1 on segment 𝑖 , and 𝐾 is the total number of the extracted features. 

 
Feature selection 
Better pattern recognition results, whether in regression or classification, are obtained 
using a limited number of relevant and non-correlated features. These features are 
carefully selected from the large extracted features list according to their relevancy and 
performance in the recognition task. One of the common approaches for feature 
selection is Sequential Forward Selection [59], where one feature is added to the 
selected ones at each step, if it maximizes the recognition performance. Meanwhile, 
Sequential Backward Selection method starts with all features list and removes those 
reducing the performance [60]. The drawbacks in these algorithms are their high 
complexity and time consumption. Alternatively, Fisher Discriminant Ratio and 
Multimodal Overlap Measure algorithms [61], give rank to each feature by measuring 
the overlap of its probability density function between different classes. However, no 
integration for the correlation between the selected features is considered. 
In this thesis, two additional simple feature selection approaches are proposed, which 
are Jacobian based feature selection approach (for regression problems) and 
steadiness based feature selection approach (for classification problems). These 
approaches are implemented in the life science applications, given in chapter 3, if 
applicable, otherwise; sequential backward selection or multimodal overlap measure is 
used. 
The Jacobian based feature selection follows the algorithm described in figure (2.12). 
For all training data, where the objective variable (𝑣) is known, features (𝑓𝑖)𝑖=1:𝑁 are 

extracted and their first-order derivatives (|
𝜕𝑓𝑖

𝜕𝑣
|) are numerically calculated. This 

derivative expresses the slope of change of a feature with the change of the objective 
variable. Therefore, low slopes (angles < 20˚) indicate small change in 𝑓𝑖 with respect to 
changes in 𝑣, while high slopes (angles > 70˚) indicate small change in 𝑣 with respect to 
changes in 𝑓𝑖. Intermediate slopes (20˚ < angles < 70˚) handle features with significant 
changes with respect to changes in 𝑣, making them the best relevant features for the 
regression task. 
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Figure (2.12): The procedure of Jacobian based feature selection approach. Where 𝑓𝑖 is the extracted 
feature for 𝑚 training data, 𝑁 is the total number of features, and 𝑣 is the given objective variable for 

each training data. 

 
On the other hand, the steadiness based feature selection follows the algorithm given 
in figure (2.13). The objective variable for classification problems is a predefined class 
(e.g., {𝐶1, 𝐶2}). If the feature values, assigned to one class, have small standard 
deviation (𝜎) and their average is far from that of the other class (with difference 𝑑), this 
feature is relevant. All features are ranked according to their (𝜎, 𝑑) values, followed by a 
selection of features with higher ranks. 
 

 
Figure (2.13): The procedure of steadiness based feature selection approach. Where 𝑓𝑖 is the extracted 
feature for 𝑚 training data, 𝑁 is the total number of features, {𝐶1, 𝐶2} are the objective classes, 𝜎 is the 
standard deviation of feature values in one class, and 𝑑 is the difference between the averages of the 

two classes values. 

 
Before applying any of the feature selection approaches, the correlation coefficient (𝑟) 
between each pair of features is calculated by equation (2.33). If 𝑟 ≥ 0.85, one of the 
two features is considered redundant and removed from the features list. 
 

𝑟 =
|

| ∑𝑓𝑖𝑓𝑗 −
∑𝑓𝑖 ∑𝑓𝑗
𝑚

√[(∑𝑓𝑖
2 −

(∑𝑓𝑖)
2

𝑚 )(∑𝑓𝑗
2 −

(∑𝑓𝑗)
2

𝑚 )]
|

|
  , 𝑖 ≠ 𝑗 (2.33) 

 
Where 𝑓𝑖 and 𝑓𝑗 are two different features from the extracted features list, and the 

summation is performed on the extracted feature values over 𝑚 training data.  
 
 
2.2. Novel edge detection approach  
 

To recognize objects in an image, their boundaries (i.e., edges) should be well detected 
and clarified. Afterwards, two dimensional features are extracted from the areas 
enclosed by these boundaries, and used to identify each specified object (e.g., sound 
pattern in a spectrogram image, amount of fat in meat slice image). A novel edge 
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detection approach has been developed, which generalizes the process by avoiding 
the usage of pre-processing “size dependent” filters, and improves the process by 
working in sub-pixels accuracy, following the procedure which is presented in figure 
(2.14).  
 

 

Figure (2.14): Edge detection and 2D features extraction procedure. The intensities of a grey level image 
𝐼(𝑥, 𝑦)are processed to produce its features images. Subsequently, the objects edges are detected in 

these images. Noisy and weak edges are removed by the Hysteresis thresholding. While remaining 
edges are suppressed by a Non-Maximum Suppression algorithm and connected through a flux 

equilibrium check. The dominant 2D features are then extracted from the edges image and implemented 
to identify the enclosed patterns. 

 
Features images 
The objective of developing the features images is to have smoothed version(s) of the 
original image, avoiding the application of prior smoothing filters and their degrading 
influences on the contained objects. The algorithm of obtaining features images starts 
by sliding a 𝑛 ∗ 𝑛 mask over columns and then rows of the original image, with a step 
of one pixel, as described in figure (2.15a). At each mask placement, the intensities of 
the covered pixels are used to calculate the mask centroid (equation 2.33) and certain 
feature(s) (e.g., energy (equation (2.34)) or skewness (equation (2.35))), as clarified in 
figure (2.15b). The feature image 𝐹(𝑥, 𝑦) is formed by the calculated feature values 
along all mask placements, as described in figure (2.15c). 
 

mask centroid =∑𝑖 ∗ 𝐼𝑖

𝑛2

𝑖=1

\∑𝐼𝑖

𝑛∗𝑛

𝑖=1

 (2.33) 

Energy =
∑ 𝐼𝑖

2𝑛
𝑖=1

𝑛 ∗ 𝑛
 (2.34) 

Skewness =
∑ 𝐼𝑖 ∗ (𝑖 − mask centroid)

3𝑛2

𝑖=1

√(∑ 𝐼𝑖 ∗ (𝑖 − mask centroid)
2𝑛2

𝑖=1 )
3
 

(2.35) 

 
Where 𝐼𝑖 is the grey level intensity value at pixel 𝑖, and the back slash means that only 
quotient of the division is considered. The mask centroid is returned to its 
corresponding two coordinates (𝑥,𝑦) with respect to the image global axes. 
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(c) 

Figure (2.15): Description for the procedure of establishing the feature image. (a) an original image at 
which a mask of size (𝑛 ∗ 𝑛) is sliding with a step of one pixel. (b) the feature image formed by feature 
value (𝑓) and centroid (𝑥, 𝑦) of each mask placement. (c) example for an original image (left) and two 

of its features images, namely energy image and skewness (equation (2.35)) image; respectively. 

 
Edge detection 
Edges are detected in areas where the intensity fluctuates sharply, and the more rapid 
this value changes the stronger the edge is. Therefore, edges can be found either in 
the gradient image (i.e., first derivative of the feature image) at pixels have local 
maxima or local minima, or in the second derivative image at pixels of zero crossings, 
as sketched in Figure (2.16) for noiseless two edges image. 
 

 
  

 

Figure (2.16): (a) A noiseless two edges image. (b) The intensity distribution along the tested direction. (c) 
The edges are detected in the gradient distribution as the local maxima and local minima points. (d) The 

edges are detected in the 2nd derivative distribution as the points at which the curve changes its sign 

 
Although edge detection through the 2nd derivative image attains well localized edges, 
it is highly influenced by image noise and the probability of missing and wrong edges is 
high. Therefore, in this thesis the gradient based edge detection is considered.  
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The gradient (𝐺) of a feature image 𝐹(𝑥, 𝑦) at location (𝑥, 𝑦) is a vector of two 
components, 𝐺𝑥 and 𝐺𝑦, which measures how the feature value changes with respect 

to 𝑥 and 𝑦 directions, as given in equations (2.36, and 2.37); respectively. 
 

𝐺𝑥 =
𝜕𝐹

𝜕𝑥
 (2.36) 

𝐺𝑦 =
𝜕𝐹

𝜕𝑦
 (2.37) 

  
Calculating the gradient of feature image is similar to convolving it with two gradient 
operators, one in 𝑥 direction and the other in 𝑦 direction. The commonly used gradient 
operators are those presented by Roberts, Prewitt and Sobel edge detectors, as 
described in figure (2.17).  
 

 
(a)  

(b) 
 

(c) 

Figure (2.17): Gradient operators of (a) Roberts, (b) Prewitt, and (c) Sobel edge detectors. Δ1 is the 
gradient operator in 𝑥 direction, while Δ2 is in 𝑦 direction. 

 
The 3*3 Sobel operators are selected because their basis finite difference scheme has 
a second degree order of error, Ơ(𝛿𝑥2) and Ơ(𝛿𝑦2), in the calculation of gradient in 𝑥 
and 𝑦 directions; respectively. Where 𝛿 is the distance between two pixels in the 
indicated direction. Therefore, at any pixel(𝑖, 𝑗), the values of 𝐺𝑥 and 𝐺𝑦 are calculated 

by convolving the 3*3 surrounded mask with ∆1 and ∆2 of the Sobel operators; 
respectively, as shown in figure (2.18). 
 

 

Figure (2.18): The convolution operation between Sobel operators and 3*3 mask to calculate the gradient 
components at the middle pixel. 

 
The edges image is thereafter formed by obtaining the magnitude (𝐺𝑚) of the gradient 
components at each pixel, as explained in equation (2.38). This magnitude represents 
the edge strength at the associated pixel. The edge direction (𝜃) is perpendicular to the 
orientation of the gradient components, as given by equation (2.39) and graphically 
shown in figure (2.19). 
 

𝐺𝑚 = √𝐺𝑥
2 + 𝐺𝑦

2 (2.38) 

𝜃 = 𝑡𝑎𝑛−1 (
𝐺𝑦
𝐺𝑥
) +

𝜋

2
 (2.39) 
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Figure (2.19): Diagram for the relation 
between (edge strength and direction) 

with (gradient magnitude and 
orientation). 

 
Hysteresis thresholding 
At this stage, the edges image contains weak edges result from the weak local peaks 
in the gradient image. Therefore, Hysteresis thresholding [62] defines two thresholds, 
𝑇ℎ𝑖𝑔ℎ and 𝑇𝑙𝑜𝑤. These thresholds usually equal 90% and 10% of 𝑚𝑎𝑥(𝐺𝑚); respectively. 

Pixels with  𝐺𝑚 > 𝑇ℎ𝑖𝑔ℎ are called strong edges and preserved, while those with 𝐺𝑚 ≤

𝑇𝑙𝑜𝑤 are called weak edges and discarded. All other pixels are called candidate pixels. 
If a pixel is candidate, the chain of its connected pixels is followed in both directions as 
long as 𝐺𝑚 > 𝑇𝑙𝑜𝑤. The candidate pixel is preserved as edge only if the starting pixel on 
its chain is connected to a strong edge. 
 
Non-maximum suppression with sub-pixel accuracy 
The non-maximum suppression method is applied to remove unnecessary edges by 
suppressing the non-maximum magnitude in each cross section of the edge direction 
in their local neighbourhood. In depth, the edge strength at a pixel is checked with its 
two neighbours in a direction normal to the edge direction. If this strength is greater 
than both, its magnitude value set to one, otherwise it is set to zero (i.e., suppressed), 
as described in figure (2.20).  
 

  

Figure (2.20): Explanation for how the non-maximum suppression algorithm is performed to 
thin out edges image (left) to “one-pixel” width edges image (right) 

 
As a result, the edges image is transformed to a binary image (i.e., {0,1}), and all thick 
edges are thinned out to a “one pixel” width, as shown in the edges image of figure 
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(2.21). Thinning the edges to one pixel width increases the accuracy in edges 
localization and boundaries recognition.  
 

 

Figure (2.21): The final binary edges image 
for the original grey level image in figure 

(2.15c), calculated on its energy image (as 
feature image) with mask size = 5*5. 

 
In most cases, edges and their perpendicular axes (i.e., gradients orientations) are not 
directed to the center of the neighboured pixel, which means they usually have values 
not equal to {0,∓45, ∓90, ∓135,180}, as schematically described by example given in 
figure (2.22). Therefore, an interpolation is made to estimate the sub-pixels strengths 
(a1 and a2) before applying the non-maximum suppression algorithm. A quadratic 
interpolation, given by equation (2.40), using the strengths of the three neighboured 
pixels gives sufficient estimation of a1 and/or a2. 
 

𝐺𝑚 = 𝑐1𝜃̅
2 + 𝑐2𝜃̅ + 𝑐3 (2.40) 

 

Where  𝜃̅ = 𝜃 −
𝜋

2
 is the gradient orientation, and the coefficients 𝑐1, 𝑐2 and 𝑐3 are 

calculated by strengths and directions of the neighboured pixels. 
 

 

Figure (2.22): Representation for how the gradient 
orientation does not pass by the centers of the pixels, 

and passes by an intermediate pixel which can be 
calculated by quadratic interpolation among the 

neighbored pixels 

 
Flux equilibrium check 
The edges image may still suffer from discontinuities, in the form of zero pixel(s) 
intersects the edges along their directions. Restoring the missing edges data is very 
important in many edge detection applications, and is magnified in life science 
applications where the boundaries are huddled and may be easily overlap or 
interconnected openings take place by imaging. The flux equilibrium condition states 
that the derivative of edge strength along its direction should be zero everywhere, as 
given in equation (2.41). Found discontinuities are filled if they are located between two 
edges, and in their direction, as explained in figure (2.23).  
 

𝑑𝐸

𝑑𝜃
= 0 (2.41) 
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Figure (2.23): A disconnected edge and how it is 
filled using the flux equilibrium condition. 

 
During this work, several features images are developed during this research and 
investigated with the aim of having the most accurate final edges image. For example, 
the crest factor image (equation (2.42)) is efficiently used to obtain the edges of sound 
patterns in spectrogram images, while a combination between energy and skewness 
images are accomplished to obtain accurate edges image for biological tissue images.  
 

Crest factor =
max (𝐼)

1
𝑛2
∑ 𝐼𝑖
𝑛2
𝑖=1

  (2.42) 

 
Efficiency of the proposed method  
The conventional approach in gradient based edge detectors, such like those of 
Roberts, Prewitt, and Sobel [63], is to choose a threshold value at which the pixels with 
gradient magnitudes greater than or equal to this threshold are considered edges; 
otherwise, they are not edges. Since they do not smooth the image before gradient 
calculation, they are only suitable for well contrasted noiseless images. Meanwhile, 
Canny edge detection method considers the edges are step edges corrupted by 
additive Gaussian noise. It starts by applying Gauss filtration (equation 2.43) to the 
original image, before finding the gradient image. The edges strengths and directions 
are then calculated by equations (2.38) and (2.39); respectively. The hysteresis 
thresholding algorithm is used to name edges and non-edges and the multi pixel wide 
edges are thinned to single pixel width using the non-maximum suppression algorithm 
and  
 

𝐺𝑎𝑢𝑠𝑠(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2  (2.43) 

 
One drawback in Canny edge detector is the sensitivity of the output edges image to 
the size (𝜎) of the implemented Gaussian filter. The results of applying Canny detector 
on two different natures images with two values of 𝜎 are presented in figure (2.24), 
implying the absence of a general optimum value for the filter size. 
 

(a) (b) (c) 
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(d) 

 
(e) 

 
(f) 

Figure (2.24): Canny detector outputs for two grey scale images indexed by (a) and (d). (b) and (e) are the 
edges images when σ =1, while (c) and (f) the edges images when σ = 2. 

 
The final edges image obtained by the developed edge detection algorithm is 
compared with those of the conventional gradient based detectors for a finger print 
image in figure (2.25). Results indicate the efficiency of the developed algorithm to 
produce more accurate and detailed edges image. 
 

         
(a)                          (b)                         (c)                       (d)                       (e)                        (f) 

Figure (2.25): Revisit to finger print image of figure (1.16) updated by the results of applying the 
developed edge detection approach. (a) original finger print image, (b) edges image by 3*3 Prewitt edge 

detector, (c) edges image by 2*2 Roberts detector, (d) edges image by 3*3 Sobel detector, (e) edges 
image by Canny detector with filter size of 1.5, and (f) edges image by the developed method 

calculated on a combination of energy and skewness images (as feature images) [mask size = 5*5,  flux 
check matrix size = 3*3, combination coefficient = 0.75] 

 
2D features extraction 
The final edges image identifies the boundaries of the involved objects in the original 
image. For simple differentiation, image pixels (𝑥, 𝑦) enclosed by a boundary (𝐵) are 
given a general shape function 𝑓(𝑥, 𝑦) value of 1, while other pixels are assigned with 
value of 0, as described in figure (2.26).    
 

 

Figure (2.26): An edges image of one 
object enclosed by a boundary (𝐵). The 

general shape function 𝑓(𝑥, 𝑦) is 
defined to be 1 for (𝑥, 𝑦) ∈ 𝐵 and 0 

otherwise. 

 
Two dimensional features can be extracted from this edges image and implemented in 
pattern recognition tasks [63, 64, 65]. Examples of these tasks are calculating the area 
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enclosed by objects to get the fat contents in meat slice image, or to identify the 
existence of known sound pattern in a spectrogram image. Some of the widely 
implemented image features are presented in table (2.3). 
 
Table (2.3): some of the commonly implemented 2D features to define objects in edges image. Where 𝑁 
is the number of image pixels enclosed in the object, 𝛼 is the angle between the axis of least inertia and 
the 𝑥 axis. 𝑎 and 𝑏 are the length and width of the minimum bounding rectangle contains the object. The 

ellipse variance introduces an ellipse that has an equal covariance matrix 𝐶𝑒𝑙𝑙𝑖𝑝𝑠𝑒 as the object. 

Feature Equation 

Center of gravity (𝑔𝑥, 𝑔𝑦) 

 

𝑔𝑥 =
1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=1     ,     𝑔𝑦 =

1

𝑁
∑ 𝑦𝑖
𝑁
𝑖=1  

(𝑥𝑖 , 𝑦𝑖) ∈ {(𝑥𝑖 , 𝑦𝑖)|𝑓(𝑥𝑖 , 𝑦𝑖) = 1} 

Contour Area (𝐴) 

 

𝐴 =
1

2
|∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑁−1

𝑖=1

| 

Axis of least inertia 

 

𝑝 = ∑ 𝑥𝑖
2𝑁

𝑖=1 , 𝑞 = 2∑ 𝑥𝑖𝑦𝑖
𝑁
𝑖=1 , 𝑟 = ∑ 𝑦𝑖

2𝑁
𝑖=1  

𝛼 =
1

2
tan−1 (

𝑞

𝑝 − 𝑟
) 

Eccentricity (𝑒) 

 

𝑒 =
𝑎

𝑏
 

Ellipse variance (𝐸𝑣𝑎) 

 

𝑉𝑖 = (
𝑥𝑖 − 𝑔𝑥
𝑦𝑖 − 𝑔𝑦

), 𝑑𝑖 = √𝑉𝑖
𝑇𝐶𝑒𝑙𝑙𝑖𝑝𝑠𝑒

−1 𝑉𝑖, 𝜇 =
1

𝑁
∑ 𝑑𝑖
𝑁
𝑖=1 , 

𝜏 = √
1

𝑁
∑ (𝑑𝑖 − 𝜇)

2𝑁
𝑖=1  

𝐸𝑣𝑎 =
𝜏

𝜇
 

 
Another common 2D feature is the chain code, which describes an object by a 
sequence of line segments with a given orientation [66]. The movement along the 
object boundary is encoded by 8 connectivity scheme {𝑖| 𝑖 = 0,1,2,… ,7}, as shown in 
the example given in figure (2.27).  
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Chain code: 6757012334 

Figure (2.27): Example for chain code 
representation of an object boundary in 8 

connectivity scheme. 

   
 
2.3. Enriched spectrogram enhancement approach 
 
From the temporal and spectral features, signal structure and performance is 
completely represented in time and frequency domains; separately. Thus, the need for 
a combined time-frequency representation stemmed from the inadequacy of either 
time domain or frequency domain analysis to fully describe the nature of signals. In this 
section, the two common time-frequency representations; spectrogram and 
scalogram, are briefly discussed and compared with respect to their time and 
frequency generated resolutions. Afterwards, the spectrogram is reasonably selected 
and its dynamic range is limited to only explore the involved high energetic sound 
patterns. Spectrogram, as a 2D image, is then processed by the developed edge 
detection approach of section (2.2), to accurately define the boundaries of the 
enclosed sound patterns and eliminate the attached noise, following the procedure 
given in figure (2.28).  
 

 

Figure (2.28): Procedure for the developed spectrogram enhancement approach. The spectrogram is 
limited to 40 dB range which perceives the human speech range. The developed edge detection 

approach of section (2.2) is applied to the crest factor image, as a feature image. The produced edges 
image defines sound patterns to be reconstructed and attached noise to be eliminated. 

 

Combined time-frequency representation of sound (2D representation)  
A time-frequency distribution of a signal provides information about how the spectral 
content of the signal evolves with time, thus providing an ideal tool to dissect, analyse 



36 
 

and interpret non-stationary signals. This is commonly performed by applying FFT to 
short and overlapped segments of the signal in an algorithm called Short Time Fourier 
Transform (STFT), as described in figure (2.29).  
 

 

Figure (2.29): Spectrogram time-
frequency representation obtained 

by dividing the signal into 
overlapped windowed segments and 
calculates the FFT for each segment 
by (equation (2.20)). FFT coefficients 
form one curve in the spectrogram 
which is located at the center of the 

processed segment. 

 

The obtained representation is called spectrogram, and controlled by the selected 
window function and overlapping percentage between segments. The fundamental 
weakness of spectrogram involved in its subject to the Heisenberg Uncertainty 
Principle [67], given in equation (2.44). This principle implies that decreasing the 
segment length in time (increasing time resolution) must result in an increase in the 
deviation in frequency (decreasing frequency resolution) and vice versa.  
 

∆𝑓. ∆𝑡 ≥
1

4𝜋
 (2.44) 

 
The other commonly used method to obtain the time-frequency representation is 
Continuous Wavelet Transform (CWT). It compares the signal with dilated and time 
shifted versions of a mother wavelet, as given in equation (2.45) and described in figure 
(2.30). 
 

𝐶(𝑎, 𝑏) = ∑𝑥(𝑛)
1

√|𝑎|
∅ (
𝑛 − 𝑏

𝑎
)

𝑁

𝑛=1

 (2.45) 

 

where ∅(
𝑛−𝑏

𝑎
) is the selected mother wavelet, 𝑎 is the scale (=

𝑓𝑐

2𝜋𝑓
), 𝑏 is the space 

(i.e., shift in time), 𝑓𝑐 is the wavelet center frequency, and 𝐶 is the wavelet coefficient. 
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Figure (2.30): Scalogram time-frequency representation obtained by finding the correlation coefficient 

between the signal and a Morlet mother wavelet [∅(𝑡) = cos(5𝑡) ∗ 𝑒−𝑡
2/2] at specific space and scale 

values. The wavelet is shifted until the whole signal is covered, then it is stretched and the process is 
repeated. 

 
The produced time-frequency representation is called scalogram, and controlled by the 
selected mother wavelet, the step in space, and the step in scale [68]. From figure 
(2.30), at higher frequency (low scale), the resolution in time is good but in frequency is 
low, because the wavelet is well localized in time but poorly localized in frequency. 
While at low frequency (high scale), the frequency resolution is good and the time 
resolution is poor.  
A schematic comparison between spectrogram and scalogram with respect to their 
time and frequency resolutions is presented in figure (2.31). Consequently, 
spectrogram is selected as a reasonable time-frequency representation due to its 
constant time and frequency resolutions over the whole frequency range and time 
length of the signal. 
 

 
Figure (2.31): Schematic diagram comparing the time and frequency resolutions achieved in 
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spectrogram and scalogram. (a) a signal constituted by two sinusoids of two frequencies 0.5 and 1.3 Hz, 
sampled at a rate of 4 Hz. (b) the exact (analytical) power spectrum distribution. (c) contour plot of the 

spectrogram representation, and (d) its corresponding power spectrum distribution [Blackman window, 
segment length = 12 s, 50% overlapping]. (e) contour plot of the scalogram representation, and (f) its 
corresponding power spectrum distribution [Morlet wavelet, 300 scales with 0.05 scale spacing, wave 

number = 10].   

 

In general, sound patterns of the spectrogram appear immersing in attached noise, as 
described in figure (2.32). These noise are not only the base noise attached to the time 
domain signal, but also those generated during Fourier transformation. Therefore, 
filtering the signal in time domain will not ensure clean spectrogram represntation. 
 

 

Figure (2.32): Spectrogram of several streams displaying the sound patterns are immersed in attached 
noise. (a) spectrogram of Sayornis phoebe bird, (b) spectrogram of Phylloscopus inornatus bird, and (c) 

spectrogram of Thyromanes bewickii bird. 

 
Limiting the dynamic range 
Although whisper cannot be heard in loud surroundings, spectrogram will contain all 
details about whisper as well as loud sound. The power spectrum value (𝑃) is obtained 
from the relation (𝑃 = 20 𝑙𝑜𝑔 |𝑋|). Since whisper has low power values, it can be 
removed by limiting the dynamic range of the spectrogram to cover only high power 
values. Most life science sound sources are expanded or slowed to the human speech 
range, which is normally perceived over 40 dB dynamic range [69]. Therefore, all points 
with power values outside the range [𝑃𝑚𝑎𝑥 − 40: 𝑃𝑚𝑎𝑥] are removed, as addressed in 
figure (2.33) for the spectrogram of Rhinolophus hipposideros bat. The procedure 
starts by subtracting (𝑃𝑚𝑎𝑥 − 40) from all spectrogram values, followed by setting any 
resultant negative power values to zero. Afterwards, the value of (𝑃𝑚𝑎𝑥 − 40) is re-
added. 
 

(a) 
 

(b) 
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(c) 

Figure (2.33): (a) The spectrogram of Rhinolophus hipposideros sound stream with expansion factor of 
13 [segment length = 1% of the total signal length, 90% overlapping, and Bartlett window function]. (b) 

The resultant spectrogram after its power values are limited to 40 dB dynamic range, following the 
algorithm given in (c). 

    
Edge detection of the sound patterns 
The crest factor image is extracted as a feature image for the limited dynamic range 
spectrogram following equation (2.42), as shown in figure (2.34). 
 

 

Figure (2.34): The crest factor image calculated 
by equation (2.42) on 5*5 mask slides over the 
limited dynamic range spectrogram of figure 

(2.33b) with step of one pixel. 

 
The developed edge detection approach in section (2.2) is applied to accurately define 
boundaries of the sound patterns in the crest factor image, producing the edges image 
displayed in figure (2.35), which separates the patterns from their surrounding noise. 
However, the edges do not provide information about where exactly are the inner of 
the patterns and where are their surroundings.  
 

 

Figure (2.35): The edges image of the limited 
dynamic range spectrogram for Rhinolophus 

hipposideros, by the developed edge 
detection method of section (2.2), applied to 

the crest factor image (as feature image) [mask 
size = 5*5, flux check matrix size = 3*3]. 
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Reconstructing the spectrogram 
To define the patterns and restore their power values and define the surroundings 
noise and eliminate their power values, a classification algorithm was set and applied 
for each row and afterwards each column of the edges image. This algorithm states 
that if pixels among two adjacent edges in one row (column) originally have average 
power value higher than or equal to the original average power values at these two 
edges, these pixels belong to a pattern and their power values are restored from the 
original spectrogram. Otherwise, these pixels belong to the surrounding noise and their 
power values are eliminated, as presented below and explained in figure (2.36) 
 

 

 

Figure (2.36): Descriptive edges image for 
the classification algorithm which defines 

sound patterns from the surrounding noise. 
𝑖 is a counter on the image rows, while 𝑗 is 

a counter on the image columns.  

