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Abstract
During the last decade, multidimensional databases have 
become common in the business and scientific worlds. 
Analysis places significant demands on the interfaces to 
these databases. It must be possible for analysts to easily 
and incrementally change both the data and their views of it 
as they cycle between hypothesis and experimentation.

In this paper, we address these demands by presenting 
the Polaris formalism, a visual query language for precisely 
describing a wide range of table-based graphical presenta-
tions of data. This language compiles into both the queries 
and drawing commands necessary to generate the visualiza-
tion, enabling us to design systems that closely integrate 
analysis and visualization. Using the Polaris formalism, we 
have built an interactive interface for exploring multidimen-
sional databases that analysts can use to rapidly and incre-
mentally build an expressive range of views of their data as 
they engage in a cycle of visual analysis.

1. Introduction
Nowadays, structured databases are widely used. Corpora
tions store every sales transaction in large data warehouses. 
International research projects such as the Human Genome 
Project and Digital Sky Survey are generating massive scien-
tific databases. Organizations such as the United Nations 
are making a wide range of global indicators on issues rang-
ing from carbon emission to the adoption of technology 
publicly available via the Internet.

Unfortunately, our ability to collect and store data has 
rapidly exceeded our ability to analyze it. A major challenge 
in computer science is how to extract meaning from data: 
to discover structure, find patterns, and derive causal rela-
tionships. An analytical session cycles between hypothesis, 
experiment, and discovery. Often the path of exploration is 
unpredictable, and thus analysts need to be able to rapidly 
change both what data they are viewing and how they are 
viewing that data. This exploratory analysis process places 
significant demands on the human–computer interfaces to 
these databases. Few good tools exist.

In this paper, we present a formal approach to build-
ing visualization systems that addresses these demands. 

The first contribution is the Polaris formalism, a declara-
tive visual query language that specifies a wide range of 2D 
graphic displays. The three key components of the formal-
ism are (1) a table algebra that captures the structure of 
tables and spatial encodings, (2) a graphic taxonomy that 
results in an intuitive specification of graphic types, and (3) 
a system for effective visual encoding. This language allows 
for easily changing between different graphic displays as 
well as adding or removing data.

The second main contribution is the combination of this 
visual query language with the underlying database queries 
needed. This allows us to combine both visualization as 
well as the underlying data transformations to support the 
exploratory process.

The final contribution is the Polaris interface that allows 
users to incrementally construct a visual specification by drag-
ging fields onto “shelves” (see Figure 1). Each intermediate 
specification is valid and corresponds to a graphical data dis-
play, giving the user quick visual feedback to support this anal-
ysis. This interface is built on top of the visual query language 
that specifies both the data and graphical transformations 
needed, thus combining statistical analysis and visualization. 
Polaris enables visual analysis by allowing an analyst to answer 
a question by composing a picture of what they want to see.

It has been 6 years since this work was originally published. 
In that time, the technology has been commercialized by 
Tableau Software as Tableau Desktop and is currently in use 
by thousands of companies and tens of thousands of users. 
As a result, we have gained considerable experience that has 
validated the effectiveness of the visual query language and 
interface and resulted in extensions and revisions to both.

2. OVERVIEW
Polaris has been designed to support the interactive explora-
tion of large multidimensional relational databases or data 
cubes. Relational databases organize data into tables where 
each row in a table corresponds to a basic entity or fact and 
each column represents a property of that entity.18 We refer 
to a row in a relational table as a tuple or record, and a col-
umn as a field. A single database will contain many hetero-
geneous but interrelated tables.

The authors dedicate this article to the memory of Jim Gray, 
whose pioneering work inspired this research.

A previous version of this paper was published in IEEE’s 
Transactions on Visualization and Computer Graphics, 
vol 8, issue 1 (Jan. 2002), pp. 52–65.



research highlights 

 

76    communications of the acm    |   november 2008  |   vol.  51  |   no.  11

We can classify fields in a database as nominal, ordi-
nal, quantitative, or interval.4,16 This classification is 
the field’s scale. Polaris reduces this categorization to 
ordinal and quantitative by treating intervals as quanti-
tative and assigning an ordering to the nominal fields 
to treat them as ordinal. A field’s scale affects its visual 
representation. Quantitative fields are continuous, and 
are shown as axes or smoothly varying values. Ordinal 
scales are represented discretely, as headers or different 
classes.