 
As a result, the enhanced spectrogram is generated, as shown in figure (2.37).  
 

 

Figure (2.37): The enhanced 
spectrogram by the proposed 
method revealing the sound 
patterns and eliminating their 

surrounding noise. 

   
Meanwhile, figure (2.38f) is the enhanced spectrogram of Sitta Canadensis bird by the 
proposed method, in comparison to other enhancement approaches which are 
presented in figure (1.18) and repeated here as figure (2.38b to 2.38e). 
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Figure (2.38):  Revisit to the spectrogram enhancement of Sitta Canadensis bird call of figure (1.18) 

updated by the results of applying the developed approach. (a) One of Sitta Canadensis bird calls at 
SNR = 20 dB, and its enhanced spectrogram by (b) band pass, (c) multi-band spectral subtraction, (d) 

Wiener filter, (e) wavelet packet decomposition, and (f) the proposed method. 

 
Since the enhancement process considered the spectrogram as an image and applied 
an accurate edge detection approach, the resultant spectrogram preserves the sound 
patterns into their almost original temporal and spectral locations. This is very 
important issue for any further pattern recognition assignment based on this enhanced 
spectrogram.    
 
 
2.4. Improved speed of sound calculation with phase shift correction  
 
Speed of sound (𝑈𝑆𝑉) is the main ultrasound signal parameter, which is used to 
monitor variations in food samples in noncontact and non-destructive testing. When 
signal is excited from an ultrasound transducer, its main pulse propagates in the 
sample up to the other end, at which the signal is reflected once more towards the 
transducer forming its first echo. The process is repeated until the signal is fully 
damped into the sample, after several echoes are being sensed by the transducer as 
clarified in figure (2.39). 
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Figure (2.39): An example for ideal ultrasound signal propagation where the transducer sends a main 

pulse into the sample, and receives its reflected echoes until the signal is fully damped 

 
Time of flight (𝑇𝑂𝐹) is defined as the interval between two following echoes, and its 
corresponding 𝑈𝑆𝑉 is double of path length, 𝑑, taken by the signal, divided by this 
𝑇𝑂𝐹, as explained in equation (2.46). 
 

𝑈𝑆𝑉 =
2 ∗ 𝑑

𝑇𝑂𝐹
 (2.46) 

 
For ideal ultrasound signals, as the one given in figure (2.39), echoes are clearly 
separated and there is no phase shift among them. Whereas estimating an accurate 
value for 𝑇𝑂𝐹 (and 𝑈𝑆𝑉) in real signal is not an easy task, due to the difficulties in 
determining an exact start of the echoes, as shown in figure (2.40).  
 

  

Figure (2.40) ultrasound 
signal propagation in 

demineralized water at 10 ˚C. 
Only received echoes are 

sensed with the exclusion of 
the main pulse part. 

 
Signal amplitudes, 𝑥1 and 𝑥2 , at the starting times of first and second echoes, 𝑡1 
and 𝑡2, can be mathematically represented by equations (2.47 and 2.48); respectively 
[70].  
 

𝑥1(𝑡1) = 𝐴𝑟1(𝑡1)
𝑚𝑒−

𝑡1
𝑢 cos(2𝜋𝑓𝑑𝑡1 + 𝜑1) (2.47) 

𝑥2(𝑡2) = 𝐴𝑟2(𝑡2)
𝑚𝑒−

𝑡2
𝑢 cos(2𝜋𝑓𝑑𝑡2 + 𝜑2) (2.48) 

 
Where 𝐴𝑟,𝑓𝑑, and 𝜑 are the echo amplitude, dominant frequency and phase shift; 
respectively, while 𝑚 models the initial finite slope of the echo and 𝑢 determines the 
final slope. Both 𝑚 and 𝑢 are parameters that depend on the type of the ultrasound 
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transducer. Applying some mathematical operations to equation (2.48), it can be 
rewritten as: 
 

𝑥2(𝑡2) = 𝐴𝑟2(𝑡2)
𝑚𝑒−

𝑡2
𝑢 cos(2𝜋𝑓𝑑𝑡2 + 𝜑2−𝜑1+𝜑1) 

 

𝑥2(𝑡2) = 𝐴𝑟2(𝑡2)
𝑚𝑒−

𝑡2
𝑢 cos (2𝜋𝑓𝑑 (𝑡2 + [

𝜑2−𝜑1
2𝜋𝑓𝑑

])+𝜑1) (2.49) 

 
Thus, 𝑇𝑂𝐹 between the first and second echoes is calculated by subtracting 
arguments of equations (2.49) and equation (2.47), as explained in equation (2.50). 
 

𝑇𝑂𝐹 = (𝑡2 + [
𝜑2−𝜑1
2𝜋𝑓𝑑

]) − 𝑡1 = 𝑡2 − 𝑡1 + [
𝜑2−𝜑1
2𝜋𝑓𝑑

] (2.50) 

 

The third term in equation (2.50) is the phase correction term, which is eliminated for 
ideal signal case, because 𝜑2 = 𝜑1. In this thesis, a method is proposed to accurately 
determine the values for 𝑡1,  𝑡2,  𝜑1, and 𝜑2 based on spectral analysis. The spectrogram 
shown in figure (2.41a) is obtained for the ultrasound signal of figure (2.40), after being 
divided into overlapped segments with high time resolution and multiplied by suitable 
window function ensures less spectral leakage (e.g., Hanning window). Afterwards, the 
spectrogram information at the dominant frequency is separated. This information is 
basically the FFT coefficients (𝑋’s) at this dominant frequency, and can be parted into 
power spectrum (𝑃) and phase shift (𝜑) distributions, as shown in figures (2.41b and 
2.41c), and explained in equations (2.51 and 2.52); respectively.  
 

𝑃 =  |𝑋| = √𝑟𝑒𝑎𝑙(𝑋)2 + 𝑖𝑚𝑎𝑔(𝑋)2 (2.51) 

𝜑 = 〈𝑋〉 = tan−1 (
𝑖𝑚𝑎𝑔(𝑋)

𝑟𝑒𝑎𝑙(𝑋))
)   ∈ [−𝜋, 𝜋] (2.52) 

 
Where 𝑟𝑒𝑎𝑙(𝑋) and 𝑖𝑚𝑎𝑔(𝑋) are the real and imaginary parts of the Fourier coefficient; 
respectively. 
 

 
(a) 

Figure (2.41): (a) Spectrogram 
for the ultrasound signal of 

figure (2.40) with 2MHz 
dominant frequency, calculated 
by STFT [segment length = 20 
𝜇𝑠, Hanning window, and 90% 
overlapping]. (b) Instantaneous 
power spectrum distribution at 

the dominant frequency in 
voltage-root mean square 
(Vrms) and (c) phase shift 

values at the detected times for 
start of first and second 
echoes, in radians (rad). 
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(b) 

 
(c) 

 
The power spectrum distribution in figure (2.41b) clarifies how the signal is developed 
in the sample with details about its instantaneous energy variation, arrival times of the 
consequent echoes, attenuation and damping behaviour. In depth, point 1 is at 
maximum power spectrum value and indicates the start of first echo (𝑡1,𝑃1), while its 
following peaks at (1a,1b,…) represent the gradual loss of the intensity (i.e., attenuation) 
with time. Meanwhile, point 2 is the point at which power spectrum starts to increase 
again after damping of the first echo, and indicates starting of the second echo (𝑡2,𝑃2). 
Subsequent peaks (2a, 2b, 2c) represent the gradual growth for the arrivals of leading 
constructive chirps of the second echo to the transducer, while (2d, 2e, …) represent 
the trailing gradual loss of the second echo intensity. Further echoes are functions of 
the dramatically damping of the signal in the sample; therefore they are less important 
for extraction and calculation of signal parameters. Meanwhile, from figure (2.41c), 
phase shifts of the first and second echoes,  𝜑1 and 𝜑2, are obtained at the agreeing 
times of points 1 and 2, respectively. Finally, 𝑇𝑂𝐹 can now be calculated by equation 
(2.50) and its 𝑈𝑆𝑉 is computed with the aid of equation (2.46). 
 
Results of the proposed method are compared to reference speed of sound values 
presented by [71], for demineralized water. These reference values are calculated 
through an empirical fifth-degree polynomial equation (equation (2.53)), and valid in 
temperature (𝑇) range [0 - 95] ˚C with an accuracy of 0.02 m/s.  
 



45 
 

𝑈𝑆𝑉 = 1.402385 ∗ 103 + 5.038813𝑇 − 5.799136 ∗ 10−2𝑇2 + 3.287156
∗ 10−4𝑇3 − 1.398845 ∗ 10−6𝑇4 + 2.78786 ∗ 10−9𝑇5 

(2.53) 

 
Experiments on demineralized water are performed in temperature range [9 – 30.8] ˚C, 
at which one ultrasound signal is investigated by the proposed method every 0.1˚C to 
obtain the associated 𝑈𝑆𝑉. The comparison of the proposed values to those found by 
equation (2.53) shows a maximum error of 0.217% (at 𝑇 = 20.8˚C) and a correlation 
value 𝑅2 higher than 0.99 as seen in figure (2.42). 
 

 

Figure (2.42): Speed of sound in 
demineralized water at [9 - 30.8] ˚C, 
obtained by the proposed method in 
comparison to the reference values 

calculated by equation (2.53). 

 

Although the proposed method requires high resolution spectrogram, its computational 
cost is relatively low (around 2 seconds for analysing 50 signals on 22.4 GFlops 
computer). The reason is that only small region of the spectrogram around its dominant 
frequency is calculated and investigated. 

 
 

2.5. Evaluation of the developed tools  
 
Two techniques are commonly employed to evaluate the developed mathematical 
tools in signal and image processing. They measure certain standards on the output 
signals and/or images with respect to their exact forms. These techniques are 
subjective and objective measures, which indicate whether the output by the 
developed tool is augmented for further pattern recognition tasks [72]. 
 
Subjective measures 
Subjective measures are borrowed from the field of psychology and human judgment, 
at which the evaluation is made through the individual experience. In this thesis, 
sensual inspection and Mean Opinion Score (MOS) are considered to perform a 
subjective evaluation. The sensual inspection is applied to images generated by the 
developed edge detection and spectrogram enhancement methods, to visually check 
the existence of significant edges and the removing of attached noise. It is also applied 
to aurally check existence/absence of certain sound pattern, as a judgment to any 
detector built by the established temporal and spectral features. 
Alternatively, MOS presents a numerical subjective evaluation by giving a score to the 
enhanced spectrogram through its sound signal [73]. In most applications, ten 
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candidates (5 females, and 5 males) are asked to give a score [1 = bad, 2 = poor, 3 = 
fair, 4 = good, and 5 = excellent] to a sound. Afterwards, MOS is calculated by 
averaging the given scores by equation (2.54), while its confidence interval (𝐶𝐼) is 
computed at 95% confidence level, as described in figure (2.43) and explained in 
equation (2.55). 
 

𝑀𝑂𝑆 =
∑ 𝑆(𝑖)𝑙
𝑖=1

𝑙
 (2.54) 

 
Where 𝑆(𝑖) is the score given by candidate number 𝑖, and 𝑙 is the total number of 
candidates. 
 

 

Figure (2.43): Normal distribution curve with 95% confidence level. 

 

𝐴1 = 0.95, 𝐴2 =
1 − 0.95

2
= 0.025 = 𝑃(𝑧 > 𝑧∗)  

∴ 𝑃(𝑧 ≤ 𝑧∗) = 1 − 0.025 = 0.975 
𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑡𝑎𝑏𝑙𝑒
→                     𝑧∗ = 1.96  

𝐶𝐼 = [𝑀𝑂𝑆 − (1.96 ∗ 𝜎),𝑀𝑂𝑆 + (1.96 ∗ 𝜎)] (2.55) 
 

Where 𝐴1, [−𝑧
∗, 𝑧∗], 𝐴2, 𝑃, 𝜎 are the area defines a 95% confidence interval, its enclosing 

interval, remaining curve area, probability density function, and standard deviation of 
the given 𝑀𝑂𝑆; respectively. 
 
Although subjective measures seem easy to be put into practice, they have some 
disadvantages. The number of characteristics a human eye/ear can distinguish is 
limited, and the judgment depends on the image/sound type. 
 
Objective measures 
Objective measures are borrowed from digital signal processing field and information 
theory, providing equations that calculate amount of deviation in the output 
image/sound in comparison to the exact shape (i.e., what it should be), and they 
include: 
1. Signal to Noise Ratio (𝑆𝑁𝑅) is a relation between the amounts of information in the 
output form to its differences from the exact form (i.e., noise), as given by equation 
(2.56). 
 

𝑆𝑁𝑅 = √
∑[𝑂(𝑥, 𝑦)]2

∑[𝐸(𝑥, 𝑦) − 𝑂(𝑥, 𝑦)]2
 (2.56) 

 
Where 𝑂(𝑥, 𝑦) is the output form of an image/sound by one of the developed methods 
and 𝐸(𝑥, 𝑦) is its exact form. The form has two coordinates (𝑥, 𝑦) for an image while 
one coordinate (𝑥) for a sound, and can be pixels intensities of an edges image, power 
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spectrum of a spectrogram, or signal amplitude of a sound, as schematically described 
in figure (2.44). 
 

 
(a) 

 
(b) 

For signal filtering evaluation: 𝑂(𝑥, 𝑦) and 𝐸(𝑥, 𝑦) ≡ signal amplitude 

  
(c) 

  
(d) 

For edge detection evaluation: 𝑂(𝑥, 𝑦) and 𝐸(𝑥, 𝑦) ≡ pixel intensity 

 
(e) 

 
(f) 

For spectrogram enhancement evaluation: 𝑂(𝑥, 𝑦) and 𝐸(𝑥, 𝑦) ≡ power spectrum 

Figure (2.44): The representation of 𝑂(𝑥, 𝑦) and 𝐸(𝑥, 𝑦) in some images and sounds produced by the 
numerical tools (a, c, and e), and their exact forms (b, d, and f). 

 
2. Error Root Mean Square (𝐸𝑅𝑀𝑆) is the overall differences between the output and 
exact forms, as clarified in equation (2.57).  
 

𝐸𝑅𝑀𝑆 = √
1

𝑀 ∗ 𝑁
∑∑[𝐸(𝑟, 𝑐) − 𝑂(𝑟, 𝑐)]2

𝑁

𝑐=1

𝑀

𝑟=1

   (2.57) 

 
Where M is the number of rows in an image [which equals one for a sound], and N is 
the number of columns in an image or total number of sound samples. 
 
3. Segmental Signal to Noise Ratio (𝑆𝑆𝑁𝑅) is the average of 𝑆𝑁𝑅 values over segments 
with sound activity in a spectrogram, as given by equation (2.58). 
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𝑆𝑆𝑁𝑅 =
10

𝑀
∑ 𝑙𝑜𝑔10 ∑ (

∑𝑃𝑒𝑥𝑎𝑐𝑡

∑|𝑃𝑒𝑥𝑎𝑐𝑡 − 𝑃𝑜𝑢𝑡𝑝𝑢𝑡|
)

𝑁𝑚+𝑁−1

𝑖=𝑁𝑚

𝑀−1

𝑚=0

 (2.58) 

 
Where 𝑃𝑒𝑥𝑎𝑐𝑡 and 𝑃𝑜𝑢𝑡𝑝𝑢𝑡 are the exact and output spectrogram power spectrum; 

respectively. 𝑀 is the number of spectrogram segments (usually set to 20), 𝑁 is the 
number of samples in one segment.  
 
4. Log Spectral Distance (𝐿𝑆𝐷) is the spectral distance or distortion measure, 
expressed in dB, between the output and exact spectrograms, as given by equation 
(2.59). 
 

𝐿𝑆𝐷 =  √
2

𝐹𝑆
∑ [10𝑙𝑜𝑔10 (

𝑃𝑒𝑥𝑎𝑐𝑡
𝑃𝑜𝑢𝑡𝑝𝑢𝑡

)]

2𝐹𝑆/2

0

 (2.59) 

 
Where 𝐹𝑆 is the sampling rate of the sound stream. 
 
5. Itakura Saito (𝐼𝑆) is a measure of the perceptual difference between the exact and 
output spectrograms, as displayed in equation (2.60). 
 

𝐼𝑆 =
2

𝐹𝑆
∑ [

𝑃𝑒𝑥𝑎𝑐𝑡
𝑃𝑜𝑢𝑡𝑝𝑢𝑡

− 𝑙𝑜𝑔10
𝑃𝑒𝑥𝑎𝑐𝑡
𝑃𝑜𝑢𝑡𝑝𝑢𝑡

− 1]

𝐹𝑆/2

0

 (2.60) 

 
6. Average Eccentricity (𝐴𝐸) which simply and roughly shows if the shape of sound 
patterns (or image objects) is changed from those in the exact form, and given by 
equation (2.61).     
 

𝐴𝐸 =
1

𝐾
∑

𝐿𝑗

𝑊𝑗

𝐾

𝑗=1

 (2.61) 

 
Where 𝐿 and 𝑊 are the length and width of the minimum bounding rectangle to the 
sound pattern/image object; respectively, while 𝐾 is the number of patterns/objects in 
the spectrogram/image. 
 
7. Localization Error (𝐿𝐸) is the average difference in locating the edges between exact 
and output edges image. It is calculated by inspecting the output edges distributions in 
𝑥 and 𝑦 directions, and comparing these distributions to those of the exact edges, as 
clarified by equation (2.62) and schematically shown in figure (2.45).  
 

𝐿𝐸 =
|∑𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑒𝑥𝑎𝑐𝑡 𝑒𝑑𝑔𝑒𝑠 − ∑𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑑𝑔𝑒𝑠|

𝑁
 ∗ 100% (2.62) 

 
Where N is the total number of pixels in the evaluation direction (i.e., row direction or 
column direction). 
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Figure (2.45): Schematic diagram for estimating the 
edges localization error (LE) between the exact 

and output edges images. 

 
8. Energy Dissipation (𝐸𝐷) results from inefficiency of reducing the edge width to 
exactly one pixel during suppression. The edge remains covering more than one pixel, 
as shown in figure (2.45), results in more energy loss around this edge. This dissipation 
can be displayed by the intensities distribution around an edge. The area under this 
distribution is expected to be more dissipated for output edges image than for exact 
edges image, and can be used to calculate the energy dissipation at the associated 
edge by equation (2.63). The total energy dissipation is the average value of all rows 
and columns energy dissipations. 
 

𝐸𝐷 = 𝑙𝑜𝑔 (
𝐴𝑜𝑢𝑡𝑝𝑢𝑡
𝐴𝑒𝑥𝑎𝑐𝑡

) (2.63) 

 
Where 𝐴𝑒𝑥𝑎𝑐𝑡 and 𝐴𝑜𝑢𝑡𝑝𝑢𝑡 are the areas under the intensity distribution curves 

corresponding to exact and output edges images; respectively. 
 
Since objective measures require information for exact image/sound, they are applied 
in this thesis for validation purposes when the reference exact form is already known, 
as will be shown in the next chapter. 
 
 
2.6. Closed form neural network model  
 
Artificial Neural Network (ANN) as an emulation of a biological network can establish 
almost any relationship among data by building models between a set of input and 
output vectors [74]. Usually, a feed-forward multilayer perceptron with an input, one or 
several hidden, and output layers is designed, as seen in figure (2.46a).  Input layer 
contains a number of neurons equal to the number of the selected relevant features, 
while the output layer may contain one neuron for regression or two-class classification 
{0,1} problems, or many neurons for multi-class classification problems. 
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(a) 
Figure (2.46): (a) The typical ANN layout 

consists of an input layer, one hidden layer, 
and one output layer. (b) The operation of a 
neuron which weights the input (𝑥) with a 
weight (𝑤) and a bias (𝑏) and proceeds it 

with a transfer function (𝑓) to the next layer 
as (𝑧). 

 

(b) 

 

Each neuron weights the input with a weight (𝑤) and sums it up with a bias (𝑏). Then, it 
presents it using a transfer function (𝑓) to the next layer, as shown in figure (2.46b). The 
widely implemented technique to train an ANN is the back propagation algorithm [75], 
which tries to minimize the network mean square error (MSE) in obtaining the desired 
output, by modifying the weights and bias. On the other hand, iterations on types of 
the implemented transfer functions may be essential to ensure best network 
performance. The commonly used transfer functions are Logsig and Tansig, given in 
equation (2.64) and equation (2.65); respectively. 
 

𝑓(𝑦) =
1

1 + 𝑒−𝑦
 (2.64) 

𝑓(𝑦) =
2

1 + 𝑒−2𝑦
− 1 (2.65) 

 
Although complications and time consumed to obtain an efficient ANN, once the model 
with best performance is found, no more training is made and it is used in 
classification/regression of real life samples. 
  
In this section, a closed form is presented for the designed model, which decreases 
the necessary computations for model implementations to few simple equations solver. 
The performance of the input layer can be mathematically written in two equations, as 
explained in equations (2.65 and 2.67). 
 

[𝑦1]𝑛∗1 = [𝑊11]𝑛∗𝑛 .  [𝑋]𝑛∗1 + [𝑏1]𝑛∗1 (2.66) 
[𝑧1]𝑛∗1 = 𝑓1([𝑦1]𝑛∗1) (2.67) 

 
Where 𝑊11, and 𝑏1 are the weights and biases for the neurons of the input layer. 𝑋 is a 
vector contains 𝑛 input features. 𝑦1 is the output vector, which is transformed through 
a transfer function 𝑓1 to produce the final output of this layer 𝑧1. Similarly, the hidden 
layer(s) are mathematically represented as given in equations (2.68 and 2.69). 
 
[𝑦(𝑖)]𝑚(𝑖)∗1

= [𝑊(𝑖)(𝑖−1)]𝑚(𝑖)∗𝑚(𝑖−1)
 .  [𝑧𝑖−1]𝑚(𝑖−1)∗1 + [𝑏(𝑖)]𝑚(𝑖)∗1

          , 𝑖 = 2: 𝐾 (2.68) 

[𝑧(𝑖)]𝑚(𝑖)∗1
= 𝑓(𝑖) ([𝑦(𝑖)]𝑚(𝑖)∗1

) (2.69) 

 



Where 𝐾 is the total number of hidden layers in the network, 𝑚(𝑖) and 𝑚(𝑖−1) are the 
number of neurons in layers number (𝑖) and (𝑖 − 1); respectively. Finally, the network 
output (𝑧𝑙) from the output layer can now be obtained by equations (2.70 and 2.71). 
 

[𝑦𝑙]𝐶∗1 = [𝑊𝑙𝐾]𝐶∗𝑚(𝐾)  .  [𝑧𝐾]𝑚(𝐾)∗1 +  [𝑏𝑙]𝐶∗1 (2.70) 
[𝑧𝑙]𝐶∗1 = 𝑓𝑙([𝑦𝑙]𝐶∗1) (2.71) 

 
Where 𝑙 is the total number of network layers, and 𝐶 is its number of neurons on the 
output layer.  
Equations (2.66, 2.68, and 2.70) are linear which calculated in a straightforward way, 
while the calculation speed of equations (2.67, 2.69, and 2.71) depends on the 
engaged transfer function(s). 
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3. Applications To Life Sciences Engineering Problems 
 
 
The developed numerical approaches are applied to solve four Life Science 
Engineering (LSE) problems. For each application, brief overview and a printout for the 
associated published paper are presented. The case studies of these applications are 
selected due to the availability of their database and reference validation results, as 
well as they are representatives to wide range of further LSE problems. 
  
3.1 Bioacoustics detection of Red Palm Weevil (RPW)  
 
This work is conducted under the hypothesis that distinctive spectral and temporal 
features in RPW larval sounds can be combined to construct improved indicator for 
automated detection of the infested trees, as described in figure (3.1). 
 

 

Figure (3.1): Clarification 
for detection of the 

hidden red palm weevil 
by its distinctive sound 

features. 

 
Because of its high reproduction rate, RPW prefers to live in isolation from other 
insects; therefore all the recorded sounds are owing to RPW activities which give a 
good base for the acoustic detection. Alternatively; the greatest difference between 
RPW and other possible beetle species is that the activities of RPW seem to be very 
aggressive (i.e., not singular). The aggressive activities of RPW mean its sound streams 
are not distinctive, and it is difficult to separate the adjacent pulses from each other, as 
expressed in figure (3.2a). Whereas; the patterned sounds produced during the 
communication of some insects suchlike Copris hispanus [76] are more distinctive and 
clearer to spot, as shown in figure (3.2b). 
 

 

Figure (3.2): Spectrogram and 
waveforms emitted by (a) RPW 
feeding sound and (b) Copris 

hispanus call. [FFT length = 1024, 
Hanning window of length 256, and 

85% overlapping]. 
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ABSTRACT

The Red Palm Weevil (RPW) is the most destructive pest of the date palm in the 
world and a serious pest of coconuts. The insect has caused up to 20% loss of these 
plantations in Asia and the Middle East. The economic damage to palm crops due to 
RPW could be mitigated significantly by bioacoustics recognition in an earlier phase 
of infestation and by applying the appropriate treatment. This study is conducted 
under the hypothesis that distinctive spectral and temporal features in RPW larval 
sounds can be combined to construct improved indicators for automated detection of 
infestations. In this paper, a signal processing system is developed with available 
acoustic technology to detect the existence of RPW in a tree through its feeding 
sounds. A large set of features are extracted, including unconventional features such 
as temporal roll-off, temporal slope and temporal spread. Additionally, an analysis 
is provided of the criteria for the choice of the optimum frame length, as well as 
the selection of the suitable window function. The results confirm the efficiency of 
the developed system with the selected representative features, window functions and 
frame length to detect the existence of the RPW.

Keywords: Red Palm Weevil, bioacoustics detection, signal processing, feature 
extraction, feature selection. 

INTRODUCTION

Since the 1980s, the Red Palm Weevil (RPW) has rapidly expanded 
its geographical range westwards. It reached Saudi Arabia and the 
United Arab Emirates in 1985, spreading throughout the Middle East 
and into Egypt. In 1994 it was detected in Spain, Israel, Jordan and 
Palestine in 1999, Italy in 2004, Canary Islands in 2005, Balearic 
Islands, France, and Greece in 2006, and Turkey in 2007 (Malumphy 
& Moran 2007). The European Commission is in the process of 

*Corresponding author. Email: walid.hussein@wzw.tum.de 
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introducing emergency measures to prevent the further spread of 
RPW within the European Community. 

All stages (egg, larva, pupa and adult), as described in Figure 
1, are spent inside palm trunks and the life cycle cannot be completed 
outside them. The females deposit about 300 eggs in separate holes 
or injuries on the palm. Eggs hatch in 2 to 5 days into legless 
grubs which bore into the interior of the palms, and feed on the soft 
succulent tissues, discarding all fibrous material. The larval period 
varies from 1 to 3 months. The grubs pupate in an elongate oval, 
cylindrical cocoon made out of fibrous strands. At the end of the 
pupation period which lasts 14 to 21 days the adult weevils emerge 
(Murphy & Briscoe 1999). 

Larvae and adults destroy the interior of the palm tree, often 
without the plant showing signs of deterioration until damage is 
severe (Blumberg et al. 2001). Hollowing out of the trunk reduces its 
mechanical resistance, making the plant susceptible to collapse and a 
danger to the public (Howard et al. 2001). In most cases, attack leads 
to the mortality of trees whatever their sizes. The larvae are large, 
but being hidden makes early detection with traditional methods very 
difficult. Adults of RPW can be efficiently monitored using pheromone 
based traps (Oeshlager et al. 1993; Soroker et al. 2005). However, 
these methods are unsuitable for quarantine inspections of planting 
material. Consequently, infested planting material is often transported 
to a new location before the first detectable symptoms of infestation 
appear (Mankin et al. 2008). 

Figure 1. The complete life cycle stages of the Red Palm Weevil. 
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The economic damage to date palm crops due to RPW could be 
mitigated significantly by early detection and treatment. Bioacoustics 
technology and x-rays enable the detection of the early phase of 
infestation, however the usage of x-rays is expensive. Acoustic 
technology has potential for reducing the expense and dangers involved 
in tree inspection. Acoustic recordings from insects in trees often 
reveal signals with spectral and temporal features that make them 
distinctive and easily detectable (Mankin et al. 2002). Preliminary 
studies (Mizrach et al. 2003; Hetzroni et al. 2004; Soroker et al. 2004, 
2006) have demonstrated that sensitive microphones and dedicated 
amplifiers enable detection of the movement and feeding sounds of 
RPW larvae in palm trees. 

Automated acoustic analyses of sounds produced by hidden 
insect infestations have focused primarily on spectral aspects of the 
insect-produced signals (Mankin et al. 2000, 2001, 2007). Temporal 
patterns were considered by Zhang et al. (2003) in classifying larval 
sounds as snaps, rustles, or repeated pulses, and it has been observed 
that different stored product insects produce distinctly different sound 
patterns (Andrieu & Lessard 1990; Mankin et al. 1997).

Different sounds of the RPW activities can be recorded, 
including moving, spinning the cocoon and feeding sounds. It is 
worthless to take into consideration the moving sound of the RPW to 
detect its existence in an infected tree, because the moving sounds of 
many wood insects and beetles are nearly identical. Meanwhile, the 
waveform and sonogram of the feeding and cocoon spinning sounds 
are shown in Figure 2. 

For the cocoon spinning sound, the strongest energy is below 1 
kHz, while it reaches to 2.2 kHz for the feeding sound. Furthermore, 
one complete acoustic pattern takes approximately 2 seconds, while 
it is only 0.8 second for the feeding sound. Although the cocoon 

Figure 2. Spectrogram, envelope and detailed waveform of pulse trains for 
the (a) feeding sound and (b) spinning the cocoon sound of the Red Palm 
Weevil.
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spinning sound may be a characteristic for the RPW, it is a seasonal 
sound that takes place only in certain periods of the overall life cycle. 
Therefore, it is less useful for the bioacoustic detection of the RPW. 
On the other hand; the feeding sound is the most frequently occurred 
sound in an infected tree. As RPW has a distinctive body shape and 
internal mouth structure compared to other coexisting beetles, its 
feeding sound has some unique features that make it more reliable 
for the RPW detection task. 

In this paper, the audio detection system for the RPW feeding 
sound is presented in detail. The next section describes the recording 
method and the families of detection features which have been used 
in the system. This is followed by a section explaining the criteria 
behind the choice of the window function, before applying Fourier 
Transform to each time frame of the recorded sound. Finally, we 
discuss the selection of the representative features and the optimum 
frame length. 

MATERIALS AND METHODS

Recording device

An infested date palm sample trunk (70 cm length, 38-43 cm diameters, 
117 kg weight) was transferred from Saudi Arabia to Germany and 
stored in a quarantine room. The trunk was further divided into 
small blocks to focus on the weevil development and investigate the 
activities of the larvae during recording. This resulted in a complete 
picture for the RPW activities hidden in the trunk. Afterwards, 
equipment was installed including a mercury steam lamp, heater, 
humidity device, thermometer, infrared video cameras, as well as the 
recording device. 

Two different recording devices were assessed for this task. 
The first was a Laar Ultrasound Gate hard disk recording System 
(frequency range 50 Hz – 250 kHz). The second was a Laar WD 60 
detector with amplifying system and insertion sensors of different 
types (Contact microphone, airborne ultrasound microphone, contact 
acceleration sensor and a combined contact/airborne probe sensor). 
The best recordings were obtained via the second device which was 
attached to a Laar/Avisoft SASLab Pro sound analyzer (50 Hz to 30 
kHz). Since there was no contact from the recording person, every 
recorded sound was caused by the RPW activities in the trunk. For 
a period of 13 subsequent months (~3 life cycles), covering different 
environments (i.e., pressure and temperature changes), 251 adult 
weevils emereged from the trunk (and were later eradicated) and 980 
successful feeding sound recordings (each of 0.8 second) were made of 
the RPW.
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Signal processing

The recordings were digitized at 11,025 Hz sampling rate on a 
computer and saved in .wav file format. The recorded signals were 
then high-pass filtered with a 200-Hz cutoff frequency to eliminate 
low-frequency background noise. The recorded signals were then 
divided into time frames with 90% overlap between frames, as 
shown in Figure 3. A program was developed using MATLAB, with 
user-friendly graphical interface, to hold all the signal processing 
procedures up to the detection step. 

Time domain features

The temporal domain features listed in Table 1 were extracted for each 
time frame in order to have a time distribution of the features along 
the recorded signal. In Table 1, three unconventional features were 
included: temporal roll-off that describes the time below which 90% 
of the energy distribution is concentrated; temporal slope of decrease 
or increase of the signal amplitudes, computed by linear regression; 
temporal spread which represents the spread of the signal amplitudes 
around its mean value.

To extract the spectral domain features, each time frame was 
scaled by a suitable window function and then transformed in the 
frequency domain using the Fast Fourier Transform (FFT) method. 
The frequency axis was divided into 2,048 bins from zero frequency 
(i.e., DC value) up to 11,025 Hz (i.e., the sampling rate). Due to 
the symmetry of the resultant spectrum at half the sampling rate, 

Figure 3. the recorded sound signal sampled in time domain with sampling 
rate of 11,025 Hz and divided to frames with 90% overlap.
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TABLE 1

The time domain features which are used in this study to detect the existence of 
the Red Palm Weevil. Where x(k) is the amplitude at sample k, krf is the 

bin number of the roll-off frequency, and N is the number of samples. 
One complete RPW feeding sound is 0.8 sec (i.e., 8,821 samples)

Name	 Equation

Zero crossing rate

Short time energy

Energy root mean square

Temporal entropy

Temporal roll-off

Temporal slope

Temporal flux

Temporal crest-factor

Temporal decrease

Temporal smoothness

Temporal centroid

Temporal spread

Temporal skewness

Temporal flatness

Temporal tonality
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only the spectrum values corresponding to the first 1,024 bins were 
taken into consideration, resulting in a significant reduction in data 
processing.

Windowing

The most common window functions are rectangular, Hamming, 
Hanning, flat top and Blackman windows. Each window function has 
slightly different wave form from the others, as shown in Figure 4, 
which results in a different performance in the frequency domain. In 
Figure 4, the tighter the main lobe width, the better the frequency 
resolution of the window functions, as in the rectangular window 
function. Additionally, the higher the reduction rate between the 
main lobe and the first side lobe, the less the spectral leakage around 
the central frequency, as in the Blackmann window. 

The efficiency of each window function according to their 
frequency resolution and spectral leakage reduction criteria are 
shown in Table 2. As a result, the rectangular window was chosen to 
calculate the spectral features that require high frequency resolution 
(e.g. spectral roll-off), while the Blackmann window was chosen to 
calculate the spectral features that require less spectral leakage (e.g. 
spectral centroid). 

Figure 4. The distribution of the most common window functions in time 
domain (left), and their spectral domain representations in the frequency 
domain (right). The letter (a) points to the main lobe of the spectrum for the 
rectangular window, while (b) points to its first side lobe.
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Frequency domain features

The spectral domain features listed in Table 3 were extracted after 
applying the FFT to the windowing time frame. Adding these spectral 
features to the previously calculated temporal features, a group of 31 
features were extracted for each time frame.

TABLE 2

Comparison of the frequency resolution and spectral leakage analyses 
of the different window functions of Figure 5.

Window	 Frequency resolution	 Spectral leakage reduction

Hamming	 Good	 Fair
Hanning	 Good	 Good
Blackman	 Poor	 Best
Flat top	 Poor	 Good
Rectangular	 Best	 Poor

Figure 5: (a) Schematic diagram for the features selection algorithm.  
(b) Flow chart for the features selection algorithm. (po) is the percentage of 
frames overlap for a frame length of 0.4 sec., (j) is the number of the set, 
and (n) is the total number for the extracted features out of the signal.
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TABLE 3

The frequency domain features which are used in this study to detect the existence 
of the Red Palm Weevil. Where X(n) is the spectrum at bin number n and spectral 
kurtosis determines whether the probability density distribution of the noisy signals 

is peaked or flat topped with respect to the Gaussian normal distribution

Name	 Equation

Spectral roll-off

Spectral flux

Spectral energy

Spectral root mean 
  square

Spectral slope

Spectral crest factor

Spectral smoothness

Spectral decrease

Spectral centroid

Spectral band width

Spectral spread

Spectral skewness

Spectral kurtosis

Spectral entropy

Spectral flatness

Spectral tonality

Features selection

While some audio features may be considered distinctive and 
representative of the RPW feeding activity, others may be worthless 
for this particular diagnosis task. The purpose of applying a features’ 
selection algorithm is to select the representative features from a 
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large set of features. Feature selection algorithms typically fall into 
two categories: feature ranking (Peng et al. 2005) and subset selection 
(Singhi & Liu 2006). Feature ranking ranks the features by a metric 
and eliminates all features that do not achieve an adequate score. 
Subset selection searches the set of possible features for the optimal 
subset by removing the most irrelevant and redundant features from 
the data. In this study the feature ranking method was applied. To 
handle this, the temporal and spectral features were extracted for 
765 out of the 980 RPW feeding sound recordings. Subsequently, the 
average feature value was calculated for the 765 values (based on the 
765 recordings). If more than 80% of the recordings have a feature 
value that lies within 5% deviation from the corresponding average 
feature value, that feature will be selected as a distinctive feature. 
The algorithm, as shown in Figure 5, was implemented for 60, 70, 
80, and 90% frames overlap and the resultant selected features were 
stored in set(1), set(2), set(3), and set(4); respectively, as clarified in 
Table 4.

Optimum frame length

As mentioned above, the recorded signal is divided into a number of 
time frames. The time frame length depends on the total duration of 
the desired sound (e.g. the feeding sound), the percentage of overlap, 
and the required number of time frames. Equation (1) may be used 
to calculate the frame duration

 
	 (1)

 

where x is the whole sound duration; y is the frame duration; and n 
is the number of frames. For example, it requires 0.208 second for 
each frame to divide the feeding sound of the RPW (0.8 sec) into 20 
time frames with 85% overlap. Whereas there is an optimum selection 
for the frame length which is affected by the intended representative 
features. In depth, if the mean zero crossing rate is considered as 
identification feature for the feeding sound of the RPW, the frame 
period should ensure that the value of the mean zero crossing rate is 
approximately the same for all recorded feeding sounds of the RPW. 
In Figure 6, the predetermined sets of features (i.e., set(1), set (2), 
set(3), and set(4)) were extracted for two audio signals (signal (1), 
and signal (2)), as well as for a reference signal of a typical feeding 
sound of the RPW, over different choices of frame lengths. Signal (1) 
contains a feeding sound for a RPW, while signal (2) does not contain 
a feeding sound. The mean square error between the selected features 

y x
n percentage of overlapping

=
+ - -1 1 1( ).( )
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of each signal and the reference signal features was calculated and 
scanned with the corresponding frame length.

In this paper, features set(4), with an overlap of 90%, is chosen 
in the detection of the feeding sound of the RPW, and as a result of 
Figure 6, an optimum frame length of 0.42 sec is selected. The reason 
for the choice of features set (4) is its large content of worldwide 
implemented features in the task of sound-based surveillance, and 
also it contains the three innovative features of this study (i.e., 
temporal roll-off, temporal slope and temporal spread). 

TABLE 4

The enclosing set for the selected features, results from 
the features selection algorithm of Figure 5 and frame 

overlap values of 60, 70, 80, and 90%.

Feature	 Enclosing Set

Zero crossing rate	 1,3,4
Short time energy	 2,4
Energy root mean square	 3,4
Temporal entropy	 1,2
Temporal roll-off	 1,3,4
Temporal slope	 2,4
Temporal flux	 2,3
Temporal crest-factor	 2,3,4
Temporal decrease	 1,2
Temporal smoothness	 1
Temporal centroid	 1,4
Temporal spread	 1,4
Temporal skewness	 2,3
Temporal flatness	 1,3
Temporal tonality	 2,3
Spectral roll-off	 2,3,4
Spectral flux	 1,3
Spectral energy	 1,2
Spectral root mean square	 1,2,4
Spectral slope	 2,4
Spectral crest factor	 1,3
Spectral smoothness	 1,3
Spectral decrease	 2,4
Spectral centroid	 1,4
Spectral band width	 4
Spectral spread	 3,4
Spectral skewness	 4
Spectral kurtosis	 1,4
Spectral entropy	 2,3,4
Spectral flatness	 2,3
Spectral tonality	
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RESULTS AND DISCUSSION

Developing the system

The selected temporal as well as the selected spectral features were 
extracted for 765 out of the 980 recordings, using features listed in 
Table 1 and Table 3 respectively. The distributions of these features 
with time are shown in Figure 7 for a typical RPW feeding sound. 
In Figure 7, some features experience equivalent standard deviations, 
which make it difficult to differentiate among them, e.g. temporal roll-
off and temporal centroid, spectral slope and spectral centroid; and 
spectral kurtosis and spectral skewness. Meanwhile the mean value 
of most features is more representative than the standard deviation. 
This necessitates careful attention to exclude redundant values in the 
choice of the related statistic for each feature. Table 5 shows which 
statistic was assigned to each feature. Therefore, one representative 
value was considered for each feature over one recording and this 
value averaged for the 765 recordings. The resultant system contained 
18 representative features (i.e., set(4)) for the RPW feeding sound, 
and these features values were saved as the system features. 

Figure 6. The mean square error between recorded sounds and a reference 
feeding sound of Red Palm Weevil versus the frame length. Based on features 
of (a) set(1), (b) set(2), (c) set(3), or (d) set(4). Signal (1) contains a feeding 
sound while signal (2) does not.
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Figure 7. Distribution of the selected (a) temporal features and (b) spectral 
features with time for a typical Red Palm Weevil feeding sound of total 
duration 0.8 sec., divided into 10 frames each of 0.42 sec. by means of 90% 
overlap. 

Validation of the system

The remaining 215 out of the 980 feeding sound recordings were used 
for the validation of the developed system from which the pre-selected 
18 features are extracted for each recording, and then compared to 
the system features. 203 records were successfully detected since their 
extracted features were within 5% from those of the system features. 
On the other hand, 12 records were not detected since more than 10 of 
their extracted features had more than 12% percent deviation from the 
corresponding system features. This means that the system efficiency 
is higher than 94% in the detection of the RPW feeding sounds, when 
the feeding sound was defined to be the one with features that have 
a maximum of 5% deviation from the corresponding system features. 
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Evaluation of the system

In order to test the power of the developed system to detect the 
existence of the RPW in the field, the recording device with its 
insertion microphone was used. The insertion microphone brings the 
sensor near the sound source and avoids wind noise effects, resulting 
in high quality recordings. Human, animal, machinery and footsteps 
sounds were avoided as much as possible, since they can greatly affect 
the waveforms and result in a wrong detection. 

An audio stream of 5 minutes duration was recorded on one 
infected palm tree and the sound features were extracted for each 
0.8 second batch, with 90% overlap. The extracted features were 
scanned for each batch as shown in Figure 8, as well as the system 
features (the horizontal solid lines). Similarly, an expert listener 
(see Acknowledgments) was able to detect the feeding sound regions 
by band pass filtering the whole stream between 1-3 kHz, followed 
by analysing the filtered stream using BVL Spectrogram V8 Sound 
analysis software. The analysis revealed trains of impulses separated 
by intervals of less than 500 ms that were considered as potential 
RPW feeding sounds (the grey regions in Figure 8).

From Figure 8, the features distributions in some batches have 
the same values as those for the reference feeding sound. These batches 
lie on the same times that were detected by an expert as a RPW 
feeding sound. Mean temporal roll-off, mean spectral decrease, STD 
short time energy, and STD temporal root mean square introduce one 

TABLE 5

The related statistic and the window function assigned to each feature.

Feature	 Related statistic	 Window Function

Zero crossing rate	 mean	 —
Short time energy	 std	 —
Energy root mean square	 mean	 —
Temporal roll-off	 mean	 —
Temporal slope	 mean	 —
Temporal crest-factor	 mean	 —
Temporal centroid	 std	 —
Temporal spread	 mean	 —
Spectral roll-off	 mean	 Rectangular
Spectral root mean square	 mean	 Blackman
Spectral slope	 mean	 Blackman
Spectral decrease	 mean	 Blackman
Spectral centroid	 mean	 Blackman
Spectral band width	 mean	 Blackman
Spectral spread	 mean	 Blackman
Spectral skewness	 mean	 Blackman
Spectral kurtosis	 mean	 Blackman
Spectral entropy	 mean	 Blackman
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more feeding sound near batch number 3600 [ca 4.75 minutes]. But it 
is not matched by the other features. Although all the above features 
were used in the developed system, some of them only are sufficient 
to detect the RPW feeding sound in the 5-minute stream, as mean 
spectral entropy, mean spectral roll-off and mean zero crossing rate. 

Figure 8. The extracted features from an audio stream of 5 minutes duration 
plotted against the batch number. The stream is divided into 3750 batches of 
duration 0.8 sec. with 90% overlap. The solid horizontal lines represent the 
feature value for a typical Red Palm Weevil feeding sound, while the grey 
regions are detected by an expert as containing Red Palm Weevil feeding 
sounds.
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Another two 50-second streams were recorded from two uninfected 
trunks – having average diameters of 36.4 and 45.8 centimetres – 
revealing sounds that did not match the system features, indicating 
no existence for the RPW in these trunks. The results demonstrate 
the efficiency of the developed system with the selected representative 
features, window functions, and frame period to detect the existence 
of the RPW through its feeding sound.

CONCLUSIONS

The economic damage to palm crops due to RPW could be mitigated 
significantly by bioacoustic recognition in an earlier phase of 
infestation and applying the appropriate treatment. While their 
secretive behaviour makes an early detection with traditional 
methods (e.g. pheromone traps) not applicable, it can be performed 
using bioacoustics recognition. Acoustic recordings from insects in 
trees often reveal sound waves with spectral and temporal features 
that make them distinctive and easily detectable. In this study, 
before dividing the sound wave into time frames, the optimum frame 
length – for the case of the RPW feeding sound – was investigated 
for several overlap percentages (60, 70, 80, 90%). The developed 
system applies 90% overlap, with its corresponding optimum frame 
interval of 0.42 sec, to divide the recorded sounds. For each frame, 15 
time domain features were extracted. In addition, the criteria behind 
the selection of the window function were studied, followed by the 
extraction of 16 frequency domain features, using their appropriate 
window functions. 

Because some features may be useless for RPW detection, the 
values of the selected feature should have small deviation for all 
reference RPW feeding sounds. As a result, ten frequency domain 
features were selected, beside eight time domain features containing 
temporal roll-off, temporal slope and temporal spread. These three 
features are introduced as new features, and are competently 
implemented in the developed detection system. The developed system 
was validated to have an efficiency higher than 94% Therefore it was 
well able to detect the existence of the RPW feeding sound in a five-
minute sound stream recorded on an infected trunk and its absence 
in two 50-second streams recorded on an uninfected trunk.

After the positive determination of the presence of Red Palm 
Weevil in a palm, it is necessary to remove the palm tree, because to 
date no real efficient treatment method exists. Also the disinfection 
of the soil needs to be taken under consideration. The next step of 
this research is to develop a machine learning program to handle 
all the available values for the feeding sound features in different 
environmental conditions. In order to decide whether a new recorded 
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sound represents a feeding sound, methods such as artificial neural 
networks or support vector machines may be implemented.
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3.2 Fat contents recognition in meat slices  
 
The developed edge detection approach is applied to recognize the fat boundaries 
in meat slices images, as an example for non-living biological tissues. Since Sobel 
operators provide both differencing and smoothing effects, they are employed to 
obtain gradients of each feature image. Non-maximum suppression and flux 
equilibrium are applied to the produced edges images to thin out edges and fill 
existent discontinuities; respectively. Edges images found by the feature images are 
then combined into one final edges image using a reasonable combination factor.  
Parametric investigations have been performed for the selection of mask size, flux 
equilibrium mask size, and combination coefficient of the edges image. 
 
The meat slices images are prepared before applying the edge detector by 
histogram thresholding analysis and anisotropic diffusion filter. The histogram 
thresholding analysis eliminates the background area while the anisotropic diffusion 
filter reduces the specular reflections and speckles without influencing the edges. 
Once edges are detected, a region growing method is performed on the interiors of 
the detected boundaries to define the area of the enclosed region(s). A flow chart 
for the structure of the accompanying paper is presented in figure (3.3). 
 

 

Figure (3.3): Flow chart describes the steps of recognizing the fat contents in meat slices. 
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a b s t r a c t

Intramuscular fat is an important quality criterion, notably juiciness, in meat grading. But traditional

visual inspectors are time consuming and destructive. However, edge detection techniques characterize

meat surface in consistence, rapid, and non-destructive approach. In this paper, novel edge detection

method applied on intramuscular fat is presented based on the energy and skewness as two smoothed

versions of the image. Parametric analyses were investigated and the method was tested on several

images, producing minimum improvements of 6.451%, 1.667% and 7.826% in signal to noise ratio,

mean square error and edges localization, respectively, in comparison to Roberts, Prewitt, Sobel, and

Canny detectors.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The fat content, visual texture and chemical composition of meat
based products have a large influence on their nutritional value,
functional properties, sensory quality, storage conditions and com-
mercial value. Different studies have proved that juiciness and
acceptance of the meat is mainly influenced by its fat content, either
in calf [1], or lamb meat [2]. Thus, fat estimation knowledge is of great
importance for quality control, not only for producers but also for
retailers and consumers. Since the visual appearance of food and
other biological products is a major factor in the judgment of quality,
visual inspection is an important part of quality control in these
industries. This inspection has historically been performed by the use
of the only ‘‘tool’’ available, the human eye. The process accompany-
ing data acquisition, automatic evaluation and direct control of the
ambient conditions is possible only to a very limited extent, because
the human assessment furnishes above all qualitative but hardly
quantitative data and, on top of this, such inspection is time
consuming and cost intensive. This visual inspection offers one of
the challenges that is to make the production more automatic and
flexible, ideally by the use of autonomous robotic systems. Alterna-
tively, chemical analysis is frequently used method to determine the
intramuscular fat content. But this technique is expensive, destructive
and tedious, because meat as a raw material is extremely variable and
may range from 1% to 65% fat.

As long as the measurements are carried out on the meat
surface, image processing might offer a rapid and non-destructive
method for analyzing the overall composition for quality control
purposes. Furthermore, hand held image processing devices could
be developed and used on an industrial basis to determine meat
based products composition with the advantage that they are
non-contact sensing solutions.

In the past, several works were proposed in order to introduce
computer vision on meat quality evaluation. In these works, meat
grading was based exclusively on the analysis of meat surface
images. Image analysis was described as a highly promising
approach for objectively assessing online quality control of indus-
trial meat products [3–5]. In fact, it has been used since the early
1980s [6,7] to determine crude fat content and textural properties.
Gerrard et al. [8] have developed an image processing system to
evaluate meat quality, in particular to determine beef marbling
scores. In the work of Li et al. [9], marbling and image texture
features were used to develop tenderness prediction models by
using statistical and neural network techniques. Texture features
have also been used in [10,11]. They studied a method to detect
meat quality using the concept of marbling score and texture
analysis. They also proposed the implementation of a meat grading
system using neural network techniques and multiple regression
analysis.

Although the digital image processing is increasingly used in
meat processing field, some bottle necks were shown up, that do
not allow an easy adaptation of its techniques. These bottle necks
include the difficulty of division of the meat images into the main
contents of muscle, ribs, and fat. As well, limitations in detecting
accurately the edges of these contents at sufficient resolution,
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causing propagation of the errors in the further image acquisition
and processing steps.

The representation of the image information in terms of edges
is a method of compaction, meaning compacting the two dimen-
sional image patterns into a set of one dimensional curve [12].
Detection of edges is a fundamental step for most computer
vision applications such as remote sensing, fingerprint analysis,
cytology, optical character recognition and industrial inspection.
In addition, edges image reduces the space and computational
time required in further steps for analyzing the image.

Edges are mostly detected using either the first derivatives,
called gradient, or the second derivatives, called Laplacian. Lapla-
cian is more sensitive to noise since it uses more information
because of the nature of the second derivatives [13,14]. Along four
decades, various edge detection algorithms were developed. The
earliest popular works in this category include the algorithms
developed in [15–17]. These classical methods compute an
estimation of gradient for the pixels, and look for local maxima
to localize step edges. Typically, they are simple in computation
and capable to detect the edges and their orientations, but due to
lack of smoothing step, they are sensitive to noise and inaccurate
[18]. One general problem with the gradient based detection
methods is that their output edges may be thicker (i.e., several
pixel widths) than a connected unit width line around the
boundary of an object. In many applications, further steps such
as edge thinning and edge linking are necessary to extract
relevant and useful edges. Non-maximum suppression is a simple
and widely used edge thinning method. It removes all edge
responses that are not maximal in each cross section of the edge
direction in their local neighborhood.

The optimal detector should minimize the probability of false
positives (i.e., detecting spurious edges caused by noise), as well
as that of false negatives (i.e., missing real edges). Additionally,
the detected edges must be as close as possible to the true edges.
Finally, the detector must return one point only for each true edge
point. Out of these criteria, the Canny edge detector was devel-
oped, which is probably the most widely used detector and
considered to be the standard edge detection algorithm in the
computer vision applications [19].

Canny dealt with the edge detection problem as a signal
processing optimization problem, so he developed an objective
function to be optimized, at which its solution was a rather
complex exponential function [20]. The main drawback in the
Canny algorithm is its inclusion of a number of adjustable
parameters, which can affect the computational time and effec-
tiveness of the algorithm [21]. The first parameter is the size of
the smoothing Gaussian filter, which influence highly the detec-
tion results. The second parameter is the threshold values used in
the implemented hysteresis thresholding method, which can
either miss important information or identify irrelevant noise
information. On the other hand, it is still difficult to give generic
filter size or thresholds that work well on all images.

This paper proposes a novel gray level edge detection method
based on the energy and skewness features of an image, as a
progress and enhancement to the work given by Hussein and Becker
[22]. Each feature presents a smoothed version of the original image,
avoiding the application of the smoothing filters, and therefore
prevents their accomplished drawbacks. These features are bor-
rowed from the digital signal processing field, as they are imple-
mented for pattern recognition and identification applications [23].

In this work, the energy and skewness, and their gradients are
calculated for the original gray level image. Non-maximum suppres-
sion algorithm with sub-pixel accuracy is applied to suppress thick
edges in both images (i.e., energy image and skewness image).
Finally, a combination occurs between the edges calculated by the
energy image and those calculated by the skewness image, to

produce a final form of the edges image. Many parametric analyses
had been investigated to efficiently select the mask size, the mask
represented pixel, the flux equilibrium matrix size, and the combi-
nation coefficient between the energy and skewness edges images.
The proposed method was tested on several images, and the results
were competitive in comparison with Roberts, Prewitt, Sobel, and
Canny detectors in detection of fine edges with higher signal to
noise ratio, less root mean square error, and less total edge
localization error. Afterwards, the method has been applied to
efficiently detect the intramuscular fat content in a meat slice
image. In the following section a detailed algorithm and explanation
of the proposed method will be presented. Further sections include
parametric studies, validation, and experimental results of the
proposed method in comparison with the other conventional
gradient based detectors. As well as its application to evaluate the
meat quality by intramuscular fat content prediction in the image of
marbled meat slices, which is a quite complicated issue due to the
difficulty arising from the muscle and fat structural overlapping.
Furthermore, intramuscular fat content were chemically analyzed
for all the slices and compared with the proposed method outcomes.

2. Material and method

2.1. Gradient based edge detection

One way to detect edges in the image is by computing the local
intensity gradient at each pixel of the image. The gradient G of an
image intensity f(x,y) at location (x,y) is a vector of two compo-
nents, Gx and Gy, which measures how the gray level values
change in the x and y directions, respectively. Edges are detected
in areas where the gray level value fluctuates sharply, and the
more rapid this value changes the stronger the edge is. Therefore,
edges that are detected at pixels have local maxima or local
minima of the gradient, as sketched in Fig. 1 for noiseless two
edges image. The edge strength is the magnitude of the gradient
Gm at this edge, while the direction of the edge y is perpendicular
to the gradient orientation of this edge, given as

Gx ¼
@f

@x
, Gy ¼

@f

@y

Gm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

xþG2
y

q
ð1Þ

y¼ tan�1 Gy

Gx

� �
þ
p
2

ð2Þ

Calculating the gradient of an image is similar to convolving it
with two gradient operators, one in x direction and the other in y

direction. The commonly used gradient operators are those
presented by Roberts, Prewitt and Sobel edge detectors, as shown
in Fig. 2. It is important to notice that the 3n3 operators, such like
those of Prewitt and Sobel, have a second degree order of error,
Ó(dx2) and Ó(dy2), in the calculation of gradient in x and y

directions; respectively. Where d is the distance between two
pixels in the indicated directions.

The conventional approach in these detectors is to choose a
threshold value at which the pixels with gradient magnitudes greater
than or equal to this threshold are considered edges; otherwise, they
are not edges. Furthermore, since they do not smooth the image
before gradient calculation, they are only suitable for well contrasted
noiseless images.

Meanwhile, Canny edge detection method considers the edges
are step edges corrupted by additive Gaussian noise. It starts with
image filtration by the derivative of the Gaussian function, which
is given in Eq. (3), then finding the magnitude and orientation of
the gradient. The edges strengths and directions are calculated by
Eqs. (1) and (2), respectively. The multi-pixel wide edges are
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thinned down to single pixel width using the non-maximum
suppression algorithm. Finally, the hysteresis thresholding algo-
rithm is used to name edges and non-edges

Gaussðx,yÞ ¼
1

2ps2
e�ðx

2þy2Þ=2s2

ð3Þ

The optimum choice of the filter size (s) is application
dependent, and relates to the desired behavior of the detector,
as shown in Fig. 3 for the results of application of the Canny
detector on two images with two different s values (s¼1, 2).

2.2. The proposed edge detection method

2.2.1. Image segmentation and mask centroid

Initially a small square matrix (i.e., nnn mask) is slid over the
original gray level image in x direction and then in y direction, with
step of one pixel. Instantaneously, the intensities of the pixels covered
by the mask are used to calculate the mask energy and skewness. The
calculated values of energy and skewness are dependent on the mask
size, which controls the order of error in calculating the gradient
image, and may influence the output edges image. Therefore,
investigations of different mask sizes were applied, and are presented
in Section 3 with estimation for the optimum mask size.

In addition, the simple choice for a mask represented pixel is
its center, but a better choice would be its centroid (i.e., weighted
center) which set the represented pixel according to the mask
intensities distribution. A comparison between the influence of
using mask center and using mask centroid on the output edges
image is presented in Section 3, and a formula for calculating the
mask centroid is

mask centroid¼
Xn

i ¼ 1

i�fi

Xn

i ¼ 1

fi

-
ð4Þ

where fi is the gray level intensity value of pixel i, and the back
slash means that only the quotient of the division is considered.

2.2.2. Energy and skewness images

The energy feature (En), which is calculated by Eq. (5), per-
forms a two dimensional spatially restricted scaling of the input

image, to provide an even contrast output energy image. It is
useful for getting some discernable output for images that are
either obviously dark or bright

En¼

Pn
i ¼ 1 f 2

i

n�n
ð5Þ

While the skewness feature (S), which is calculated by Eq. (6),
is a measure for the degree of asymmetry of the mask intensities
distribution, in comparison with the normal distribution. The
skewness is positive if it is tailed to the right side, as given in
Fig. 4a, and negative if the distribution is tailed to the left side, as
given in Fig. 4b. The symmetric (normal) distribution has an equal
mean and median value, and therefore its skewness is zero. The
skewness image may be viewed as a detailed water mark of the
original image

S¼

Pn2

i ¼ 1 fi�ði�maskcentroidÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn2

i ¼ 1 fi�ði�maskcentroidÞ2
� �3

r ð6Þ

Since Sobel operators provide both differencing and smoothing
effects at the same time, they are employed to obtain the gradient
images (Enx,Eny), and (Sx,Sy) for energy and skewness images,
respectively. Afterwards, with the aid of Eqs. (1) and (2), the edges
strengths and directions are calculated for each image separately.

2.2.3. Non-maximum suppression with sub-pixel accuracy

The method of non-maximum suppression is applied to remove
unnecessary edges by suppressing the non-maximum magnitude in
each cross section of the edge direction in their local neighborhood.
For each pixel, we check whether the gradient magnitude is greater at
one pixel distance away in either the positive or negative direction of
its gradient orientation. If the pixel is greater than both, its magnitude
value set to one, otherwise it is set to zero (i.e., suppressed).

In most cases, the gradient orientation is not directed to the
center of the neighbored pixel, as schematically described by
example given in Fig. 5. Therefore, an interpolation is made to
estimate the value of the gradient at this intermediate pixel
(i.e., sub-pixel accuracy).

A quadratic interpolation, given by Eq. (7), using the gradient
magnitudes of the three neighbored pixels gives sufficiently
accurate gradient value at the intermediate pixel. Afterwards,
the non-maximum suppression algorithm is applied between the
main pixel and the two intermediate pixels on its orientation line

Gm ¼ ay
2
þbyþc ð7Þ

where y is the gradient orientation of the intermediate pixel,
y¼ y�ðp=2Þ. The coefficients a, b, and c are calculated by the
strengths and directions of the neighbored pixels.

Thinning the edges to one pixel width increases the accuracy
in boundaries recognition, and therefore makes the method more

Fig. 2. Basic gradient operators for (a) Roberts, (b) Prewitt, and (c) Sobel edge

detectors. D1 is the gradient operator in x direction, while D2 is in y direction.

Fig. 1. Schematic diagram for a noiseless two edges image (a), with the intensities and gradient distributions of the pixels row which are covered by the indicated

horizontal line, (b) and (c); respectively. The relation between the gradient magnitude and orientation with the edge strength and direction is displayed in (d).
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robust and efficient in prediction of the intramuscular fat bound-
aries in marbled meat slices images.

2.2.4. Flux equilibrium

The edges image may suffer from existence of discontinuities, in
the form of zero pixel(s) that intersects the edge direction. Restoring
the missing edges data is very important in many edge detection
applications, and is magnified in food applications where the
boundaries are huddled and may easily overlap; interconnected
openings take place by imaging. In particular the problem of
intramuscular fat recognition, since many edges points are missing
due to the difficulty of the muscle and fat structures interference.
The flux equilibrium condition, as given in Eq. (8), checks the edges
values along edge direction and fills the zero pixels if they are
located between two edges, and in their direction, as shown in Fig. 6

dE

dy
¼ 0 ð8Þ

Eq. (8) states that the derivative of the energy strength along
its direction should be zero everywhere, and if this derivative is

not zero at some pixels, the flux equilibrium technique conserve
the missing data and force the zero derivative condition to be
met. This check is applied on the edges image using a flux check
matrix, at which an analysis for different flux check matrix sizes
was performed and will be presented in Section 3.

2.2.5. Edges combination

The edges found by the energy image and those found by the
skewness image are combined to form the final form of the edges
image, using the formula given in Eq. (9). The combination weight
coefficient, w, belongs to the interval [0,1], at which a parametric
analysis was applied, as will be explained in Section 3, to efficiently
choose the value of w. The output of Eq. (9) also belongs to [0,1],
and to have binary output, all values greater than or equal to
0.5 were set to 1, otherwise they were set to zero

Eðx,yÞ ¼
w�EnEðx,yÞþð1�wÞ�EnSðx,yÞ

max w�EnEðx,yÞþð1�wÞ�EnSðx,yÞð Þ
ð9Þ

where E is the final edge strength, w is the combination coefficient,
and EnE and EnS are the strengths of edges from energy and
skewness images, respectively.

2.3. Evaluation of the edge detector performance

There are two techniques to evaluate the performance of edge
detectors, subjective measures and objective measures [24].
Subjective techniques are borrowed from the field of psychology
and the human judgment. Although these measures seem easy to
be put into practice, they have some disadvantages. The number
of characteristics a human eye can distinguish is limited. Further-
more, the judgment depends on the individual experience as well
as the image type.

Fig. 3. The Canny detector outputs for two different natures images, (a) and (d). For s¼1, the detection was noisy for the first image (b), and reasonably accurate for the

second image (e). While For s¼2, the detection became better for the first image (c), and poorer for the second image (f).

Fig. 4. A schematic diagram for the positive and negative skewness, (a) and (b);

respectively, with respect to the normal distribution.

Fig. 5. Schematic diagram for how the gradient orientation does not pass by the

centers of the pixels, and passes by an intermediate pixel which can be calculated

by quadratic interpolation among the neighbored pixels.

Fig. 6. A schematic diagram for a disconnect edge and how it is transferred to a

connected edge using the flux equilibrium condition.
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On the other hand, objective measures are borrowed from the
digital signal processing field and information theory, and provide
equations that can be used to calculate the amount of error in the
output edges image in comparison to the exact edges image. In
this study, the objective measures are divided into two groups,
namely the global measures and the local measures. The global
objective measures evaluates the integral differences between the
exact and output edges images, and they include the root mean
square error (ERMS) and the signal to noise ratio (SNR), which are
given by

ERMS¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M�N

XM
r ¼ 1

XN

c ¼ 1

Eðr,cÞ�Oðr,cÞ½ �
2

vuut ð10Þ

SNR¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
r ¼ 1

PN
c ¼ 1 Eðr,cÞ½ �

2PM
r ¼ 1

PN
c ¼ 1 Eðr,cÞ�Oðr,cÞ½ �

2

vuut ð11Þ

where O(r, c) is the exact edges image, E(r, c) is the output edges
image, M is the number of image rows, and N is the number of
image columns.

The local objective measures evaluate the differential differ-
ences between the exact and the output edges images, and they
include the percentage of the edges localization error and the
energy dissipation around the edges. The localization errors of the
edges is calculated by inspecting the output edges distributions in
x and y directions, and comparing these distributions to those of
the exact edges, as given by Eq. (12) and schematically shown in
Fig. 7. The total localization error (LE) is the average value of all
rows and columns localization errors

Localization error¼

P
pixels of exact edges�

P
pixels of output edges

�� ��
N

�100%

ð12Þ

where N is the total number of pixels in the evaluation direction
(i.e., row direction or column direction).

Alternatively, since suppression methods may fail to reduce
the edge width to exactly one pixel, the edge still cover more than
one pixel, as shown in Fig. 8, results in more energy loss (i.e.,
energy dissipation) around this edge. This dissipation can be
displayed by the strengths distribution around the edge. The area
under the first derivative curve is expected to be more dissipated
for the output edges image than for the exact edges image, and
can be used to calculate the energy dissipation at the edge, as
given in Eq. (13). The total energy dissipation (ED) is the average
value of all rows and columns energy dissipations and Fig. 8d
shows how the local energy dissipation value changes with the
ratio between these areas

Energy dissipation¼ log
Aoutput

Aexact

� �
¼ log ðAoutputÞ ð13ÞFig. 7. Schematic diagram for how the differential evaluation technique is used to

compare the difference in localization between the exact and output edges.

Fig. 8. (a) An one vertical edge image under inspection for the row wise edge strengths distribution. (b) The exact amplitude distribution of pixels in row number (r).

(c) The edge detector output for the amplitude distribution of pixels in row number (r). (d) The variation of the local energy dissipation with the ratio between the detected

areas in (b) and (c).
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where Aexact and Aoutput are the areas under the first derivative
curves corresponding to exact and output edges images,
respectively.

While the local objective measures are not related, they both
form a set of two ‘‘geometrical’’ elements (LE%, ED), since the first
measure concerns with location, and the second measure con-
cerns with area. And from definition, they have the same priority
in the evaluation of the edge detector performance.

3. Experimental results and discussion

The proposed edge detection method has been tested on images
of different natures including primitive features, such as circle,
rectangle, alphabets, and numbers, as well as real world images
such as human face and hair, fingerprint, and intramuscular fat
images. Parametric studies were investigated for the best estima-
tion of the mask size, the mask represented pixel, the flux check
matrix size, and the combination coefficient. Afterwards, the sub-
jective and objective evaluation measures were applied to estimate
the efficiency of the proposed method in comparison with the other
conventional gradient methods. Finally, the proposed method was
successfully applied to detect the intramuscular fat boundaries in
an image of meat slice, as a life science engineering application.

3.1. The outputs of the proposed method

The proposed edge detector was applied on a gray level test
image of human face, hair, and background frames, which is given

in Fig. 9a, with a mask size of 5n5, a flux check matrix of size 3n3
and the mask represented pixel is its centroid. The energy image
provides a discernable contrast smoothed image, as shown in
Fig. 9b, while the skewness image provides a smoothed detailed
water mark image, as shown in Fig. 9c. The edges found in the
energy and skewness images are shown in Fig. 9d and e, respec-
tively. The output edges image, given in Fig. 9f, is a combined
version of the energy and skewness edges, with a combination
coefficient w¼0.75

Fig. 9f clarifies that the output edges image handles the large
scale edges such as background frames and shoulders boundaries,
as well as the fine scale edges such as hair, eyes, and nose details.

3.2. Sensitivity to the mask represented pixel and mask size

As stated before, either the center or centroid pixel is chosen to
represent the mask. But results show how the detection behavior
is different for both choices, as shown in Fig. 10b and c for an
exact edges image contains some primitive features given in Fig
10a. The objective evaluation measures, showing a significant
lower ERMS, higher SNR, lower localization error, and lower
energy dissipation for the mask centroid case, as presented in
Table 1. Therefore, the mask centroid was selected to represent
the mask in the proposed detection method.

An investigation was also made for the influence of the mask
size on the detection results, since it does not only affect the
resolution of the represented image, but also the accuracy in
calculating the gradient image. For two different natures images,
which are the primitive features image of Fig. 10a and a

Fig. 9. (a) A gray level test image, (b) its energy image, (c) its skewness image, (d) the energy edges image, (e) the skewness edges image, and (f) the final edges image as a

combination between the energy and skewness edges images (mask size¼5*5, represented pixel is its centroid, flux check matrix size¼3*3, mask, and w¼0.75).

Fig. 10. (a) Gray level image with primitive features, and its edges image produced by the proposed method (mask size¼5*5, flux check matrix size¼3*3, w¼0.75) with a

mask represented pixel set at (b) mask centroid, and (c) mask center.
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fingerprint image given in Fig. 11a, the proposed method was
applied with several mask sizes (nnn) and n¼3, 5, 7, 9, 11, 13, and
15. To implement the objective measures of performance evalua-
tion, the exact edges of the images (i.e., o(x, y)) are required,
which is quite not possible for many real world images. But for
the two test images, they were assumed to be edges images, after
being thinned by the non-maximum suppression algorithm.
Afterwards, the averaged ERMS and SNR of the output images
are plotted in Fig. 11b with respect to the mask size, implying that
the best detection was achieved with a 5n5 mask size.

3.3. Sensitivity to the flux check matrix size

The level of discontinuity coverage in the edges image is related
to the flux equilibrium analysis and therefore the selected flux
check matrix size. To observe the influence of this matrix size on
the detection results, different sizes were examined on the finger-
print and primitive features images [mask size¼5n5, mask repre-
sented pixel is its centroid, w¼0.75], giving the detection and
objective measures results displayed in Fig. 12. The corresponding
values of ERMS and SNR reflect how the detection performance
downgrades if no flux equilibrium check was applied, and is better
and almost the same for different sizes flux check matrices.
Therefore, a 3n3 flux check matrix was implemented in the
proposed method.

3.4. Sensitivity to the combination coefficient

After obtaining an edges image for each of the energy and
skewness images, a combination had to be performed to obtain one
output edges image. The suggested formula for this combination,
which was given in Eq. (9), depends not only on the edges given by

Table 1
Edge detection performance for the primitive features image by the proposed

method for two different mask represented pixels, namely the mask center and

the mask centroid.

Represented pixel Global measures Local measures (LE%, ED)

ERMS SNR

Mask center 0.238 0.542 (23.405, 0.422)

Mask centroid 0.236 0.561 (22.375, 0.401)

Fig. 11. (a) A gray level fingerprint image. (b) The variation of the ERMS and SNR with the mask size (mask represented pixel is its centroid, flux check matrix size¼3*3,

w¼0.75). Where ERMS and SNR are the averaged values between those for the primitive features image and those for the fingerprint image.

Fig. 12. The variation of the averaged ERMS and SNR with the size of the flux check matrix (mask size¼5*5, mask represented pixel is its centroid, w¼0.75). Where ERMS

and SNR are the averaged values between those for the primitive features image and those for the fingerprint image.
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each particular image, but also on the combination coefficient.
Determination of the best value for this combination coefficient is
required to produce the most outstanding detection results. There-
fore, the proposed method was applied on the primitive features
image of Fig. 10a, and the fingerprint image of Fig. 11a, with several
combination coefficient values varies from 0 to 1 with a pitch of
0.05. Values for the SNR, ERMS, Localization Error, and Energy
Dissipation are averaged for the two test images, producing the
results plotted in Fig. 13. When w¼0, the output edges image is
identical to the skewness edges image, and when w¼1, it is the
energy edges image.

From Fig. 13, the variations in the Localization Error and
Energy Dissipation are very small with the variation of w. On
the other hand, the best values for SNR, ERMS were achieved at
w¼0.75, so it was chosen as the combination coefficient value for
the proposed method.

3.5. Comparison to the conventional edge detection methods

3.5.1. Test case 1: fingerprint image

The subjective evaluation measures were used to evaluate the
performance of the proposed method in detecting the edges of the
fingerprint image of Fig. 11a, in comparison with the results of
Roberts, Prewitt, Sobel and Canny detectors, as shown in Fig. 14. By
visual inspection of the edges images given in Fig. 14, the proposed
method produces more accurate and detailed edges image.

The objective evaluation measures were also calculated and
presented in Table 2 for the edges given by canny detector
(Fig. 14d) and the proposed detector (Fig. 14e). From the results
given in Table 2, the proposed method achieved higher SNR, less
ERMS, less LE%, and higher ED, in comparison to the Canny
detector, indicating the efficiency of the proposed method in

detection and identification of the fingerprints, but with slightly
more energy dissipation than the detection of Canny. In general,
increment of the ED value means that the suppression technique
requires more improvement.

3.5.2. Test case 2: primitive features image

Another experiment was applied to the exact edges image of
the primitive features of Fig. 10a, and the ERMS, SNR, LE%, and ED

for both Canny detector results, which are displayed in Fig. 15a,
and the proposed detector results, which are displayed in Fig. 15b,
are presented in Table 3. The results clarify a significant better
performance for the proposed method with respect to the first
three measures, and a little higher ED value which is thought not
to change the results accuracy. This example shows how the
proposed method works reasonably in the text recognition.

3.6. Application to fat content prediction in marbled meat

The proposed edge detection method was used to predict the
fat content in marbled meat images. Traditionally, the gravimetry
ether extraction method [25] was extensively known as a stan-
dard reference analysis method for measuring the fat content in
meat. The method uses an organic solvent (ether) extract of a
dried sample followed by gravimetric measurement of fat. It was
known as a simple, accurate and robust technique for estimating
the fat content in meat [26]. However, it had several drawbacks
such as its long drying and extraction times, lack of automation,
and the amount of solvent used per sample, moreover, it is
considered as a destructive testing (DT) method. These drawbacks
can be avoided by using the image processing and edge detection
techniques, and therefore improves the evaluation of the meat
quality through prediction of fat content. However, the usages of
image processing within the meat products have some common
problems such as the specular reflections caused by moisture on
the meat surface. Therefore, a pre-processing step is often used to
improve the image quality and increase the accuracy of the
analysis outputs [27].

Fig. 13. The variation of the objective evaluation measures with the combination

coefficient (mask size¼5*5, mask represented pixel is its centroid, flux check

matrix size¼3*3). Where SNR , ERMS , LE and ED are the averaged SNR, ERMS,

localization error, and energy dissipation between those for the primitive features

image and those for the fingerprint image.

Fig. 14. (a) Edges image by 3*3 Prewitt edge detector, (b) edges image by 2*2 Roberts detector, (c) edges image by 3*3 Sobel detector, (d) edges image by Canny detector

with filter size of 1.5, and (e) edges image by the proposed detection method (mask size¼5*5, mask represented pixel is its centroid, flux check matrix size¼3*3, w¼0.75).

Table 2
Edge detection performance for the fingerprint image by Canny and the proposed

methods.

Method Global measures Local measures (LE%, ED)

ERMS SNR

Canny 0.390 0.493 (34.661, 0.456)

Proposed 0.381 0.635 (28, 0.458)
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In this study, the pre-processing step started with the
elimination of the background area from the marbled meat
slices images using the histogram thresholding analysis

techniques [28]. Afterwards, the anisotropic diffusion filter, which
is given by Eq. (14), was applied to reduce the specular reflec-
tions and speckles without influencing the edges of the images

Fig. 15. (a) Edges image by Canny detector with filter size of 1.5, and (b) edges image by the proposed detection method (mask size¼5*5, flux check matrix size¼3*3, w¼0.75).

Table 3
Edge detection performance for the primitive features image by Canny and the proposed method.

Method Global measures Local measures (LE%, ED)

ERMS SNR

Canny 0.240 0.527 (24.277, 0.397)

Proposed 0.236 0.561 (22.373, 0.398)

Fig. 16. (a) Part of a meat image showing the reflection of light from the meat surface due to the moisture and the muscle fibrous texture, (b) the meat image after applying

the anisotropic diffusion filter, (c) edges image for the original meat image showing the false edges due light speckles, and (d) edges image after removing the speckles.
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objects

dI

dt
¼ divðDðx,y,tÞDIÞþrDrI ð14Þ

where div is the divergence operator, D is the diffusion coefficient
and it is assumed to be function of the gradient of the color
intensityDðx,y,tÞ ¼ f :rIðx,y,tÞ:

� 	
, I is the pixels color intensity and r

and D indicates the gradient and Laplacian operators, respec-
tively, with respect to the space variables.

The anisotropic diffusion filter works to reduce the noises and
speckles without removing the significant parts of the image
content, typically edges, lines or other details that are important
for the interpretation of the image [29]. The application of the
anisotropic diffusion filtration is shown in Fig. 16, for one of the
meat images. The original image, as displayed in Fig. 16a, has
specular reflections and speckles due to the light reflection from
the moist areas and also from the meat muscle fibrous surface
texture. The filtered image, which is shown in Fig. 16b, is free
from these reflections and speckles to be more convenient for
recognizing the fat and meat regions and not to analyze the
surface texture. The edges image for the original and the filtered
images showed the reduction of the false edges due light speckles
(reflecting from the flesh texture) after the filtration process, as
given in Fig. 16c and d, respectively.

After filtration, the proposed edge detection method was applied
in combination with the region growing method to enhance the
detection accuracy of the fat content in meat. In general, the region
growing method use initial seed points to group the individual
pixels of an image into regions if they have similar average gray
level [30,31]. The formulation of the method can be given by

RegionðRÞ ¼ [
n

i ¼ 1
Ri for all \

i
Ria| ð15Þ

Ri\Rj ¼ | for all ia j ð16Þ

HðRiÞ ¼ True for all connected regions ðiÞ ð17Þ

where Ri and Rj are two independent groups of connected regions,
(i, j)¼1, 2, y, n and H is homogeneity criterion that control the
selection of the enclosed regions.

The selection of a homogeneity condition is depending on the
marginal difference in color intensity (Df) between the starting seed
and the neighborhood pixels. The algorithm examines the color
intensity of the neighborhood pixels and decides whether to stop
the region growth or continue. The edge detection algorithm was
used to derive an initial set of seed points. The regions are grown
from these initial seed points relative to the region pixel and edge
pixel. Image edges act as hard barriers during region growing.

Fig. 17. (a) The original marbled meat images, (b) the edges images using the proposed method (mask size¼5*5, flux check matrix size¼3*3, w¼0.75), (c) the detected fat

regions after applying the region growing method, and (d) the percentage of fat content in the images.
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For marbled meat samples of different fat content, the proposed
edge detection method was applied on their digital images, as
shown in Fig. 17a for five selected samples, producing the edges
of the fat regions, as shown in Fig. 17b. The participation of the
skewness feature in the edge detector made the algorithm sensitive
to the small color variations. Therefore, it helped the model to
overcome un-resolute distinguishing between the fat and the
connective tissues [32]. The edges image was then post processed
by the region growing method to recognize the sizes of the detected
fat regions, as shown in Fig. 17c. Afterwards, the total percentage Z
of fat in the meat area was calculated in Fig. 17d, using the formula
of Eq. (17). Integration of the proposed method for surface fat
content recognition with an ultrasound technique for under layer fat
content recognition, will present a complete recognition system in
general three dimensional non-uniform marbled meat

Z¼
R
OfFatðx,yÞdAR

OdA
� 100 ð18Þ

where O is the total meat area and fFat(x, y) is the fat presence
parameter, which equals one if the pixel is on fat region, and zero
otherwise.

4. Conclusion

This work is contributed for automating fat content measurement
by means of image processing, since fat content is one of the most
important parameter in determining meat quality. Existing tradi-
tional evaluation techniques are time consuming, expensive and
destructive. Image processing techniques and particularly edge
detection techniques have shown the ability to identify the bound-
aries of the intramuscular fat and therefore the amount of fat content
in the marbled meat slices images. However, most of the gradient
based edge detectors suffer from sensitivity to noise because the
original images are not pre-smoothed. Furthermore, smoothing the
original image with Gaussian filter, does not promise optimum
detection level, because it is dependent on the filter size. In this
study, an edge detection method was developed based on combina-
tion and enhancement of two novel image features, which are image
energy and image skewness, as smoothed versions of the original
image. Subsequently, a flux equilibrium check technique on the edge
direction was defined and applied to avoid discontinuity in the
resultant edge image. The results implying that the proposed method
is more enhanced with significant improvements in comparison to
other conventional gradient based edge detection methods, with
respect to both subjective and objective evaluation measures.

Further work will be focused on the application of higher order
gradient operators, in accordance testing the availability to imple-
ment the lattice method to improve the propagation of the mask
on the entire image. Ultrasonic detection techniques, which are as
well reliable and non-destructive, may also be combined with the
proposed method to detect the under layer fat content, and have
the overall 3-D fat content for the samples.
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3.3 Species taxonomy by bioacoustics classification  
 
The developed spectrogram enhancement approach is applied to clean 
spectrograms of bioacoustics calls generated by birds and bat species. Since bat 
echolocations are ultrasound calls, they are expanded in time domain with a factor 
of 10 or 13 to be in the human hearing range.  
Due to its edge detection based method, the enhanced spectrograms by the 
developed approach return almost the same temporal and spectral structure of the 
sound patterns. Most of other traditional approaches interact with the spectrogram 
during enhancement, either in time domain (through wave form of the call) or in 
frequency domain (through power spectrum and frequency contents of the call). As 
a result, the structure and shape of the produced sound patterns may be altered. 
Having an enhanced spectrogram with undestroyed sound patterns eases the 
identification and classification processes.  
Few two dimension features, which define sound patterns, are extracted for some 
bird and bat species. These features are employed to classify spectrograms of 
candidate calls into their associated species, as described in figure (3.4). 
 

 

Figure (3.4): Description for the classification of sound producing species by the 2D features of their 
enhanced spectrograms. 

 
Additionally, the representation of a sound pattern by its edges boundary (i.e., 
contour) greatly reduces the amount of computation for feature extraction. The 
reason is that contour pixels are generally a small subset of the total number of 
pixels in a sound pattern. 
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ABSTRACT 

Accurate recognition of sound patterns in spectrograms is important step for further recognition 

applications. However, background noise forms fundamental problem regardless the species under study. 

In this paper, crest factor feature was extracted from the limited dynamic range spectrogram. The 

developed crest factor image behaved as smoothed version of the spectrogram, at which edges of the 

involved sound patterns were detected without the need of prior smoothing filters and their scaling 

constraints. Attached noise – surrounds the detected edges – was removed, to form the enhanced 

spectrogram. The method was compared to other enhancement approaches such like spectral Subtraction 

and wavelet packet decomposition. Comparison was performed on different structure patterns of bats and 

birds. Results indicate how the method is promising for efficiently enhancing the spectrogram while 

preserving its temporal and spectral accuracy. The method correctly classified three bioacoustics species 

with an accuracy of 94.59%, using few 2D features of their enhanced spectrograms 

. 

Keywords  

Spectrogram Enhancement, Edge Detection, Bioacoustics Classification, Pattern Recognition. 

1. Introduction 

1.1. Problem formulation 

Bioacoustics calls have been efficiently employed for a long time for species detection, 

classification, and recognition. These calls handle the sound patterns which are almost unique and 

oriented for the investigated bio-source. Several temporal and spectral sound features are 

extracted from these patterns in time and frequency domains; respectively. These features are 

used to train and develop a learning system, using methods such as Artificial Neural Network, 

which afterwards is able to successfully recognize the test bioacoustics calls to their 

corresponding groups or species, according to their features values. The approach have been 

widely used in many life science problems, such as the bioacoustics detection of hidden grain 

weevils for early treatment [1], and detection of bat ultrasound echolocation calls in the windmills 

region to avoid their expected collision with the blades[2].    

 

In general, collection of time domain and frequency domain features are used to develop more 

accurate detection system, revealing the importance of having a reliable spectrogram (time-

frequency intensity 2D image) of the specified sound.Spectrogram is an important representation 

of sound data looks like the human hearing which is based on a kind of real-time spectrogram 
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encoded by the cochlea of the inner ear [3], to classify and recognize patterns of sound samples. 

However, spectrogram is usually attached by different forms of noise; including those formed 

during sound recording[4],and those produced during the transformation to frequency domain 

result in spectral leakage, and up to 10% error(s) infrequency and/or power spectrum 

computations [5]. These noises directly degrade the quality of the waveform, deteriorate the 

worth of the extracted features and thus lead to inaccuracy in recognition of the sound patterns 

[6].Further difficulty is added to the problem due to variability of patterns structure, which can 

vary greatly including vertical straight, sloped straight, sinusoidal type and relatively random 

patterns. However, filtering noisy signals through the spectrogram is considered more effective 

than separate filtrations in time and/or frequency domain, since sound patterns do not cover the 

whole spectrogram image, and therefore easier to filter off the noise. 

A spectrogram enhancement approach which is independent on the noise type, level, and structure 

is required. Once established, the pattern recognition algorithms can operate efficiently and 

smoothly on the clear “only patterns” spectrogram. Therefore, the problem of spectrogram 

enhancement and accurate detection of the sound patterns has attracted researchers’ interest from 

a variety of backgrounds ranging among signal and image processing, and statistical models [7,8]. 

1.2. Related work 

Common and recent techniques for spectrogram enhancement include basic band pass 

filtering[9], spectral subtraction[10], Wiener filter[11], and wavelet packet decomposition[12, 

13].Simple methods, such as the band pass filtering, originally employed the use of time-domain 

filtering of the corrupted signal, however, this is only successful when removing low or high 

frequency noise and does not provide satisfactory results for many species which have frequency 

range overlaps with their attached noises [14]. 

Although the base spectral subtraction method is very simple and efficient, it assumes the noise to 

be additive and uncorrelated with the signal [15]. Moreover, the enhancement by spectral 

subtraction tends to produce sounds with musical artifacts that are often more objectionable than 

the original noise [16]. Later, the multi-band spectral subtraction method was proposed, at which 

the corrupted sound is initially divided into several frequency bands, and then the spectral 

subtraction method is applied to each band[17]. This method outperforms the standard power 

spectral subtraction method resulting in superior spectrogram quality and largely reduced musical 

noise. Meanwhile, the Wiener filter technique basically considers the beginning of a signal is 

noise, and its adaptive type removes noise based on a training data [18]. However, during the 

operation on data with unknown noise, the noise level can be underestimated and the 

enhancement can be slightly milder [19]. The methods based on wavelet packet decomposition 

are effective in removing background noise in the spectrogram. But they cannot suppress much of 

the noise generated during the Fourier transformation, because the former noise is usually random 

Gaussian distribution while the latter may be modeled by Rayleigh distribution [7,20]. 

 

Image analysis techniques applied to this area treat the spectrogram as an image, provides a wide 

range of methods which could be beneficial to this problem. One of these developed methods is 

the noise suppression using spectrogram morphological filtering [21,22], applying two 

subsequent operations of erosion and dilation. The erosion was responsible to remove noise from 

the noisy spectrogram while dilation used to restore any erroneously removed sound patterns. 

However, it improves the enhancement accuracy by only 10% when combined by nonlinear 

spectral subtraction with a suitable selection of the threshold. The author in [23] proposed an edge 

detection method which initially smoothes the spectrogram using a Gaussian filter, followed by 

thresholding each point by comparison to the background measurement. This allows for time 

invariant noise conditions and computing independently for each frequency bin, which 

successfully detected (90%) of whale calls. If the smoothing kernel is quite large, the detrimental 

effect is reduction in the detection accuracy, especially at low SNR. Meanwhile, the authors in 

[24] passed the spectrogram through 2D bilateral filter to reduce noise and preserve its patterns 
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edges. The filtered spectrogram is sent to two parallel processing paths, at which the first path 

extracts significant patterns from background noise. The second path performs the edge detection 

and restructures the rough patterns that can be used as a mask. The processed image from the first 

path passes through a mask generated from the second path. However, pattern recognition still 

severely depends on image processing skills and spectrogram resolutions which lead to 

concealment of very short patterns. Apartial differential equation technique was used in [25] for 

edge enhancement and noise reduction based on a regularization of the mean curvature motion 

equation. However, the comparisons indicate that the method gives almost similar results as the 

wavelet based methods.  

In this paper, an improved spectrogram enhancement method has been developed based on the 

last advances in the edge detection techniques. The dynamic power range of the spectrogram is 

limited to avoid the problem of low level portions of the spectrogram expanding and thereby 

obscuring the detail of the energetic portions. Afterwards, the crest factor image is calculated as a 

smoothed version of the original spectrogram image, hence escaping the application of smoothing 

Gaussian filters and their drawbacks [26].Based on the edge detection algorithm presented in 

[28], the sound patterns in the crest factor image are detected. Afterwards, the original power 

values of the patterns edges and their interior are reconstructed, while the power values of the 

patterns surrounding are eliminated, as they represent the attached noises whether attached to the 

sound or generated during the frequency domain transformation. The proposed method was 

applied to several bioacoustics calls of different SNR values, and compared to the results given 

by band pass, multi-band spectral subtraction, Wienerfilter, and wavelet packet decomposition 

methods, with respect to subjective and objective measures. Finally, possible implementations of 

the proposed method in obtaining the enhanced frequency and power contours, reconstruction of 

the enhanced waveform, and simplified pattern recognition operation are presented. 

2. Material and method 

2.1.Signal processing 

Audio sound streams are sampled in time domain with suitable sampling frequencies, selected to 

be higher than the double of maximum frequency in the sound stream, satisfying the Nyquist 

sampling theorem [5] and avoid antialiasing in the signal reconstruction. Figure (1) shows an 

example for the call of Sitta canadensis bird which was sampled at 11025 Hz. The signal is 

divided into segments with length of 1% of the total signal length and 90% overlapping 

percentage. Each segment is then multiplied by Bartlett window function and transformed to 

frequency domain through Fast Fourier Transform (FFT).  The frequency domain representation 

of the signal (i.e., spectrogram) is the power spectrum distribution with frequency, at each time 

instant, as plotted in figure (2).The implementation of the Bartlett window function is to have 

better frequency resolution while keeping acceptable spectral leakage and amplitude accuracy 

[27].  

The resultant spectrogram contains important sound patterns of the signal immersed in attached 

noise. These noises are not only due to the base noise attached to the sound, but also generated 

during FFT, therefore, cleaning the signal in time domain, will not ensure clean spectrogram. 
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Figure 1. A sound stream for Sitta canadensis bird in time domain revealing its contents of 

two long pulses and one long inter-interval. 

 

Figure 2. The spectrogram for the time domain signal of figure (1), after being divided into 

segments of length equal to 1% of the total signal length, multiplied by Bartlett window 

function and transformed to frequency domain using FFT. 

2.2.Limiting the dynamic range 

The attached noise to the spectrogram may be assumed to have almost same power value, which 

can be removed from the whole spectrogram. However, this will eliminate as well the non-noisy 

patterns which have this power value.Therefore, this thresholding scheme should be carefully 

applied through the physical fact of the limited dynamic range. Althoughthe whisper cannot be 

heard in loud surroundings, the spectrogram will contain all details about whisper and loud sound 

powers. Thus, the spectrogram powers have to be limited, to avoid much of the attached whisper 

(i.e., noise).The range is limited to 40 dB below the maximum value for all tested sounds, because 

most bioacoustics signals are expanded/slowed to the human speech range, which is normally 

perceived over this range [29]. Therefore, any point with power value outside this range, 

including those of noise as well as very weak patterns, are eliminated from the spectrogram, as 

shown in figure (3). 
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Figure 3. The limited spectrogram after the power values were limited to a dynamic range of 

40 dB, clarifying how most of the noise and very weak sound patterns were eliminated. 

2.3.Detection of the pattern edges 

The algorithm starts by sliding a 5*5 matrix (mask) over the limited dynamic range spectrogram 

image in x direction and then in y direction, with step of one pixel. The represented pixel of the 

mask is its centroid which is calculated by equation (1). The intensities of the pixels (i.e., power 

values) enclosed by the mask are used to calculate the crest factor feature, given in equation (2), 

which is a ratio of the maximum value to the root mean square value, indicating how much 

impacting is occurring inside the mask, as schematically explained in figure (4). ���� ���	
��
 = ∑ � ∗ ������ \ ∑ ������     (1) � = ���������               (2) 

Where fi is the gray level intensity value of pixel i, and the back slash means that only the 

quotient of the division is considered. ����� and  ���� are the peak and root mean square of the 

pixels intensities; respectively, and C is the crest factor of the mask. 

 

Figure 4. The crest factor for some basic curves, showing how much impacting occurs. 

As a result, the crest factor image is obtained, by gathering the local crest factors calculated 

during the sliding of the mask. Although this edge detection algorithm follows the one presented 

in [28], it is applied to the crest factor image instead of combination of energy and skewness 

images, because this combination presents both strong edges (output of the energy feature) and 

weak edges (output of the skewness feature). Hence, the noises are also detected as patterns, 

displayed in figure (5a)with a signal to noise ratio (SNR) - given in equation (3) - of1.95. 

Alternatively, the crest factor feature of an image presents the edges that have impact to their 
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surrounding (i.e., non-weak edges), as displayed in figure (5b) with SNR of2.82. Furthermore, the 

limited dynamic range makes the crest factor more meaningful since it is a measure of relative 

spatial intensity change. 

"#$ = 10'�(�) ∑ *+,���∑-*+,��� − */01�01-                                        (3) 

Where Pclean and Poutput are the clean and output power values; respectively.  

 
(a) 

 
(b) 

Figure5. Two features from the limited dynamic range spectrogram of figure (3), (a) combination 

of energy and skewness images, following the algorithm presented in [28], and (b) the crest 

factor image. 

Afterwards, the Sobel operators given in equation (4) are employed on the crest factor image, 

through equation (5),to get its gradient images (CxandCy). And with the aid of equations (6) and 

(7), the edges strength (E) and the edges directions (3) are calculated; respectively. 

∆5= 6−1 0 1−2 0 2−1 0 17 , ∆9= 6 1 2 10 0 0−1 −2 −17        (4) �5 = ∆5 ∗ �, �9 = ∆9 ∗ �         (5) < = =�5> + �9>(6) 

3 = 	��A� B�9�5C + D2     (7) 

Where∆5and∆9are the derivative operators in x and y directions; respectively. �5 and �9 are the 

intensities of the gradient images in x and y direction; respectively. E is the edge strength and 3 is 

the edge direction with the x-axis.  

 

Finally, the edges image is formed by the values of edges strength (E), and executed by the non-

maximum suppression algorithm and flux equilibrium check [28], to suppress thick edges to one 

pixel width and fill the missing pixels in the edge direction. Consequently, the final edges image, 

given in figure (6) is produced, which separates the patterns from surrounding noise. However, 

the edges do not provide information about where exactly are the inner of the patterns and where 

are their surroundings.  
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Figure 6. The edges image of the limited dynamic range spectrogram using 5*5 mask and a 

flux check matrix of size 3*3 

2.4. Reconstructing the spectrogram 

A classification condition is applied to each row and afterwards each column of the edges image. 

This condition compares the average power spectrum of all pixels among two subsequent edges 

in one row (column), with respect to the average power spectrum of these two edges, as clarified 

in the algorithm given in figure (7). 

 

Figure 7. Schematic diagram and algorithm for the classification condition which classifies sound 

patterns from their surrounding noise. 

Thus, the patterns are defined and their power values are restored, and the surrounding noises are 

also defined and their power values are eliminated, results in the enhanced spectrogram shown in 

figure (8). 

 

Figure 8. The enhanced spectrogram by the proposed method revealing sound patterns and 

eliminating their surrounding noise. 
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3. Experimental results and discussion 
 

The results obtained by the proposed method [PM] were investigated and compared to those 

obtained by conventional and modern spectrogram enhancement methods. The designing 

parameters of these methods were carefully selected to give best enhanced spectrogram for the 

first application (Rhinolophus blasii bat), and were fixed over the following applications to have 

leading results and trustful comparisons. The first method is the widely used band pass filter [BP] 

with a band width enclosing the sound patterns, and measured at half-power points (i.e., gain -3 

dB relative to peak). The second method is multi-band spectral subtraction [MBSS]using 4 

linearly-spaced frequency bands, over subtraction factor of 4 and power factor of 1.5 [7]. The 

third method employs the Wiener filter [WF]with a spectral distance threshold of 3 and the initial 

0.03 seconds considered as noise[11]. The fourth method is wavelet packet decomposition [WPD] 

with soft thresholding and 5 level decompositions using symlet 8 wavelet [14, 16]. The number of 

tested sound samples are 42 (each with 23-25 sec for Rhinolophus blasii bat), 37 (each with 23-25 

sec for Barbastella barbastellus bat), 48 (each with 0.55-0.9 sec for Vanellus vanellus bird), and 

45 (each with 0.55-0.9 sec for Parus major bird), with a frame length of0.025 sec multiplied by 

Bartlett window function, and 90% overlapping percentage.  

The analysis was applied by both subjective and objective measures of enhancement accuracy. 

The subjective measure is borrowed from the field of psychology and the human judgment of 

evaluation. One of the commonly used subjective measures is the Mean Opinion Score 

(MOS),which gives a numerical estimation of the perceived quality of the media received [30]. 

After enhancing the spectrogram, its time domain signal was reconstructed and played back to 10 

listeners. These listeners (5 females, and 5 males) were asked to give a score [1 = bad, 2 = poor, 3 

= fair, 4 = good, and 5 = excellent] to estimate the enhanced spectrogram quality. Afterwards, the 

MOS was calculated by averaging the given scores, and its confidence interval (CI) was 

computed for 95% confidence level, as described in figure (9). 

 

Figure 9. Normal distribution curve with 95% confidence level. A2 = P (z > z*) = (1 - 0.95) / 2 

= 0.025, P (z <= z*) = 1 - 0.025 = 0.975, results in z* = 1.96 (from normal distribution table). 

The confidence interval is(MOS − I1.96 ∗ σM, MOS + I1.96 ∗ σM). WhereI−N∗, N∗M encloses CI 

on the standard deviation axis (z) and O is the standard deviation of the opinion score. 

On the other hand, objective measures are borrowed from digital signal processing and 

information theory, providing equations that can be used to measure the enhancement accuracy of 

the enhanced spectrogram in comparison to the clean one. Four widely used and easy to 

implement objective measures were employed, having high correlation with diagnostic 

acceptability [11,30,31]. These measures are the overall Signal to Noise Ratio (SNR), Segmental 

Signal to Noise Ratio (SSNR), Log Spectral Distance (LSD), and Itakura Saito (IS), given by 

equations (3, 8, 9, and 10; respectively).SSNR is defined as the average of SNR values over 

segments with sound activity, LSD is the spectral distance or distortion measure, expressed in dB, 

between the enhanced and clean spectrograms, while IS a measure of the perceptual difference 

between these two spectrograms. Furthermore, the average eccentricity (AE) was calculated by 

equation (11), to simply check if the shape of sound patterns in the enhanced spectrogram was 

changed from those in the original spectrogram, results in indication of whether the enhanced 

spectrogram is augmented for further pattern recognition task. Eccentricity is the aspect ratio of 

length to width of the minimum rectangle bounding the sound pattern. 
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""#$ = 10P Q '�(�) Q R ∑ *+,���∑-*+,��� − */01�01-S
T�UTA�

��T�
VA�
��)         (8) 

X"Y =  Z 2[" Q \10'�(�) R *+,���*/01�01S]>^_/>
)                                  (9) 

a" = 2[" Q \ *+,���*/01�01 − '�(�) *+,���*/01�01 − 1]^_/>
)                           (10) 

b< = 1c Q Xded
f

d��                                                                             (11) 

Where FS is the sampling rate of the signal, Pclean and Poutput are the clean and enhanced power 

spectrum respectively. M is the number of spectrogram segments (set to 20), N is the number of 

samples on a segment. L and W are the length and width; respectively, for the minimum rectangle 

bounding the sound pattern, and K is the number of sound patterns in the spectrogram. 

The applications were selected to cover different spectrogram shapes, including those with 

narrow band, wide band, constant frequency, frequency modulated, short pulses, and long pulses 

patterns. The original bioacoustics calls in each application were corrupted by several white 

Gaussian noises, as descriptively shown in the left part of figure (10) for a saw tooth wave, result 

in several time domain SNRs (30, 20, 10, 5, and 1 dB), and in correspondence several 

spectrogram SNRs as demonstrated in the right part of figure (10), with average values of (3.66, 

2.89, 2, 1.73, 1.52 dB; respectively).For each application and for each SNR, the five enhancement 

methods (BP, MBSS, WF, WPD, and PM) were applied, and the results were subjectively and 

objectively compared. It is worthy to mention that the silent regions were being removed, because 

they can considerably influence the output objective measures. 
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Figure 10. (top) A description for how the addition of different white Gaussian noise changes 

the structure and SNR of the time domain signal. (bottom) The corresponding changes in the 

spectrogram SNR averaged for the five applications. 

3.1. Bioacoustics call of Rhinolophus blasii bat 

The echolocation call of the Rhinolophus blasii bat which was investigated in this section 

includes medium duration strong sound pulses separated by short intervals. These pulses cover 

short Frequency Modulated (FM) band around 5 KHz, roughly estimated as Constant Frequency 

(CF) band, which were slowed down by a time expansion factor of 10 to be in the audible range, 

as shown in figure (11a).BP approach was able to remove most of the added noise, by rejecting 

the spectrogram values outside the small band surrounds the frequency of 5 KHz, as graphically 

shown in figure (11b) and numerically in the second column(s) of Table 1. Instead, the MBSS 

and WF approaches were not successful to remove reasonable amount of noise, especially for 

input SNRs less than 20 dB. The spectrograms generated with MBSS approach tended to 

temporally spread out the sound pulses, while those generated by WF approach tended to 

temporally cut from the duration of the pulses, as displayed in figure (11c, 11d) and the third and 

fourth column(s) of Table 1; respectively.  

 

Figure 11. (a) One of Rhinolophus Blasii bat echolocation calls at SNR = 1 dB (with expansion 

factor of 10), and its enhanced spectrogram by (b) BP, (c) MBSS, (d) WF, (e) WPD, and (f) 

PM. 
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For higher values of input SNRs, the WF presented better enhancement. The WPD approach 

removed reasonable amount of noise and presented good estimation for the time domain 

resolution of the sound pulses. However, the five level decompositions produced repeated 

patterns along the frequency axis, as shown in figure (11e) and the fifth column(s) of Table 1. The 

PM dealt with the noisy spectrogram as an image, and was able to preserve the sound pulses 

while removing most of the attached noise, as expressed in figure (11f) and the sixth column(s) of 

Table 1. 

Table 1. The subjective and objective measures for the spectrogram of Rhinolophus Blasii call 

enhanced by BP, MBSS, WF, WPD, and PM 

(A) MOS 

input 

SNR 
noisy BP MBSS WF WPD PM 

1 1 (1,1) 2.8 (2.5,3) 1 (1,1) 1.1 (0.9,1.3) 1.7 (1.4,2) 1.6 (1.3,1.9) 

5 1.1 (0.9,1.3) 2.9 (2.7,3.1) 1 (1,1) 1.2 (0.9,1.5) 1.8 (1.5,2) 2 (1.6, 2.4) 

10 1.3 (1,1.6) 2.8 (2.5,3) 1.1 (0.9,1.3) 1.3 (1,1.6) 1.8 (1.4,2.2) 2.6 (2.3,2.9) 

20 1.3 (0.9,1.7) 3.1 (2.9,3.3) 1.3 (0.9,1.7) 1.8 (1.3,2.3) 1.9 (1.5,2.2) 4.9 (4.7,5.1) 

30 1.6 (1.3,1.9) 3.3 (3,3.6) 1.5 (1.1,1.9) 2.5 (2.2,2.8) 2 (1.7,2.3) 5 (5,5) 

(B) SNR 

input SNR noisy BP MBSS WF WPD PM 

1 2.238 15.399 2.1390 2.565 7.734 6.903 

5 2.579 15.711 2.505 3.227 8.695 8.936 

10 3.097 16.207 3.017 3.983 8.912 13.594 

20 4.344 17.322 4.200 7.786 9.319 31.798 

30 5.982 18.700 5.696 13.142 10.113 31.930 

(C) SSNR 

input SNR noisy BP MBSS WF WPD PM 

1 1.755 3.278 1.744 1.793 2.472 2.292 

5 1.794 3.312 1.786 1.869 2.667 2.526 

10 1.854 3.369 1.845 1.956 2.765 3.063 

20 1.998 3.495 1.981 2.395 2.859 6.470 

30 2.187 3.651 2.155 3.057 3.004 5.187 

(D) LSD 

input SNR noisy BP MBSS WF WPD PM 

1 1.260 0.537 1.834 2.125 1.011 0.767 

5 1.002 0.352 1.826 2.020 0.655 0.620 

10 1.050 0.501 1.708 1.743 0.520 0.560 

20 0.697 0.312 1.500 1.267 0.218 0.311 

30 0.528 0.279 1.256 1.044 0.144 0.279 

(E) IS 

input SNR noisy BP MBSS WF WPD PM 

1 1.281 0.186 3.455 5.296 0.833 0.392 

5 0.731 0.076 3.410 4.559 0.334 0.242 

10 0.815 0.155 2.828 2.997 0.216 0.191 

20 0.313 0.056 1.994 1.294 0.049 0.054 

30 0.169 0.043 1.266 0.803 0.023 0.043 

(F) AE 

input SNR noisy BP MBSS WF WPD PM 

1 3.51 3.51 4.21 2.75 5.16 3.52 

5 3.51 3.51 4.21 2.79 5.15 3.52 

10 3.51 3.51 3.97 3.06 4.99 3.52 

20 3.51 3.51 3.84 3.11 4.64 3.52 

30 3.51 3.51 3.75 3.14 4.32 3.52 
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3.2. Bioacoustics call of Barbastellabarbastellus bat 

As an alternative, the echolocation call of the Barbastella barbastellus bat includes very short 

duration sound pulses separated by non-fixed intervals. The pulses cover long Frequency 

Modulated (FM) band over the region [25-100] KHz, which were also slowed down by a time 

expansion factor of 10 to be in the audible range, as demonstrated in figure (12a). Since the 

frequency band covered by the sound pulses is large, BP approach was not able to remove most 

of the noise into this band, as graphically shown in figure (12b) and numerically in the second 

column(s) of Table 2. Meanwhile, the pulses were temporally spread out by MBSS approach; 

however, it removed reasonable amount of noise, as displayed in figure (12c) and the third 

column(s) of Table 2. The WF approach removed higher amount of noise except those exist in the 

beginning of the signal. There are also spectral cut from the pulses along the frequency axis and 

the temporal resolution is degraded, as given in figure (12d) and the fourth column(s) of Table 2. 

Although the spectral resolution of the spectrograms generated by the WPD approach still corrupt 

and low frequency noise was not removed, there were no possibility for the repetition of the 

pulses along the frequency axis because the covered FM band is considerably high, as clarified in 

figure (12e) and the fifth column(s) of Table 2. The PM has the same performance as in 

application 1, by keeping the temporal and spectral properties of the pulses while removed most 

of the attached noise, as shown in figure (12f) and the sixth column(s) of Table 2.  

 

Figure 12. (a) One of Barbastella Barbastellus bat echolocation calls at SNR = 5 dB (with 

expansion factor of 10), and its enhanced spectrogram by (b) BP, (c) MBSS, (d) WF, (e) WPD, 

and (f) PM. 
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Table 2. The subjective and objective measures for the spectrogram of Barbastella barbastellus call 

enhanced by BP, MBSS, WF, WPD, and PM 

(A) MOS 

input 

SNR 
noisy BP MBSS WF WPD PM 

1 1 (1,1) 1.2 (0.9,1.5) 1.3 (1,1.6) 2.1 (1.9,2.3) 2.7 (2.4,3) 2 (1.7,2.3) 

5 1.1 (0.9,1.3) 1.3 (1,1.6) 1.4 (1.1,1.7) 2.4 (2.1,2.7) 2.8 (2.5,3.1) 2.4 (2.1,2.7) 

10 1.3 (0.9,1.7) 1.4 (1,1.8) 1.5 (1.2,1.8) 2.6 (2.3,2.9) 2.9 (2.7,3.1) 3.4 (3.1,3.7) 

20 1.4 (1,1.7) 1.6 (1.3,1.9) 1.9 (1.7,2.1) 2.8 (2.4,3.2) 3.1 (2.9,3.3) 5 (5,5) 

30 1.7 (1.4,2) 1.9 (1.7,2.1) 2.3 (2,2.6) 2.9 (2.7,3.1) 3.2 (2.9,3.5) 5 (5,5) 

(B) SNR 

input SNR noisy BP MBSS WF WPD PM 

1 2.303 3.379 3.757 7.918 10.939 7.140 

5 2.662 3.760 4.307 9.272 11.595 9.500 

10 3.181 4.273 5.023 10.456 12.149 14.289 

20 4.393 5.454 6.937 11.691 13.089 22.826 

30 5.745 6.732 9.236 11.917 13.182 22.872 

(C) SSNR 

input SNR noisy BP MBSS WF WPD PM 

1 1.763 1.886 1.931 2.510 2.843 2.320 

5 1.804 1.930 1.995 2.782 2.961 2.592 

10 1.864 1.989 2.078 3.182 3.077 3.158 

20 2.004 2.126 2.312 5.017 3.376 6.814 

30 2.163 2.278 2.659 4.233 3.628 3.386 

(D) LSD 

input SNR noisy BP MBSS WF WPD PM 

1 0.942 1.015 0.600 0.194 0.278 0.610 

5 0.943 0.888 0.466 0.140 0.191 0.485 

10 0.859 0.715 0.417 0.209 0.171 0.360 

20 0.571 0.535 0.244 0.201 0.124 0.121 

30 0.407 0.367 0.135 0.392 0.173 0.195 

(E) IS 

input SNR noisy BP MBSS WF WPD PM 

1 0.630 0.777 0.228 0.036 0.059 0.234 

5 0.631 0.564 0.133 0.021 0.032 0.141 

10 0.506 0.341 0.107 0.025 0.020 0.074 

20 0.203 0.179 0.042 0.024 0.015 0.008 

30 0.100 0.082 0.022 0.071 0.018 0.021 

(F) AE 

input SNR noisy BP MBSS WF WPD PM 

1 57 57 56.6 6 16.27 57 

5 57 57 56.8 9.31 19 57 

10 57 57 56.8 14.54 34.52 57 

20 57 57 56.85 21.13 47.33 57 

30 57 57 56.85 30.46 54.18 57 

 

3.3. Bioacoustics call of Vanellus vanellus bird 

As an example for a multi harmonic sound stream in the human hearing range, the bioacoustics 

call of Vanellus vanellus bird was investigated in the region bounded by 6 KHz. The sound 

stream contains three FM long pulses with dominant frequencies around (1, 2.2, and 4) KHz; 

respectively, followed by three downstream CF short pulses of fundamental frequencies around 

(2, 3, and 4) KHz; respectively, as given in figure (13a). Enhancement by the BP approach did not 

produce clear spectrogram, since the pulses cover much of the frequency axis, given high 
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constraint to the rejected band by this approach, as shown in figure (13b) and the second 

column(s) of Table 3. The enhanced spectrogram generated by the MBSS approach has 

reasonable temporal resolution and degraded spectral resolution of the sound pulses, especially 

for the downstream pulses which corrupted by high spectral distortion, as displayed in figure 

(13c) and the third column(s) of Table 3.On the other hand, the temporal and spectral resolutions 

of the spectrogram generated by WF approach are acceptable, although there is little spectral 

leakage for the downstream pulses and initial sound noise (< 0.03 sec) were not removed, as 

plotted in figure (13d) and the fourth column(s) of Table 3.Whereas the low frequency noise was 

not enhanced by the WPD approach, many temporal bands of noises were removed. The 

decomposition of the sound stream presented spectral mirrors of the weak harmonic patterns and 

almost eliminated the downstream pulses, as demonstrated in figure (13e) and the fifth column(s) 

of Table 3. Meanwhile, the enhanced spectrogram by PMre established high temporal and 

spectral resolutions of the sound pulses, as indicated by the obtained LSD, with high distinction 

from the attached noise, as designated by the obtained SNR and shown in figure (13f) and the 

sixth column(s) of Table 3.  

 

Figure 13. (a) One of Vanellus vanellus bird calls at SNR = 10 dB, and its enhanced spectrogram by 

(b) BP, (c) MBSS, (d) WF, (e) WPD, and (f) PM. 

Table 3. The subjective and objective measures for the spectrogram of Vanellus vanellus bird call 

enhanced by BP, MBSS, WF, WPD, and PM 
(A) MOS 

input 

SNR 
noisy BP MBSS WF WPD PM 

1 1 (1,1) 1.5 (1.2,1.8) 1.4 (1.1,1.7) 2 (1.7,2.3) 1.7 (1.4,2) 2.4 (2.1,2.7) 

5 1.4 (1.1,1.7) 1.6 (1.3,1.9) 1.5 (1.2,1.8) 2.2 (1.9,2.5) 1.8 (1.4,2.2) 2.9 (2.7,3.1) 

10 1.3 (1,1.6) 1.8 (1.4,2.2) 1.7 (1.3, 2.1) 2.4 (2.1,2.7) 1.9 (1.7,2.1) 3.7 (3.4,4) 

20 1.5 (1.2,1.8) 1.9 (1.5,2.3) 1.8 (1.4,2.2) 2.6 (2.3,2.9) 1.9 (1.7,2.1) 4.7 (4.4,5) 

30 1.6 (1.3,1.9) 2 (1.6,2.4) 1.8 (1.4,2.2) 2.7 (2.4,3) 1.9 (1.7,2.1) 5 (5,5) 

(B) SNR 

input SNR noisy BP MBSS WF WPD PM 

1 1.651 2.635 2.489 3.591 2.895 4.371 

5 1.941 2.843 2.689 4.046 3.180 5.414 

10 2.207 3.153 2.912 4.452 3.317 6.807 

20 2.662 3.532 3.108 4.771 3.422 9.078 

30 2.814 3.605 3.163 4.884 3.339 9.480 
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(C) SSNR 

input SNR noisy BP MBSS WF WPD PM 

1 1.688 1.801 1.784 1.925 1.896 2.001 

5 1.721 1.825 1.807 1.995 1.989 2.121 

10 1.752 1.861 1.833 2.059 2.036 2.283 

20 1.804 1.904 1.856 2.119 2.120 2.564 

30 1.822 1.913 1.863 2.162 1.991 2.621 

(D) LSD 

input SNR noisy BP MBSS WF WPD PM 

1 1.172 1.083 0.982 1.220 1.009 0.790 

5 1.042 0.938 0.876 1.141 0.907 0.505 

10 0.988 0.888 0.537 1.028 0.783 0.537 

20 0.814 0.783 0.753 1.012 0.587 0.267 

30 0.718 0.714 0.515 0.968 0.579 0.267 

(E) IS 

input SNR noisy BP MBSS WF WPD PM 

1 0.630 0.922 0.703 1.221 0.856 0.423 

5 0.803 0.649 0.538 1.031 0.657 0.156 

10 0.707 0.568 0.182 0.804 0.469 0.177 

20 0.451 0.425 0.385 0.771 0.248 0.041 

30 0.341 0.345 0.169 0.696 0.233 0.041 

(F) AE 

input SNR noisy BP MBSS WF WPD PM 

1 8.47 8.47 14.63 10.32 3.13 8.51 

5 8.47 8.47 12.51 10.3 3.82 8.51 

10 8.47 8.47 9.78 9.46 4.17 8.51 

20 8.47 8.47 9.12 8.72 7.12 8.51 

30 8.47 8.47 8.65 8.19 7.44 8.51 

 
From the pattern recognition point of view, different AE values to those of the original 

spectrogram, reflect changing in the shape of some or all of the sound patterns, which result in 

non-accuracy in further pattern recognition results. Unlike, similar AE values do not ensure the 

shape of the sound pattern is similar to its original shape, but it may changes in a way that its 

aspect ratio is constant. 

4. Extended applications 

The spectrograms obtained by the proposed method (PM) displayed how it is powerful and 

consistent to enhance different structure bioacoustics calls. Therefore, these enhanced 

spectrograms can be implemented in various post processing tasks. In this section, the three most 

important implementations of the generated spectrogram by PM will be explored. 

4.1. Power and frequency contours 

The three variables of the enhanced spectrogram (i.e., time, frequency, and power spectrum) may 

be plotted in different orders to obtain its power and/or frequency contours, as visible for the 

bioacoustics call of Rhinolophus hipposideros bat (with expansion factor of 13) in figure (14), 

after its spectrogram was enhanced by PM. The power contours provides an image of the 

instantaneous power contents of the sound patterns and can be used for specific sound power 

detection after calculating the areas enclosed by these contours. While the frequency contours 

provide an image of the instantaneous frequency contents of the recorded bioacoustics call and 

can be used for designing more reliable frequency filters. 
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Figure 14. The enhanced (a) power and (b) frequency contours for Rhinolophus hipposideros bat 

call 

4.2. The enhanced wave form of the bioacoustics call 

By transforming the enhanced spectrogram variables back to the time domain by Inverse Fast 

Fourier Transform (IFFT), the enhanced wave form of the call is obtained, as given in figure 

(15).The phase information obtained through the former Short Time Fourier Transform (STFT) is 

used to reconstruct the enhanced wave form, following the flowchart of figure (15). The output 

waveform can be used for reliable extraction of the bioacoustics temporal features suchlike zero 

crossing rate, short time energy, temporal roll-off, and temporal spread of the sound patterns [1]. 

 

 

  

Figure 15. (upper) The 3D enhanced spectrogram for the bioacoustics call of Rhinolophus 

hipposideros bat(with expansion factor of 13)and flow chart to reconstruct the waveform of its 

sound stream. (bottom) the original and the reconstructed wave form of the sound stream; 

respectively. 

4.3. Bioacoustics calls classification 

From the enhanced spectrogram, simple and reduced number of 1D featuresand/or 2D features 

can be extracted for complete pattern recognition of the bioacoustics sound. The 1D features are 

the signal features suchlike the covered frequency band(s), peak frequency, pulse duration, 

interval between sound pulses, etc. while the 2D features are the image features suchlike 

eccentricity and centroid. As a test case, a classifier of Vanellus vanellus, Parus major, and Sitta 
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Canadensis birds has been constructed using the eccentricity (a/b) and the vertical coordinate of 

the centroid (c) features, as shown in figure (16(ii)), extracted from the enhanced spectrogram of 

each bird sound, as displayed in figure (16(i)).  The classifier was trained by 26, 30, and 37 sound 

patterns of the three birds; respectively, to define the rough dividing contours, given in figure 

(16(iii)). Afterwards, the classifier was tested by another 7, 8, and 10 sound patterns of the three 

birds; respectively, beside 7 patterns of Barbastella barbastellus bat and 5 patterns of Rhinolophus 

Blasii bat, giving 94.59% classification accuracy (two sound patterns of Sitta Canadensis wrongly 

detected as Vanellus vanellus), as plotted in figure (16(iii)). It may be realized that even simple 

classifier can separate out the sound patterns into the correct bioacoustics source, providing that 

distinctive features were selected and sufficient training patterns were used. 

 
(i) 

 
(ii) 

 
(iii) 

Figure 16. (i) Enhanced spectrogram for one of Sitta Canadensis bird contains the 

strongestsound patterns, indicating how the eccentricity (a/b) and the vertical coordinate of 

the centroid (c) are extracted for one of its sound patterns. The units of a and b are in pixeld, 

and c in pixel number. (ii) Simple classifier structure with input of the two features, which 

form the classification space, and the outputs are four classes for Vanellus vanellus, Parus 

major, Sitta Canadensis , and unknown sounds. (iii) The classification space with three 

dividing contours encounters the features of the three birds, respectively, at which the 

surrounded region is for unknown sound features. The classification results also included 

with two sound patterns of Sitta Canadensis wrongly detected as Vanellus vanellus. 

5. Conclusion 

Spectrogram reading provides a direct method for hands-on learning of the characteristics of 

bioacoustics calls, therefore, a variety of enhancement techniques have been considered over the 

past years to remove the attached noises. In this paper, a spectrogram enhancement method was 

developed based on high accurate edge detection of the enclosed sound patterns and removing the 
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surrounding noise. The crest factor was presented as a smoothed version of the spectrogram 

image, avoiding the threshold problem of usual smoothing filters, suchlike Gaussian filter in 

Canny edge detector. The proposed method was applied to enhance the limited dynamic range 

spectrogram of different structure bioacoustics calls, in comparison to the four commonly used 

enhancement approaches, which are band pass filter (BP), multi-band spectral subtraction 

(MBSS), Wiener filter (WF), and wavelet packet decomposition (WPD) approaches. The 

comparison was established on one subjective measure [mean opinion score] and four objective 

measures [signal to noise ratio, segmental signal to noise ratio, log spectral distance, and Itakura 

Saito]of the spectrograms obtained by the five methods at different SNR. The results showed that 

the shorter the frequency band of FM pulse, the better the enhancement with BP and WPD. The 

larger the upstream interval before the first pulse, the better the enhancement with WF. The 

longer the CF pulse at high SNR, the better the enhancement with MBSS because it tends to 

spread the patterns over time. Meanwhile, the proposed method produced highly efficient 

enhanced spectrograms for all of the investigated calls. 

The temporal and spectral resolutions of the spectrograms produced by the BP approach are of 

high accuracy, since it does not operate a post processing to the full range of the noisy 

spectrogram, but only rejects the band which estimated to be noise. This was not the case with 

(MBSS, WF, and WPD) which post process the spectrograms for enhancement, results in 

changing the temporal and/or spectral resolutions. In the meantime, the edge detection algorithm 

of the proposed method was able to preserve the sound pulses into their almost original temporal 

and spectral locations while processing the noisy spectrogram. This is very important issue for 

any further pattern recognition assignment based on the enhanced spectrogram. 

 

As a future aspect to this research work, an investigation will be made to avoid the loss of weak 

patterns done through limiting the dynamic range of the spectrogram. Moreover, improving the 

original spectrogram generation by adapting the applied STFT settings, this in correspondence 

improves the enhanced spectrogram. 
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3.4 Online monitoring of yeast fermentation bioprocess 
 
The medium carries the fermentation process is very dynamic with mixture being 
formed in different phases of fermentation. The specific product resulting from 
fermentation is determined by the catalyst of the process and the substrate in which 
the fermentation occurs. The catalysts, such as bacteria and yeast, vary 
considerably in their metabolic characteristics. For example, bread and beer are 
products of yeast fermentation in grain and antibiotics are the products of bacterial 
fermentation. 
During yeast fermentation process, yeast cells use oxygen (O2) and break down 
sugar (C6H12O6) to carbon dioxide (CO2), water (H2O), and energy (𝑒), as given in the 
reaction of equation (3.1). In the absence of oxygen, yeast switches to another 
pathway and produces ethanol (C2H5OH) and carbon dioxide, as shown in the 
reaction of equation (3.2). 
 

C6H12O6 + 6 O2  
𝑦𝑒𝑎𝑠𝑡
�⎯⎯�  6 CO2 + 6 H2O + e (3.1) 

C6H12O6  
𝑦𝑒𝑎𝑠𝑡
�⎯⎯�  2 C2H5OH + 2 CO2 (3.2) 

 
Reference density is measured by an oscillating U-tube technique, based on a 
mass-spring model and an electronic measurement of the frequency of oscillation 
[77]. A sample is filled into a U-shaped container with oscillation capacity, at which 
its center frequency is influenced by the sample’s mass, results in electronic 
excitation of undamped oscillation. Since the volume involved in this tube is limited, 
the model uses the measured sample’s mass to calculate the sample density as 
function of this oscillation, as explained in equation (3.3). 
 

𝜌𝑟𝑒𝑓 = 𝐴𝜏2 + 𝐵 (3.3) 
 
Where 𝐴 and 𝐵 are the oscillating U-tube constants, 𝑓 is the oscillation period 
and 𝜌𝑟𝑒𝑓 is the measured reference density of the sample.  
In this work, ultrasound signals are excited into a fermentation mixture along the 
whole process time, where the speed of sound and other signal features are 
continuously extracted by the developed mathematical tools. These features are 
combined with the mixture temperature to design an artificial neural network which 
predicts the mixture density. The network is trained by these features as inputs and 
the offline measured reference density as an output. The network is employed 
online in fermentation processes to monitor mixture density in noncontact, non-
invasive, and non-destructive approach. The monitored density determines the 
fermentation level, suchlike how much alcohol is in the beer and the status of gas 
retention in dough. 
  
As fermentation proceeds, the vaporization of CO2 may interfere with accurate 
density measurement. Furthermore, measures such as mixture pressure have to be 
controlled to prevent or reduce bubble formation. This is done usually by installing a 
valve in the piping from the fermentation tank outlet. 
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1 Introduction

Ultrasound sensors are powerful tools that effectively address
the problem of performing non-contact and non-invasive de-
termination of process variables, from the viewpoint of perfor-
mance and cost [1]. Ultrasound has advantages over other tra-
ditional analytical techniques because measurements are rapid,
non-destructive, precise, fully automated, and might be per-
formed either in laboratory or online [2]. The ultrasound sensor
produces a pulse or burst signal to measure the required ultra-
sound characteristics with low power consumption.

Therefore, ultrasound sensor systems open in-line applica-
tions in many processes for many substances such as product
characterization in the food, chemical, pharmaceutical and
petrol industries, control of sewage treatment, or polymeriza-
tion processes, and monitoring of chemical etching [3]. More-
over, typical industrial applications of ultrasound for concen-
tration measurement and process monitoring include those of

Correspondence: Walid B. Hussein (whussein@wzw.tum.de),
Group of (Bio-)Process Technology and Process Analysis, Faculty of
Life Sciences Engineering, Wissenschaftszentrum Weihenstephan,
Weihenstephaner Steig 20, 85354 Freising, Germany.

chemical and pharmaceutical industry (polymerization, paints,
and waste water treatment), food industry (beverage, dairy, and
starch production), and biotechnology (fermentation process,
enzyme concentration) [4]. One of the widespread applications
is the utilization of ultrasound for concentration measurement
during yeast fermentation process. The possibility of using low-
intensity ultrasound to characterize such food processes was first
realized over 60 years ago [5]; however, it is only recently that
the full potential of the technique has been realized. There are a
number of reasons for the current interest in ultrasound mon-
itoring during fermentation process. From one side, the food
industry is becoming increasingly aware of the importance of
developing new analytical techniques to study complex food
materials, and to monitor properties of foods during process-
ing where strict protocols, issued by the FDA, be maintained to
ensure food purity; ultrasound techniques are ideally suited to
both of these applications. And from the other side, ultrasound
instrumentation can be fully automated, make rapid and precise
measurements, and can easily be adapted for online applications
[6]. Unlikely, the ultrasound technology has a few limitations
such as its sensitivity to air bubbles during the process course,
and dependency of the acoustic properties on the specified sam-
ple concentration.
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The two common approaches of ultrasound measurements
are the continuous wave approach and the pulse-echo approach.
In the continuous wave approach, two separate transmitting and
receiving elements are used, which requires more complex hard-
ware [7]. Meanwhile, the pulse-echo approach requires only one
transducer that operates alternatively between transmitting and
receiving modes. The latter approach offers a simple and low cost
solution, even if it yields poorer results owing to the uncertainty
in the time domain measurement [8]. The main ultrasound pa-
rameter for use in process monitoring and control is the speed
of sound (USV). Once it is determined in a sample, the data can
be used in a number of ways, such as identification of liquids,
concentrations of solutions, behavior of mixtures of liquids, and
two-phase liquid systems [3]. USV is calculated by dividing the
signal path length over the estimated time of flight between the
propagated ultrasound echoes, and this estimation is considered
the critical point of the whole measurement. Therefore, vari-
ous methods have been developed to improve the time of flight
(TOF) estimation accuracy. At which some of them based on
the proper design of the transmitting and/or receiving system
(configuration approach) [9], on the generation of signals with
good time localization (sensor approach) [10], or on the usage of
sophisticated digital techniques (processing approach) [11–13].
The first two strategies either offer simple and low cost resolu-
tions with very poor results, or produce accurate estimations by
requiring complicated and expensive hardware. As a result, it is
worth to examine the possibility of improving TOF estimation
using digital signal processing techniques rather than hardware
adaptation.

Two digital techniques are widely used to estimate TOF, the
threshold method, and the cross correlation method. The first
method detects the indices corresponding to the time instants
when the signal amplitude crosses certain threshold, and TOF
is then the interval between these two instances [14]. How-
ever, the received echoes reach the threshold level sometime
after their exact start. The second method searches for the in-
stant at the relative maximum in the correlation function be-
tween the first echo and the rest of the signal, and define TOF
to be the interval between this instant and the start of first
echo [15].

Although the results obtained in the previous studies lead to
the practical conclusion that the cross correlation method en-
sures up to 40% increase in the accuracy of TOF estimation with
respect to the threshold method, it requires a greater computa-
tional cost and is highly influenced by noise spikes in the signal.
Furthermore, the overall accuracy depends on the measurement
of phase shift between the selected echoes, which is hardly no-
ticed in the time domain and requires a spectral analysis in the
frequency domain.

The spectral representation of the ultrasound signal can be
obtained by one of many common transformations algorithms
including Hilbert transformation, short time Fourier transform,
or wavelet transform. The former algorithm is very sensitive to
noise and works powerfully only if the echoes are with mutual
interference [16]. Meanwhile, the other two algorithms are less
computational cost, efficient, and produce better noise rejection.

In this paper, a TOF estimation method was developed
consisting of two parts; the first is the enhancing of the ul-
trasound signal to its exactly dominant frequency, through a

high-resolution spectral analysis based on short time Fourier
transform. Afterwards, start times of the first and second echoes
were detected on the generated instantaneous power spectrum
distribution. The second part is to apply a phase-shift correc-
tion to the detected times by investigating the instantaneous
phase-shift distribution. The proposed method was validated by
the standard reference data given for USV of demineralized wa-
ter at elevated temperatures 9–30.8◦C. Sensitivity analyses were
also conducted to check the consistency and repeatability of the
method results. Finally, it was efficiently applied to calculate USV
during online yeast fermentation process, and combined with
other signal features in a feed-forward artificial neural network
to estimate the mixture density.

2 Materials and methods

2.1 Experimental setups

2.1.1 Hypothetical ideal pulse-echo setup
One of the commonly used arrangements in technical ultrasound
applications is the one shown in Fig. 1A, at which ultrasound
sensor is fixed on one side of the test section, to transmit suitable
energy pulse of frequency, usually between 2 and 5 MHz. This
pulse penetrates in the test section up to the reflector side, which
reflects it back toward the sensor. Once the sensor produces the
pulse, it works as a receiver to handle all the reflected and con-
sequent echoes after their fully propagation into the contained
medium of the test section.

2.1.2 Real pulse-echo setup
A hygienic and insulated pulse-echo setup that is widely used in
food and beverage non-destructive tests was employed for this
research, including a stainless steel support armature to carry the
inline sensors (ultrasound and temperature sensors) and a heater.
The transmission-reception parts contain buffer and reflector
lids, each has 17-mm thickness, as displayed in Fig. 1B. Two
different nominal diameters configurations were tested for the
purpose of sensitivity analysis; the first is DN50 (50 mm) and the
second is DN80 (80 mm). The implemented temperature sensor
is PT100 (standard platinum resistance sensor) with accuracy of
0.1◦C at 0◦C. The ultrasound transducer is lead zirconate titanate
ceramic with a resin-tungsten backing, generates a rectangular
250 ns (i.e. nano-sec) impulse of 20 V amplitude and 2 MHz
dominant frequency. The system was placed vertically to avoid
existence of internal air pockets.

2.1.3 Yeast fermentation setup
The bioreactor shown in Fig. 1C was employed to perform and
monitor the aerobic yeast fermentation process under brew-
ing relevant conditions. The sensors are measuring turbidity,
density, and ultrasound signals and were mounted inline in
the circulation pipe before the aeration jet. Moreover, the ul-
trasonic sensor set up was mounted using a VARINLINE R©

coupling to insure no dead-space measurements in accor-
dance with high hygienic considerations. All sensor readings are
recorded via a Beckhoff EtherCAT R© control system to a personal
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Figure 1. (A) Basic pulse-echo configuration for measuring TOF
between consequent echoes. (t) is the time axis carries informa-
tion about the arrival of echoes while (y) is the distance axis carries
information about the path length covered by the signal. Points
(A), (B), and (C) represent transmission time of main pulse and
reception times for first and second echoes; respectively.
(B) Layout of the pulse echo ultrasound set up consists of trans-
ducer, buffer lid, sample test section of DN50 and DN80, reflector
lid, as well as attached armature with temperature sensor and
heater.
(C) The implemented yeast fermentation setup and its four main
items of (1) cylindroconical vessel at which the fermentation pro-
cess takes place, (2) circulation pipes, (3) gas flow panel, and (4)
switch cabinet.

computer using the software package Virtual Expert R©. Fermen-
tation process takes place in the stainless steel cylindroconical
vessel with a total volume of 129 L and a working volume up to
60 L of wort (∼50% head space for foam formation). The in-
ternal pressure was fixed at 0.9 bars to prevent foam and flow
homogenization was achieved by a centrifugal pump. An aera-
tion jet “Turbo Air” R© (Co. Esau & Hueber) was introduced into
the circulation to supply yeast with oxygen. The used substrate
(wort) contained approximately 10 g/100 g sugar (main compo-
nents are maltose, glucose, fructose, and maltotriose) supplied
with hops.

2.2 The proposed method

The propagation of ultrasound signals in ideal pulse-echo sys-
tem (Fig. 1A), follows the one given in Fig. 2A, at which the suc-
ceeded echoes can be simply detected and well defined, results in
straightforward recognition of TOF and its corresponding USV.
In the frequency domain, one frequency value is contained in the
signal, which is the dominant frequency fd , as illustrated by the
power spectrum distribution in Fig. 2B. Additionally, although
the main pulse and the received echoes are out of phase, which
means they have a phase difference between [0, π] radians, there
is no phase shift among the succeeding echoes, as shown in the
phase-shift distribution given in Fig. 2C.

The amplitude (x) of the transmitted ultrasound signal
in a medium can be mathematically modelled as a function
of its propagation time (t), as reported in [1] and given by
equation (1).

x (t) = A s t
me−t/u cos (2π f dt + ϕ) (1)

Where A s , fd , and ϕ are the pulse amplitude, dominant frequency
and phase shift, respectively, while m models the initial finite
slope of the pulse and u determines the final slope. Both m and u
are parameters that depend on the type of ultrasound transducer.

Similarly, the amplitudes at the consequent echoes can be
found for first echo, equation 2, and second echo, equation 3.

x1 (t1) = A r1 (t1)m e−t1/u cos (2π fdt1 + ϕ1) (2)

x2 (t2) = A r2 (t2)m e−t2/u cos (2πfdt2 + ϕ1) (3)

Where A r1 and A r2 are the amplitudes for first and second
echoes; respectively, t1 and t2 are the start times for first
and second echoes; respectively. ϕ1 is the phase shift of both
echoes.

Accordingly, TOF is defined as the interval between these
two echoes, and can be obtained directly by subtracting the
two detected times of first and second echoes, as given in
equation (4).

TOF = t2 − t1 (4)

Afterwards, USV is calculated in equation (5), by information
about the path length of the test section (d).

USV = 2 × d

TOF
(5)
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Figure 2. (A) An ideal ultrasound signal follows equation (1) with
m = 2 and u = 5 × 10−7. (B) Spectrogram representation of this
signal exploring its dominant frequency at 2 MHz. (C) Phase-shift
distribution with time at the dominant frequency showing equal
phase values for the first and second echoes.

Since real applications are not provided by ideal ultrasound
signals, recognition of the consequent echoes is not straight-
forward and requires signal preprocessing. Actual transducers
produce pulses with m ≥ 0, which adds more difficulty to the
task of finding the start of an echo. Also, a real signal contains
many frequency bands beside its dominant frequency due to
sensor non-perfect vibration and/or spectral leakage, at which
some of them are mainly noise and removed by applying ap-
propriate filters, while others are related to system vibration,
thermodynamic parameters of the medium, or interpropaga-

tion diffraction of the echoes. Moreover, the signal is not fully
damped among the echoes intervals, and there is an interfer-
ing signal produced by the attenuation and distortion between
the propagating sample and the reflected waves. These real-
ity considerations formed two major deviations between ideal
and real ultrasound signals, as the real signal suffers from exis-
tence of multifrequency bands instead of single-dominant fre-
quency, and existence of phase shifts among the consequent
echoes.

The propagation of ultrasound signal in a real pulse-echo
setup (Fig. 1B), is presented in Fig. 3A. The main pulse of the
ultrasound signal, displayed by (arrow a), is excited at the trans-
ducer and propagates downwards into the buffer lid. By ap-
proaching the sample, the signal is particularly reflected toward
the sensor (arrow b), and the remaining part (arrow c) that
hopefully has enough energy (depends on the buffer material)
transmitted into the sample. When the transmitted part ap-
proaches the reflector lid, much of the signal is reflected (arrow
d) and the remaining small amount (depends on the reflector
material) is transmitted into the reflector lid (arrow e).

All reflections (i.e. echoes) are sensed by the transducer and
mirrored back into the system to repeat the whole process (ar-
rows (a, b, c, d, and e), arrows (a, b, c, d, and e), etc.). With time,
most of the signal energy is dissipated into the system elements
(buffer, sample, and reflector) and the echoes become weaker
until they are fully damped.

Limiting the ultrasound signal to exactly its dominant fre-
quency (fd) is a challenge due to the necessity of having high-
resolution spectrogram (obtained by short time Fourier trans-
form (STFT)), or scalogram (obtained by wavelet transform
(WT)). However, the time resolution in WT is less at lower
frequencies and high at higher frequencies, while it is fixed and
reasonable with STFT (see Supporting information, Fig. S1). The
spectral analysis of ultrasound signals can also be performed by
Hilbert transformation, but it is very sensitive to noise and only
used when the signal has few zero crossings.

As a result, STFT was employed in this work, because most
ultrasound signals have low-dominant frequency, around 10%
of the sampling frequency, and high time resolution is essential
to accurately determine TOF between arrived echoes. The sig-
nal is divided into short overlapped segments; each with length
equals 10% of the whole signal length, and 90% overlapping be-
tween adjacent segments. Since Fourier transformation presents
spectral leakage for non-periodic signals, each segment is mul-
tiplied by a Hanning window function, equation (6), forcing it
to be periodic [17]. The windowed segment is transformed to
frequency domain by Fast Fourier Transform (FFT), equation
(7), forming one vertical column in the generated spectrogram
(see Supporting information, Fig. S2).

w(n) = 0.5

(
1 − cos

(
2πn

N − 1

))
(6)

X (m)segment =
N∑

n=1

x(n) × w(n − m) × e−i(2πfd )n,

m = 1, 2, 3, . . . , M (7)

Where x, X , w, N, and M are signal amplitude, resulting Fourier
transform coefficient, window function, segment length, and
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Figure 3. (A) Detailed schematic descrip-
tion for the propagation of the ultrasound
signal into the real pulse-echo set up of Fig.
1B. (B) An ultrasound signal obtained for
demineralized water sample at 10◦C, and
its (C) Spectrogram representation calcu-
lated by STFT [segment length = [20] μs ,
Hanning window, and 90% overlapping].

number of frequency pins in powers of 2 (i.e. 512, 1024,
2048, . . . ), respectively.

The instantaneous power spectrum (P ) at center of the work-
ing segment is given by equation (8), as the absolute value of
the calculated Fourier coefficients. Accordingly, the instanta-
neous phase shift (ϕ) is the argument formulated by the real

and imaginary parts of these Fourier coefficients, as given in
equation (9).

P (m)segment = ∣∣X (m)segment

∣∣
=

√
real(X (m)segment)2 + imag(X (m)segment)2 (8)
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ϕ (m)segment = X (m)segment

= tan−1

(
imag(X (m)segment)

real(X (m)segment))

)
∈ [−π, π] (9)

Where real(X (m)segment) and imag(X (m)segment) are the real
and imaginary parts of the Fourier coefficient, respectively.

An example for real ultrasound signal in pure water at 10◦C
is shown in Fig. 3B, and its spectrogram is seen in Fig. 3C. The
instantaneous power spectrum and phase-shift distributions at
[fd = 2 MHz] are separated from this spectrogram and displayed
in Figs. 4A and B, respectively.

The instantaneous power spectrum distribution (Fig. 4A)
contains the most important information about how the signal
is developed in the medium with details about immediate energy
variation, arrival times of the consequent echoes, attenuation
and damping behavior. In depth, point 1 is at maximum power
spectrum value and indicates the start of first echo (t1, P1),
while its following peaks at (1a, 1b, . . . ) represent the gradual
loss of the intensity (i.e. attenuation) with time. Meanwhile,
point 2 is the point at which power spectrum starts to increase
again after damping of the first echo, and indicates the start of
second echo (t2, P2). Subsequent peaks (2a, 2b, 2c) represent the
gradual growth for the arrivals of leading constructive chirps of
the second echo to the sensor, while (2d, 2e,) represent the trailing
gradual loss of the second echo intensity. Further echoes are
functions of the dramatically damping of the ultrasound signal
in the system; therefore, they are less important for extraction
and calculation of signal parameters. Meanwhile, from Fig. 4B,
phase shifts of the first and second echoes (i.e. point 1 and point
2) were identified as ϕ1 and ϕ2, respectively.

The signal at point 1 can be mathematically modelled by
equation (2), while at point 2, the phase shift is different from
that at point 1, implying a modification to equation (3), which
is rewritten here as equation (10).

x1 (t1) = A r1 (t1)m e−t1/u cos (2πfdt1 + ϕ1) (2)

And

x2 (t2) = A r2 (t2)m e− t2
u cos (2πfdt2 + ϕ2)

x2 (t2) = A r2 (t2)m e− t2
u cos (2πfdt2 + ϕ2 − ϕ1 + ϕ1)

x2 (t2) = A r2 (t2)m e− t2
u cos

(
2πfd

(
t2 +

[
ϕ2 − ϕ1

2πfd

])
+ ϕ1

)

(10)

Thus, TOF is calculated by subtracting arguments of equa-
tions (10) and (2), as explained in equation (11).

TOF =
(

t2 +
[

ϕ2 − ϕ1

2πfd

])
− t1 = t2 − t1 +

[
ϕ2 − ϕ1

2πfd

]

(11)

The third term in equation (11) is the phase correction term,
which is eliminated for ideal signal propagation. By estimating
TOF, equation (5) is considered to calculate USV.

2.3 Density prediction by artificial neural network

During fermentation process, yeast cells use oxygen (O2) and
break down sugar (C6H12O6) to carbon dioxide (CO2) and wa-
ter (H2O). The density of the fermentation mixture is correlated
to the sugar concentration (i.e. extract concentration), the higher
the sugar concentration the higher the mixture density. In the ab-
sence of oxygen, yeast cells break down sugar to produce ethanol
(C2H5OH) and (CO2), wherein the density decreases with the
rise of ethanol production. Therefore, mixture density is an im-
portant parameter that determines the fermentation level and its
low values are used as an indication of less sugar concentration
(i.e. apparent extract).

Hence, the calculated USV is combined with the measured
Temperature T and relevant signal features to design an artifi-
cial neural network (ANN) for non-contact estimation of the
mixture density (ρest ) at any fermentation instance.

The procedure starts by extracting a list of signal features
through the forms given in [18]. These features are extracted
from the main chirp of the first echo, because it contains most
of the reflected signal information. Relevant features are se-
lected to be those with adequate variation with respect to their
corresponding reference density (ρref ), satisfying [tan(20◦) ≤
| ∂feature

∂ρref
| ≤ tan(70◦)], where | ∂feature

∂ρref
| is average of the absolute

feature-reference density variation (see Supporting information,
Fig. S3).

Afterwards, a regression three-layer’s ANN is designed (see
Supporting information, Fig. S4). The input layer has one neu-
ron for USV, one neuron for T, beside neurons for the selected
relevant features. The hidden layer has a number of neurons
equal 50–60% of those in the input layer, and the output layer
has one neuron to calculate ρest . Each neuron weights the input,
sums it up with a bias, and delivers it using a transfer function to
the next layer. LOGSIG transfer function (equation (12)) is ac-
complished for the input layer neurons, and TANSIG (equation
(13)) to both hidden and output layers neurons.

a = 1

1 + e−n
(12)

a = 2

1 + e−2n
− 1 (13)

Where n and a are the input to the transfer function and the
neuron output, respectively.

This feed forward ANN loads N training data to the input
layer {USV, T, relevant features}i , i = 1, . . . , N, and their asso-
ciated reference density {ρref }i is compared to the resultant {ρest }i

at the output layer. The network followed back propagation al-
gorithm, which tries to minimize the mean square error (MSE)
in ρest , according to equation (14), by modifying the weights and
biases of the neurons [19].

MSE = 1

No. of signals

No. of signals∑
i=1

(
ρref − ρest

)2

i
(14)
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Figure 4. (A) Instantaneous power spec-
trum distribution in voltage-root mean
square (Vrms) and (B) Instantaneous
phase-shift distribution in radians (rad),
over the signal at its dominant frequency
exploring the start and damping behavior
of each echo and differences in the phase
shifts between first and second echoes.

3 Results

The validation, sensitivity evaluation, and application of the
proposed method were performed in this section (see Supporting
information, Fig. S5).

3.1 Validation of the proposed method

Demineralized vented water was selected to validate USV val-
ues obtained by the proposed method, with the reference results
given in [20]. These reference data were fitted in a polynomial
equation, displayed in equation (15), of six digits coefficients to
ensure a precision of 0.02 m/s at ambient pressure and temper-
ature (T) range 0–95◦C.

USV = 1.402385 × 103 + 5.038813T − 5.799136 × 10−2T2

+ 3.287156 × 10−4T3 − 1.398845 × 10−6T4

+ 2.78786 × 10−9T5(m/s) (15)

Experiments were performed using the pulse-echo setup of
Fig. 1B with DN50, along a temperature range 9–30.8◦C. Re-

ceived signals, as shown in Fig. 5A, were analyzed to detect the
arrivals of first and second echoes, point 1 and 2; respectively.
Afterwards, equation (11) was used to estimate TOF values, and
equation (5) to calculate the corresponding USV.

By substituting in equation (11) with (t1 = 7.1 μs, ϕ1 =−2.06
rad) and (t2 = 73.72 μs, ϕ2 = −0.11 rad)

TOF = 73.72 − 7.1 +
[−0.11 − (−2.06)

2π∗2

]
∼= 66.77μs

and

USV = 2 × (50 × 10−3)

(66.77 × 10−6)
= 1497.60m/s

While the reference USV at T = 25.6◦C, from equation (15)
is 1498.301 m/s (error < 0.05%).

Over the temperature range 9–30.8◦C, one signal was at-
tained every 0.1◦C, and the values of TOF and USV were cal-
culated and compared to the reference values, as revealed from
Fig. 5B. The results reflect the efficiency of the proposed method
to calculate USV with a maximum error of 0.22% (at tempera-
ture = 20.8◦C). Moreover, the speed of sound/temperature trend
almost coincides with that of reference data.
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Figure 5. (A) Ultrasound signal obtained
in demineralized water using the pulse-
echo set up of Fig. 2 with DN50 at 25.6◦C
(up), and its instantaneous power spec-
trum (middle) and phase-shift (bottom)
distributions at the dominant frequency.
(B) Speed of sound variation with temper-
ature in demineralized water at 9–30.8◦C,
obtained by the proposed method in com-
parison to the reference data given by equa-
tion 15 [20].
(C) Ultrasound signal obtained for dem-
ineralized water using configuration II with
DN80 at 25.6◦C (top), and the instanta-
neous power spectrum (middle) and phase
shift (bottom) distributions at its dominant
frequency.

3.2 Sensitivity of the proposed method

To check the reliability of the results obtained by the proposed
method, two sensitivity analyses had been applied. The first
analysis is related to the repeatability of the results if the main
parameters influencing the USV were fixed. Therefore, 50 ex-
periments were accomplished for demineralized water at 10◦C,
using the pulse-echo set up of Fig. 1B with DN50, and the re-

sulting power spectrum distributions at dominant frequency are
separated (see Supporting information, Fig. S6a).

As a result, no change in the detection of first echo through-
out the 50 signals was observed and small perturbations in-
fluenced the detection of second echo (see Supporting infor-
mation, Fig. S6b). The average and standard deviation in the
calculated USV are 1447.28 m/s and 0.09 m/s, respectively, im-
plying the consistency of the proposed method to provide reliable
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Table 1. Average speed of sound obtained by the crosscorrelation
and the proposed methods for demineralized water at tempera-
tures of 10, 15, and 20◦C, in comparison to the reference values.
USV is the average speed of sound over 50 values at the specified
temperature.

Temperature (◦C) USV USV USV reference
by cross by proposed (m/s)
correlation (m/s) method (m/s)

10 1447.152 1447.279 1447.291
15 1465.922 1465.921 1465.962
20 1482.384 1482.383 1482.382

results when the dependent variable (i.e. temperature) was fixed,
with a precision of ([0.09/1447.28] × 100% = 6.4 × 10−3%).
Furthermore, low computational power is required to detect
TOF and calculate USV for the 50 signals (around 2 s with 22.4
GFlops).

The second sensitivity analysis is related to the dependency
of the results on the set up dimensions. Hence, the two nomi-
nal diameters of the pulse-echo set up (i.e. DN50 and DN80)
were implemented to calculate USV in pure water at T =
25.6◦C. The received signals by the two setups are presented
in Figs. 5A and C, respectively, and analyzed by the proposed
method.

For signal with DN50 setup:

TOF1 = 66.77μs, USV1 = 1497.60m/s

For signal with DN80 setup:

TOF2 = 115.6 − 8.99 +
[

0.27 − (−0.58)

2π∗2

]
= 106.67μs,

USV2 = 2 × (80 × 10−3)

(106.67 × 10−6)
= 1499.89m/s (16)

Thus, the sensitivity of the proposed method to the configu-
ration changes is:

sensitivity = standard deviation (USV1, USV2)

average (USV1, USV2)

× 100% ∼= 0.11% (17)

Alternatively, 50 experiments were executed on demineralized
water at 10, 15, and 20◦C, and the calculated average USV are
compared to those produced by the cross correlation method and
published in [21], as listed in Table 1. The results explore how
both methods (cross correlation, and proposed) produce high
accurate USV around T = 20◦C (error ca. 0.1 × 10−3%). This
accuracy is less at lower temperature, for the cross correlation
method (error ca. 9.6 × 10−3%), and for the proposed method
(error ca. 0.82 × 10−3%).

3.3 Monitoring of yeast fermentation process

Fermentation process is one of the most important processes
during malt production, due to its continuous biomixture
change along the period of process, which ends in many pro-
gressions up to days. Yeast fermentation is considered to be four
mixtures process consisting of yeast, extract, water, and carbon
dioxide. As fermentation proceeds, density and refractive index
fall rapidly and USV gradually rises [3]. Therefore, the ultra-
sound measurement becomes nearly independent of the degree
of fermentation making it suitable for continuous inline moni-
toring of the process original gravity [22].

The proposed method was applied to monitor USV during
a yeast fermentation process in the fermenter of Fig. 1C. The
cylindroconical fermenter was initially filled with 60 liter of wort
and 10 million cells of yeast. The temperature was controlled
via a fuzzy control system to be in the range of 10–20◦C during
the process time which was between 24 and 96 h. The yeast
suspension was under permanent circulation and was aerated
by an aeration jet, until the yeast count reached 80–100 million
cells. Moreover, the fermenter—that generated an ultrasound
signal every 3 s—was equipped with a built in USV calculator
based on the cross correlation method. Both results obtained by
the proposed and cross correlation methods are displayed in Fig.
6A for 48 h of the fermentation process.

In comparison to cross correlation method, the proposed
method presented a distribution free from extremely out of range
values (i.e. outliers) and stable along the process time. And the
maximum difference between both distributions in the non-
outliers regions is 0.67%, demonstrating the effectiveness of the
proposed method to be implemented in such inline processes.

Additionally, the mixture reference density (ρref ) was
measured using an oscillating U-tube technique (Company
Centec R©) via a bypass connected to the circulation pipe. The
signal features were extracted and those relevant to ρref were se-
lected (see Supporting information, Fig. S7). In this procedure,
nine relevant features were defined and presented in Table 2.

These features were combined with the calculated USV and
the measured T in the designed ANN for non-contact estimation
of the mixture density (ρest ). The input layer of the network
has 11 neurons for the normalized values of (USV, T, and the
selected nine features). The hidden layer was designed with six
neurons, and the output layer with one neuron for the density
value.

Altogether, 3685 signals (i.e. fermentation instances) have
been used, at which (40% [1474 signals]) to train, (25% [921
signals]) to validate, and (35% [1290 signals]) to test the network.
After 500 iterations, the training results, as shown in Fig. 6B, had
reasonable MSE of 4 × 10−5 kg/m3. And the designed network
was examined by the test signals, at which the estimated density
values are shown in Fig. 6C, producing a maximum error in ρest

of 0.95%. These results indicate the efficiency of the designed
network with the selected signal features to estimate the mixture
density values during the fermentation process, in non-invasive
and non-contact approach. In practice, different error influences
have to be taken into consideration as the pressure dependency,
carbon dioxide influence, and the extract dependency on the
present gravity.
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Figure 6. (A) USV distribution between the 16th and 64th h of fer-
mentation, obtained by the proposed method (in solid black) and
the built-in crosscorrelation-based calculator of the fermenter (in
dashed gray), which suffers from many outliers along the process
time. (B) ANN training results for 1474 signals after 500 itera-
tions with MSE of 4 × 10−5 kg/m3 between the estimated and
reference densities of the fermentation mixture. (C) ANN testing
results for 1290 wherein maximum error between the estimated
and reference densities is 0.95%.

4 Concluding remarks

Ultrasound signal has the ability to interrogate fluids and dense
mixtures in a non-destructive way, which makes it an ideal
method for characterizing and process monitoring during food
production. The two widely used methods to estimate TOF of
an ultrasound signal—which is the most important parameter
for USV determination and further analysis—are threshold and
cross correlation methods. However, the first method showed
considerable deviations that are mainly caused by high varia-
tions of the echo amplitudes, while the second method held
error due to inaccurate determination of the start of the second
echo, since other chirps may have higher correlation coefficient
with the first echo.

In this paper, a USV estimation method based on the spec-
tral analysis of pulse-echo ultrasound signal at its dominant
frequency was presented, as well as a correction for the phase
shift between the first and following echoes. To assure high time
resolution, short time Fourier transform was applied to perform
spectral transformation of the time domain signals.

Despite of the high-resolution Fourier transform required,
the computational time is still within that taken by the cross
correlation method, because only the small region of the spec-
trogram around the dominant frequency is considered, avoiding
further calculations at other frequencies.

The method was validated by experiments in demineralized
water at different temperatures in comparison to the cross corre-
lation method. Two sensitive analyses were applied for the pro-
posed method, proving its tendency to produce identical results
if the experiment is repeated with precision of 6.4 × 10−3%,
and a sensitivity of 0.11% to changes in the pulse-echo setup
dimensions. The proposed method was applied to automati-
cally determine online USV in yeast fermentation process with
a maximum error of 0.67%. Afterwards, USV was combined
with temperature and nine signal features in an artificial neural
network to estimate the instantaneous density of the fermenta-
tion mixture, producing a maximum error of 0.95%.

Although the first and second echoes were handled to cal-
culate TOF for all experiments, subsequent echoes may also be
used. However, the first and second echoes are qualitatively the
best selection since they are least corrupted by any destructive
issues during signal propagation.

In general, results of the proposed method, in comparison to
those given by cross correlation method, showed how it can be
powerfully applied for ultrasound measurement in food prod-
ucts. Moreover, the results can be improved if higher resolution
spectral analysis is applied, with higher overlapping percent-
age, less frame length, and optimum selection of the window
function.

In bioprocess, changes in the precision of temperature mea-
surements should be well considered. The implemented PT100
temperature sensor has high accuracy (0.1◦C at 0◦C), low drift,
and with resistance rate of 0.385 ohm/◦C. Using sensors with
higher rates allow obtaining higher resolution. For calibration, a
voltage meter was applied to adjust the resistance value for an ex-
actly well-known reference temperature. However, the precision
of the temperature measurement is reduced slightly at higher
temperatures, since it becomes difficult to prevent contamina-
tion of the platinum wire. The precision is also degraded due to
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Table 2. Relevant features with respect toρref . Wherepmf , x, N, and M are probability mass function, signal amplitude, segment length, and
number of frequency pins; respectively. X is the resulting Fourier coefficient (equation (7)).

Feature Equation

Spectral centroid
∑M

m=1 m.|X (m)|∑M
m=1|X (m)|

Spectral spread
M∑

m=1
(m − spectral centroid)2 × pmf (m) , pmf (m) = |X (m)|∑M

m=1|X (m)|

Spectral kurtosis
∑M

m=1(m−spectral centroid)4×pmf (m)
(spectral spread)2

Temporal and spectral energy
N∑

n=1
(x(n))2 &

M∑
m=1

|X (m)|2

Temporal and spectral crest factor max(|x(n)|)
1
N

∑N
n=1|x(n)| & max(|X (m)|)

1
M

∑M
m=1|X (m)|

Temporal and spectral entropy −
N∑

n=1

( |x(n)|∑N
n=1|x(n)|

)2
ln

( |x(n)|∑N
n=1|x(n)|

)2
& −

M∑
m=1

pmf (m) × ln
(
pmf (m)

)

the self-heating of the sensor as a result of the power applied to
it. Further errors rise during temperature transients because the
sensor may not respond to changes fast enough.

Practical application

The proposed method for estimating speed of sound
propagation of ultrasound signals can be applied in non-
destructive tests to check mediums quality and variations.
In particular, monitoring of fermentation processes can be
performed successfully in non-contact, non-invasive ap-
proaches. Furthermore, the combination of the estimated
speed of sound with other signal features are intended to
approximate online the important and non-sensed process
variables such as mixture density, which thereafter deter-
mines the fermentation level and indicates the amount of
the remaining sugar.

All measurements were performed in the laboratory of Chair of
Brewing and Beverage Technology, Technical University of Munich,
Freising, Germany.

The authors have declared no conflict of interest.

Nomenclature

A s [Voltage] Pulse amplitude
fd [Hz] Dominant frequency

m Initial finite slope of the pulse
u Final finite slope of the pulse
A r1 [Voltage] Amplitude on the first echo
A r2 [Voltage] Amplitude on the second echo
TOF [s] Time of flight
USV [m/s] Speed of sound
d [m] Path length through the test section

t1 [s] Detected time for the start of first echo
t2 [s] Detected time for the start of second echo

ADC Analogue-to-digital converted signal
amplitude

DN [m] Nominal diameter
FFT Fast Fourier transform
STFT Short time Fourier transform
WT Wavelet transform
fs [Hz] Sampling frequency
x [Voltage] Signal amplitude
X Fourier transform coefficient
w Hanning window function
N Number of segment samples
M Number of frequency pins
P [Vrms] Power spectrum
P1 [Vrms] Power spectrum at the start of first

echo
P2 [Vrms] Power spectrum at the start of second

echo
T [◦C] Temperature
ANN Artificial neural network
MSE Mean square error

a Neuron activation function
pmf Probability mass function

Greek letters
ϕ [rad] Phase shift
ϕ1 [rad] Phase shift at the start of first echo
ϕ2 [rad] Phase shift at the start of second echo
ρref [kg/m3] Reference density of the fermentation

mixture
ρest [kg/m3] Estimated density of the fermentation

mixture
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4. Conclusion and Outlook 

 
 

4.1 Conclusion 
 
In this thesis, numerical models belong to signal and image processing techniques are 
developed to help in improving the solution of associated Life Science Engineering 
(LSE) problems. The appropriateness of LSE problem to be possible application for the 
developed models depends on either it is originated by a sound producer (e.g., weevils 
detection), or related to process which can be examined by ultrasound measurements 
(e.g., food process monitoring). In addition to, problem which can be identified in 
pictures (e.g., swelling recognition in biological tissues) or simply distinct in 
spectrogram images (e.g., sound pattern based animal classification).  
The scheme followed in this thesis can be concluded in the flowchart displayed in 
figure (4.1), starting by processing the signal/image of LSE problem. The major 
objective is to improve signal/image analysis through the developed numerical models, 
and extract more relevant and accurate features. Afterwards, suitable pattern 
recognition techniques (such as ANN) are applied in detecting, identifying, or 
classifying the involved patterns and solve the corresponding problem. 
 

 

Figure (4.1): Concluding 
diagram for the scheme 
which is followed in the 

thesis to solve LSE 
problems. 

 
Altogether, four numerical models have been developed and applied to four LSE 
problems, as summarized in table (4.1).  
 

Table (4.1): The developed numerical models and their solved LSE problems. 

Developed model Solved LSE problem 
Relevant features extraction for 
sound pattern recognition 

Detecting the existence of red palm weevil 
(Rhynchophorus ferrugineus) 

Improved edge detection 
approach with sub-pixel accuracy 

Fat contents recognition in meat slices 

Enriched spectrogram 
enhancement approach protecting 
pattern structure 

Classification of birds/bats bioacoustics 
calls 

Robust speed of sound estimation 
approach for ultrasound signals 

Monitoring of yeast fermentation bioprocess 
and its mixture density 

 
The first model concerns with the extraction of large list of temporal and spectral 
features including some unconventional features, to completely define the sound print 
of a sound source. Application of window functions to smooth the ends of non-periodic 
signals and reduce the spectral leakage in calculating Fourier transform coefficients is 
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discussed. The performance of these window functions is divided into two categories; 
the first is for those functions increase the frequency resolution, while the second is for 
those reduce the spectral leakage. A third category may be defined for those functions 
increase the amplitude resolution; however this is not significant categorization 
because in most applications the calculated coefficients are normalized before 
extracting the spectral features. 
Beside the common algorithms for dominant features selection, two simple selection 
approaches are introduced. These approaches are Jacobian based feature selection 
and Steadiness based feature selection, for regression and classification pattern 
recognition problems; respectively. 
The developed model is applied to detect the existence of Red Palm Weevil (RPW) –
which is the most destructive pest of date palm in the world – in an earlier phase of 
infestation. Its hidden kind of living makes an early detection with traditional methods 
(e.g. pheromone traps) not applicable, while it can be performed using bioacoustics 
recognition. Several sensor constructions are built and the best recordings are 
obtained by an insertion sensor, which brings the sensor near the source of the sound. 
The recordings are digitized at 11025 Hz, high-pass filtered with cutoff frequency of 
200 Hz. The recordings are divided into segments wherein optimum segment length is 
investigated along several overlapping percentages, and found to be 0.42 sec when 
90% overlapping is engaged. Rectangular window is used to calculate spectral 
features that require high frequency resolution (e.g. spectral roll-off), while Blackman 
window is applied to calculate those require less spectral leakage (e.g. spectral 
centroid). For each frame; 8 temporal and 10 spectral relevant features are selected, 
including some unconventional features, building up a RPW detection system. The 
developed system detects correctly the location of RPW feeding sounds’ patterns in a 
five minutes recording.  
After the positive determination of RPW presence in a palm, it is necessary to remove 
the palm tree, because up today no real efficient treatment method exists. But with the 
removing of an infested palms and disinfection of the soil, a strong blow against RPW 
population is made. 
 
The second model is for an improved edge detection method which extracts features 
images (energy and skewness) from the original grey scale image. These images 
behave as smoothed versions of the original image and avoid the using of prior 
smoothing filters (such as Gaussian filter) and their scaling constraints. The gradient 
images of these features images are obtained by 3*3 Sobel derivative operators, and 
edges are detected as the peaks in the gradient images. Afterwards, Hysteresis 
thresholding is applied to remove noisy weak edges, and non-maximum suppression 
method is applied to reduce the thickness of the detected edges to one pixel width. 
Since edges are not always directed to the center of pixels, a quadratic interpolation is 
made among adjacent pixels to estimate the sub-pixel edge strength. Furthermore, a 
flux equilibrium check is performed on the obtained edges image to detect any 
discontinuities along the edge direction and fill them.  
Investigations are conducted to find the optimum values for controlling parameters of 
the model. The first parameter is the size of the mask which slips over the original 
image to extract the feature images. The second parameter is the size of the flux 
equilibrium matrix which slips over the edges to check and fill discontinuities. And the 
third parameter is the combination coefficient between the output edges images (one 
from energy image and the other from skewness image) to produce the final edges 
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image. The optimum values for these three parameters are found to be 5*5, 3*3, and 
0.75; respectively. The model is competitively compared to other edge detectors 
through several subjective and objective evaluation measures. For the reference 
images which are implemented in this comparison, the signal to noise ratio is increased 
by at least 6.4%. The mean square error is reduced by at least 1.6%, while the 
localization error and energy dissipation are improved by at least 7.8% and 0.25%; 
respectively. 
The developed model is applied to detect the boundaries of fat content in meat slices 
images. These images are initially pre-processed by a histogram thresholding analysis 
which eliminates the background noise. And by an anisotropic diffusion filter which 
reduces the specular reflections and speckles due to the light reflection from the moist 
meat areas and muscle fibrous texture. Once boundaries are detected, the region 
growing method is employed to calculate the area enclosed by them. The traditional 
and standard reference method to measure fat content in meat is the organic solvent 
based method. Its drawbacks are the long drying and extraction time, lack of 
automation, high consumption of solvent, and it is a destructive testing method. 
 
The third model presents an enriched spectrogram enhancement approach which does 
not affect the structure of the sound patterns. Spectrogram is selected as suitable 
time-frequency representation because of its reasonable constant time and frequency 
resolutions. But scalogram, which is an alternative to the spectrogram and obtained by 
wavelet transform, accomplishes low frequency resolution at higher frequencies and 
low time resolution at lower frequencies.  
The spectrogram dynamic range is limited to 40 dB level to focus on the contained 
high energetic patterns. Afterwards, a crest factor image is extracted as a feature 
image for the spectrogram, and processed by the developed edge detection model to 
accurately define the boundaries of the sound patterns. The usage of crest factor 
image instead of energy/skewness combination is because this combination presents 
both strong edges (from energy feature) and weak edges (from skewness feature). As a 
result the attached noise may also be detected as sound patterns. 
Interiors of the detected boundaries are reconstructed with their original sound power, 
while the exteriors (i.e., attached noise) are eliminated. As a result, the enhanced 
spectrogram is produced with the sound patterns in their almost original temporal and 
spectral locations, giving an efficient base for further pattern recognition tasks to be 
performed.  
The model is compared to other leading edge enhancement approaches for reference 
spectrograms of birds and bats, over a range of added white Gaussian noise. Results 
show the efficiency of the model to enhance spectrograms with higher signal to noise 
ratio and segmental signal to noise ratio, as well as lower log spectral distortion and 
Itakura Saito. 
The enhanced spectrogram is implemented to obtain power and frequency contours of 
the enclosed sound patterns. The power contour may be used for specific sound 
power detection, and the frequency contour may be used in designing more reliable 
filter. Furthermore, the enhancement spectrogram is accessed to reconstruct the 
enhanced wave form of the bioacoustics calls, which can be adopted for accurate 
feature extraction process. 
The developed model is applied to classify bioacoustics calls of bird and bat species. 
The sound pattern is distinctive for each sound producing animal, and this appears 
completely in the spectrogram representation because it contains both temporal and 
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spectral information. Whereas the sound pattern may be mismatched if separately 
considered in time or frequency domains. From the enhanced spectrogram image, 
several two dimensional features are extracted to define the sound patterns of the 
candidate species. The classifier is designed by two relevant features, namely the 
eccentricity and centroid of the sound pattern. After training the classifier with enough 
sound patterns of each species, it correctly classified 94.59% of the test sounds. 
 
The fourth model is for an improved calculation of the speed of sound (𝑈𝑆𝑉) during 
ultrasound measurements, which is an important parameter to monitor simultaneously 
variations in the tested samples, in noncontact and non-destructive way. In practice, 
echoes of the propagated ultrasound signals are not clearly parted and involve phase 
shifts, result in difficult determination of their time of flight and its corresponding 𝑈𝑆𝑉. 
Therefore, the signal is divided into short segments (length = 10% signal length) with 
overlapping > 90%, and multiplied by suitable window function reducing the spectral 
leakage, to obtain high resolution spectrogram. The Fourier coefficients at the 
dominant frequency are separated and their power spectrum distribution and phase 
shift distribution are established. Accordingly the starts of first and second echoes are 
accurately detected and their phase shifts are obtained. Time of flight is the interval 
between these starts’ times corrected with their phase shifts, and 𝑈𝑆𝑉 is calculated by 
information of the signal path length. The model is validated by reference data of 
speed of sound in demineralized water at temperatures [9 – 30.8] ˚C, producing a 
maximum error of 0.217%. Sensitivity analyses are performed on the results implying 
their repeatability with a deviation of 6.4*10-3% over 50 repeated measurements, and 
their consistency with a deviation of 0.107% when the dimensions of the implemented 
ultrasound setup is changed. Results are compared to those produced by cross 
correlation method on a continuous process monitoring, generating more stable 𝑈𝑆𝑉 
distribution free from noticeable outliers with less computational time. 
The technique offers a deeper insight into bioprocesses and thus their monitoring, 
optimization, and control. As a result, the model is applied online in a yeast 
fermentation process accompanied by continuous ultrasound measurements. The 
calculated 𝑈𝑆𝑉 is combined with signal relevant features and the measured 
temperature values in an artificial neural network to estimate instantaneously the 
mixture density with a maximum error of 0.95%. This density is important to determine 
the fermentation level, amount of produced alcohol, as well as an indication for 
concentration of the remaining sugar.  
 
 
4.2 Outlook  
 
An important advantage of the developed tools is their provision of non-destructive, 
noncontact, and low cost solution to the associated LSE problems. Therefore, in some 
applications, more precautions have to be considered. For example, in recording the 
sounds produced by hidden weevils such like red palm weevils, holes are made in the 
palm tree, to bring the sensor to the closest place from the sound source. These holes 
should be small enough to avoid tree destruction, and the sensor has to be 
contentiously anti-infectious treated to prevent spread of infestations among trees. 
Moreover, higher sensor sensitivity to the produced sounds is double-edged sword. 
Since it can detect lower energy weevil sounds and in the same time detect more of 
the weak noise. Meanwhile, a next step to the generated bioacoustics detection 
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system is to develop a learning scheme to handle all the available features for the 
feeding sound in different environmental conditions and field sounds, such like 
machines, animals, and other existing insects. Adding some features for the 
description of noise-like sounds should enhance the system to become a useful tool in 
similarity search for the sound calls of insects. 
 
On the other hand, although edges image limits the data included in an original image 
to the objects boundaries information, edge detectors may require long computational 
time since pixel-by-pixel investigation is necessary. This time is further extended if 
sub-pixel accuracy is targeted as in the developed edge detector, because edges 
directions will cover all the range between [0-360] ˚ instead of covering only the basic 
directions {0, ±45, ±90, ±135, 180}.  
The developed edge detection approach provides no information about the frame 
pixels of the original image, due to the implementation of central finite difference in 
calculating the gradient image. These pixels are located on first and last rows, and first 
and last columns. This issue can be sidestepped by applying forward or backward 
finite difference at the frame pixels. More simple solution is to avoid having useful 
information from taking place in frame pixels when capturing the original image. 
Furthermore, the 3*3 Sobel operator is applied to obtain the gradient image in a quickly 
but less accurate manner. Higher order finite difference operators suchlike 5*5 
increases the accuracy order from 𝑂(ℎ2) to 𝑂(ℎ4), as described in figure (4.2). 
Unfortunately, this procedure increases the overall computational time. 
 

 

Figure (4.2): Comparison between 
3*3 and 5*5 derivative operators in 
obtaining the gradient of general 

function 𝑓(𝑥). 

 
The flux equilibrium check helped to fill the discontinuities in edges, as long as these 
discontinuities are seen within the selected 3*3 flux check matrix. Therefore, the 
selection of such matrix size is application oriented which is dependent on the 
investigated image and object size. 
In determining fat contents in meat slices by the developed approach, the slice is 
assumed to be 2D or has uniform distribution of fat along the third dimension. For 
other cases, an under-layer analysis has to be added suchlike ultrasound imaging. 
 
Alternatively, for the developed spectrogram enhancement approach, different 
parameters have to be studied with respect to the achieved enhancement level. One of 
these parameters is the selected dynamic range which limits the spectrogram to its 
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inclusion of high energy sound patterns. Other features images may also be 
investigated beside the crest factor image to improve the enhancement process. 
Furthermore, parameters involved in the frequency domain transformation influence the 
obtained spectrogram resolution, such as overlapping percentage, window function, 
and window function size as described in figure (4.3).  
Clearly, in classification of bioacoustics calls, much care should be paid in selecting 
the relevant features. The clusters will be far apart for features that have good 
discriminatory ability, whereas the clusters may overlap for other features. The samples 
selected as training data are crucial for the recognition success and assumed to have 
all possible pattern representatives; otherwise, species may be wrongly classified. 
  

(a) (b) 

Figure (4.3): Spectrogram of Prunella collaris bioacoustics call obtained by: (a) fixed window size, and (b) 
varied window size. [78] 

 
In regard to the developed speed of sound estimation approach, reverse engineering 
may help to design more suitable window function which eliminates spectral leakage, 
and returns accurate frequency and power spectrum. Wavelet transform and Hilbert 
transform can also be candidates to Fourier transform in seeking more precise spectral 
analysis. For correct detection of time of flight, complete damping of each echo is 
essential, which is not only related to the sample under study but also to the 
implemented transducer system. 
Due to the complex nature of microbial growth, monitoring and control of bioprocesses 
represent an ever-increasing engineering challenge. For further optimisation of 
bioprocesses and ensuring high product quality, the lack of accurate real time 
monitoring will be the bottleneck. Therefore, in the years to come, increasing focus has 
to be given to online monitoring techniques. The use of online measurements to 
monitor bioprocesses for identifying cell status has become more predominant. All 
sensors take part in monitoring the bioprocess should be evaluated periodically for any 
changes to their sensing accuracy. These changes may be a result of their 
contamination, life time, and/or weak incompetent calibration. Ultrasonic 
measurements are not applicable when the sonic attenuation of the sample is very 
high. This can occur in substances with high content of bubbles or voids. Also no 
effects are measured in composite samples when the speeds of sound of the 
components are identical.  
 
Generally, more samples collection - whether signals or images – improves the training 
of the corresponding pattern recognition system and ensures consistent and reliable 
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performance when applied to new test samples. The typical problems include how to 
represent complex samples, and how to exclude spurious (unstable) samples to avoid 
over fitting problems. 
 
So where should it goes from here? The ultimate goal of this thesis is to aid in paving 
the way for extended research applications out of the tools and applications presented 
here. Some of these applications and further thoughts are presented in table (4.2). 
 

Table (4.2): Some of the possible future directions and LSE applications where the developed models 
can prove to be beneficial. 

Developed model Possible applications 

Relevant features 
extraction for sound 
pattern recognition  

 Detection of others hidden or night migrating 
animals (e.g., rice weevil, flour weevil, and geese). 

 Scared systems for birds on airplanes (based on 
generating sound features of birds enemies). 

 Source identification (based on database for 
sound features of possible sources). 

 Bioacoustics monitoring of animal population. 
 Acoustic communication studies. 
 Detection of alarm calls in species suchlike red 

ruffed lemur (for earthquake, tornado, or volcano 
warnings). 

 Study environmental influence (e.g., temperature) 
on sound sensitivity. 

 Acoustic localization of fishes. 

Improved edge detection 
approach with sub-pixel 
accuracy 

 Identification of general objects in images (based 
on their edges distribution and 2D features). 

 Cancer and pictured seen diseases diagnosis. 
 Movement tracking (based on the changing of 

center of gravity position of the detected object). 
 Biometric analysis. 
 Mobile robot vision system. 
 Measurement of critical objects dimension and 

inspection for missing parts. 
 Analysis of microscopy images. 

Enriched spectrogram 
enhancement approach 
protecting pattern 
structure 

 Robust identification of sound producing species. 
 Learning sound characteristics. 
 Filtration of audio signals for further processing or 

checking a filter performance. 
 Phonetics and speech recognition. 
 Studying frequency modulation in animal calls.  
 Reverse engineering of sound patterns. 
 Creation of modern music systems. 
 Development of radio frequency and microwave 

systems.  

Robust speed of sound 
estimation approach for 
ultrasound signals 

 Monitoring the development of other food 
processes such as dough mixing. 

 Monitoring of medical products processes such 
as monoclonal antibody in hybridoma cultures. 
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 Assisting in the adaptive control of bioprocess 
progression. 

 Non-destructive inspection of food quality. 
 Shelf life examination of products. 
 Under layer compositions identification.  

 
Major challenges of the future such as food, environment, and health care at a 
sustainable cost are related to life sciences. The convergence of life sciences with 
engineering is an emerging opportunity that will help generate many exciting future 
achievements. Therefore, the implementation of cheap, robust, non-destructive, and 
noncontact signal and image processing techniques should not be overlooked for 
investment and development. It is a very large and exciting field of research and there 
continue to be many developments. 
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Appendix A: List of temporal and spectral features 
 
 
Time domain features 
These features are extracted from the signal waveform distribution, and used to 
express the variation of samples amplitudes with time. 
 
1. Zero crossing rate: is the number of points at which the signal passes the time axis, 
through the whole pattern, as shown in figure (A1.1) 
 

1

2 ∗ N
∑|sign(𝑥(𝑛)) − sign(𝑥(𝑛 − 1))|

N

𝑛=2

, {

sign = 1     ; 𝑥(𝑛) > 0

sign = 0     ; 𝑥(𝑛) = 0

sign = −1  ; 𝑥(𝑛) < 0

 

Where 𝑥(𝑛) is the amplitude at sample 𝑛, and 𝑁 is the number of samples. 
 

 

Figure (A1.1): Schematic diagram for calculating 
zero crossing rate 

 
2. Short Time Energy: Is the energy content of the pattern and calculated by summing 
up all the areas under the curves of the signal, as shown in figure (A1.2) 

∑(𝑥(𝑛))
2

𝑁

𝑛=1

 

 

 

Figure (A1.2): Schematic diagram for calculating 
short time energy 

 
3. Energy Root Mean Square: represents also the energy content, but averaged over 
the pattern length 
 

√∑ (𝑥(𝑛))
2N

𝑛=1

N
 

 
4. Temporal Centroid: is the time at which half of the pattern energy was covered. It is 
not necessary to be exactly in the middle of the pattern length, as shown in figure 
(A1.3). 
 

𝐶𝑡 =
∑ 𝑛 ∗ (𝑥(𝑛))

2N
𝑛=1

∑ (𝑥(𝑛))
2N

𝑛=1
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Figure (A1.3): Schematic diagram for temporal 
centroid 

 
5. Temporal Entropy: It measures the disorder of a signal, with low value for highly 
ordered signals (i.e., has less noise and fewer bits are sufficient to describe its 
information). 
 

− ∑ (
|𝑥(𝑛)|

∑ |𝑥(𝑛)|N
𝑛=1

)

2

ln (
|𝑥(𝑛)|

∑ |𝑥(𝑛)|N
𝑛=1

)

2N

𝑛=1

 

 
6. Temporal Crest-Factor: It is the ratio of the maximum magnitude on the pattern to 
the average of the amplitudes, and this represents the singularity of the pattern, as 
shown in figure (A1.4). 

max (|𝑥(𝑛)|)

1
N

∑ |𝑥(𝑛)|N
𝑛=1

 

 

 

Figure (A1.4): Schematic diagram for temporal 
crest factor 

 

 
7. Temporal Slope: It represents the amount of decreasing or increasing of the pattern 
amplitude, and is computed by linear regression, as shown in figure (A1.5). 
 

N ∑ (𝑛 ∗ 𝑥(𝑛)) −N
𝑛=1 ∑ 𝑛N

𝑛=1 ∗ ∑ 𝑥(𝑛)N
𝑛=1

∑ 𝑥(𝑛)N
𝑛=1 ∗ (∑ 𝑛2N

𝑛=1 − (∑ 𝑛N
𝑛=1 )2)

 

 

 

Figure (A1.5): Schematic diagram for temporal 
slope 

 

 
8. Temporal Flux: represents how sharp the amplitudes change on the same pattern, 
and measured by summing up all the squaring values for the difference between the 
normalized magnitudes of adjacent amplitudes, as shown in figure (A1.6). 
 

∑ (
|𝑥(𝑛)|

max(|𝑥|)
| −   

|𝑥(𝑛 + 1)|

max(|𝑥|)
| )

2N

𝑛=1
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Figure (A1.6): Schematic diagram for temporal 
flux 

 

 
9. Temporal Decrease: represents the decay part of the pattern, and measured by the 
slope of the line connecting the last point with amplitude equals 0.8 of the maximum 
amplitude, and the last point with amplitude equals 0.08 of the maximum amplitude, as 
shown in figure (A1.7). 
 
10. Descent time: is the period covered by the temporal decrease line, as shown in 
figure (A1.7). 
 
11. Temporal increase: represents the attack part of the pattern, and measured by the 
slope of the line connecting the first point with amplitude equals 0.8 of the maximum 
amplitude, and the first point with amplitude equals 0.08 of the maximum amplitude, as 
shown in figure (A1.7). 
 
12. Attack time: is the period covered by the temporal increase line, as shown in figure 
(A1.7) 
 
13. Duration: represents the interval between first and last points with amplitudes equal 
to 0.1 of the maximum amplitude, as shown in figure (A1.7). 
 

 

Figure (A1.7): 
Schematic diagram for 

temporal decrease, 
descent time, temporal 
increase, attack time, 

and duration 

 
14. Temporal Roll-off:  the sample in the time domain below which 90% of the energy 
distribution is concentrated, as shown in figure (A1.8) 
 

∑|𝑥(𝑛)|2

nrf

𝑛=1

= 0.9 ∗ ∑|𝑥(𝑛)|2

N

𝑛=1

 

Where  nrf is the sample number of the temporal roll-off 
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Figure (A1.8): Schematic diagram for temporal 
roll-off 

 
15. Temporal Flatness: It is a measure for the tendency of the pattern to hold constant 
(flat) amplitudes, it equals “1” for constant amplitudes pattern and smaller values for 
other pattern types. It is calculated by the ratio of the geometric mean to the arithmetic 
mean of the pattern amplitudes, as shown in figure (A1.9). 
 

𝑡𝑓 =
(∏ |𝑥(𝑛)|N

𝑛=1 )1/𝑛

1
N

∑ |𝑥(𝑛)|N
𝑛=1

 

 

 

Figure (A1.9): Schematic diagram for 
temporal flatness 

 
16. Temporal Tonality: It is related to the flatness of the pattern, and indicates whether 
tone or noise exists in the pattern. It is value is close to “1” for tonal patterns and close 
to “0” for noisy patterns, as shown in figure (A1.10).  
 

min (
10 ∗ log(temporal flatness)

−60
, 1) 

 

 

Figure (A1.10): Schematic diagram for temporal 
tonality 
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17. Temporal Spread: Represents the variance of the pattern amplitudes around its 
mean value. 
 

𝑡𝑠𝑝 = ∑(𝑛 − centroid)2 ∗ 𝑡𝑝𝑚𝑓(𝑛)

N

𝑛=1

 , 𝑡𝑝𝑚𝑓(𝑛) =
|𝑥(𝑛)|

∑ |𝑥(𝑛)|N
𝑛=1

 

Where 𝑡𝑝𝑚𝑓 is the probability mass function 
 
18. Temporal Skewness: gives a measure for the degree of asymmetry of the pattern 
amplitudes with respect to the normal distribution, as shown in figure (A1.11). 
 

𝑚3 = ∑(𝑛 − centroid)3 ∗ 𝑡𝑝𝑚𝑓(𝑛)

N

𝑛=1

, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑘𝑒𝑤 =
𝑚3

𝑡𝑠𝑝3/2
 

 

 

Figure (A1.11): 
Schematic 
diagram for 

temporal 
skewness 

 
19. Temporal Smoothness: It measures the smoothness variation of the pattern 
amplitude with respect to its two neighbours. 
 

20 ∗ ∑ |log|𝑥(𝑛)| −
log|𝑥(𝑛 − 1)| + log|𝑥(𝑛)| + log|𝑥(𝑛 + 1)|

3
|

N−1

𝑛=2

 

 
 
Frequency domain features 
In the frequency domain, many spectral features may be extracted and implemented in 
combination to those in time domain, to fully characterize the signal. Many of these 
spectral features are calculated with the same mathematical formulas given for 
temporal features, but using the power spectrum and frequency instead of the signal 
amplitude and time; respectively. 
 
20. Spectral Roll-Off:  
 

∑ |𝑋(𝑚)|

mrf

𝑚=1

= 0.9 ∗ ∑ |𝑋(𝑚)|

1024

𝑚=1

 

Where mrf is the frequency bin representing the spectral roll-off, 𝑋(𝑚) is the spectrum 
at bin number 𝑚, and 1024 is the total number of frequency bins. 
 
21. Spectral Flux:  
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∑ (
|𝑋(𝑚)|

max(|𝑋(𝑚)|)
| −

|𝑋(𝑚 + 1)|

max(|𝑋(𝑚)|)
| )

21024

𝑚=1

 

 
22. Spectral Centroid:  
 

𝐶𝑡 =
∑ 𝑛. |𝑋(𝑚)|1024

𝑚=1

∑ |𝑋(𝑚)|1024
𝑚=1

 

 
23. Spectral Root Mean Square:  
 

√
∑ (|𝑋(𝑚)|)21024

m=1

1024
 

 
24. Spectral Slope:  
 

1024 ∗ ∑ (𝑚 ∗ |𝑋(𝑚)|) −1024
𝑚=1 ∑ 𝑚1024

𝑚=1 ∗ ∑ |𝑋(𝑚)|1024
𝑚=1

∑ |𝑋(𝑚)|1024
𝑚=1 ∗ (∑ 𝑚21024

𝑚=1 − (∑ 𝑚1024
𝑚=1 )2)

 

 
25. Spectral Flatness:  
 

(∏ |𝑋(𝑚)|1024
𝑚=1 )1/𝑚

1
1024

∑ |𝑋(𝑚)|1024
𝑚=1

 

 
26. Spectral Crest Factor:  
 

max (|𝑋(𝑚)|)

1
1024

∑ |𝑋(𝑚)|1024
𝑚=1

 

 
27. Spectral Energy:  
 

∑ |𝑋(𝑚)|2

1024

m=1

 

 
28. Spectral Tonality:  
 

min (
10 ∗ log(spectral flatness)

−60
, 1) 

 
29. Spectral Smoothness: 
  

20 ∗ ∑ |log|𝑋(𝑚)| −
log|𝑋(𝑚 − 1)| + log|𝑋(𝑚)| + log|𝑋(𝑚 + 1)|

3
|

1023

𝑚=2
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30. Spectral Spread: 
  

𝑠𝑠𝑝 = ∑ (𝑚 − 𝐶𝑡)2 ∗ 𝑝𝑚𝑓(𝑚)

1024

m=1

 , 𝑝𝑚𝑓(𝑚) =
|𝑋(𝑚)|

∑ |𝑋(𝑚)|1024
𝑚=1

 

 
Where 𝑝𝑚𝑓 is the probability mass function 
 
31. Spectral Skewness:  
 

∑ (𝑚 − 𝐶𝑡)3 ∗ 𝑝𝑚𝑓(𝑚)1024
m=1

𝑠𝑠𝑝3/2
   {

      < 0         more energy on the right
= 0           symmetric distribution
  > 0         more energy on the left

 

 
32. Spectral Entropy:  
 

− ∑ 𝑝𝑚𝑓(𝑚) ∗ ln(𝑝𝑚𝑓(𝑚))

1024

𝑚=1

 

 
33. Spectral Kurtosis: a measure of the flatness and singular variation of the spectrum 
around the mean, as shown in figure (A1.12) 
 

∑ (𝑚 − 𝐶𝑡)4 ∗ 𝑝𝑚𝑓(𝑚)1024
m=1

𝑠𝑠𝑝2
   {

< 3      flatter distribution
= 3      normal distribution
> 3      peaker distribution

 

 

 

Figure (A1.12): Schematic diagram for spectral 
kurtosis 

 

 
34. Spectral Band Width: the frequency band between first and last points with power 
spectrum equal to 0.1 of the maximum amplitude, as shown in figure (A1.13). 
 
35. Spectral Decrease: the decay part of the spectrum, and measured by the slope of 
the line connecting the last point with power equals 0.8 of the maximum value, and the 
last point with power equals 0.08 of the maximum value, as shown in figure (A1.13). 
 
36. Descent band: is the frequency band covered by the spectral decrease line, as 
shown in figure (A1.13). 
 
37. Spectral increase: the attack part of the spectrum, and measured by the slope of 
the line connecting the first point with power equals 0.8 of the maximum value, and the 
first point with power equals 0.08 of the maximum value, as shown in figure (A1.13). 
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38. Ascent band: is the frequency band covered by the spectral increase line, as 
shown in figure (A1.13). 
 

 
Figure (A1.13): Schematic diagram for band width, spectral decrease, descent band, spectral 

increase, and attack band 
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