The fields within a relational table can also be parti-
tioned into two types: dimensions and measures. This 
classification is the field’s role. Dimensions and mea-
sures are similar to independent and dependent vari-
ables in traditional analysis. For example, a product 
name or type would be a dimension while the product 
price or size would be a measure. The field’s role deter-
mines how the query is generated. Measures are com-
puted using an aggregation function and dimensions 
form the groups to be aggregated.

Polaris originally treated ordinal fields as dimensions and 
quantitative fields as measures. With experience, however, 
we have found that a field’s scale and role are orthogonal, 
and may change depending on the question. For example, 
when asking the question “What is the average age of people 
purchasing a product?” the field Age is acting as a measure. 
However, when asking the question “What is the average 
amount spent classified by customer age?” then Age is act-
ing as a dimension. The current implementation of Tableau 
uses simple heuristics based on a field’s data type and 
domain cardinality to determine a field’s default role and 
scale, but allows both to be easily changed.

To effectively support the analysis process in large multi-
dimensional databases, an analysis tool must meet several 
demands:

•	 Exploratory interface: Analysts must be able to rapidly 
and incrementally change what data they are viewing 
and how they are viewing that data as they explore 
hypotheses.

•	 Multiple display types: Analysis consists of different 
tasks such as discovering correlations between vari-
ables, finding patterns, and locating outliers. An analy-
sis tool must be able to generate displays suited to these 
disparate tasks.

•	 Data-dense displays: The databases typically contain a 
large number of records and dimensions. Analysts need 
to be able to create visualizations that will simultaneously 
display many dimensions of large subsets of the data.

Polaris addresses these demands by providing an inter-
face for rapidly and incrementally generating table-based 
displays. In Polaris, a table consists of a number of rows, 
columns, and layers. Each table axis may contain multiple 
nested dimensions. Each table entry, or pane, contains a set 
of records that are visually encoded as a set of marks to cre-
ate a graphic.

Several characteristics of tables make them particularly 
effective for displaying multidimensional data:

•	 Multivariate: The table structure can encode multiple 
dimensions, enabling the display of high-dimensional 
data.

•	 Comparative: Tables generate small-multiple displays 
of information, which are easily compared to expose 
patterns and trends across dimensions.20

•	 Familiar: Table-based displays have an extensive his-
tory. Statisticians are accustomed to using tabular dis-
plays of graphs, such as scatterplot matrices and Trellis 
displays, for analysis.2,7,20

Figure 1 shows the Polaris user interface. In this example, 
the analyst has constructed a matrix of scatterplots show-
ing sales versus profit for different product types in different 
quarters. The primary interaction technique is to drag-and-
drop fields from the database schema onto shelves through-
out the display. We call a given configuration of fields on 
shelves a visual specification. The visual specification is 
converted into the language using simple operations. The 
specification determines the analysis and visualization 
operations to be performed by the system, defining:

•	 The mapping of data sources to layers. Multiple data 
sources may be combined in a single Polaris visualization. 
Each data source maps to a separate layer or set of layers.

•	 The number of rows, columns, and layers in the table 
and their relative orders (left to right as well as back to 
front). The database dimensions assigned to rows are 
specified by the fields on the y shelf, columns by fields 
on the x shelf, and layers by fields on the layer (z) shelf. 
Multiple fields may be dragged onto each shelf to show 
categorical relationships.

•	 The selection of records from the database and the par-
titioning of records into different layers and panes.

•	 The grouping of data within a pane and the computa-
tion of statistical properties, aggregates, and other 
derived fields. Records may also be sorted into a given 
drawing order.

•	 The type of graphic displayed in each table pane. Each 
graphic consists of a set of marks, one mark per record 
in that pane.

•	 The mapping of data fields to retinal properties of the 
marks in the graphics. The mappings used for any given 
visualization are shown in a set of automatically gener-
ated legends.

Analysts can interact with the resulting visualizations in sev-
eral ways. Each mark represents a tuple, so selecting a single 
mark in a graphic by clicking on it pops up a detail window 
that displays user-specified field values for the tuples cor-
responding to that mark. The tuples represented by a set of 
marks can be cut and pasted into a spreadsheet by selecting 
the marks representing the tuples. Analysts can draw rubber 
bands around a set of marks to brush or highlight related 
records, either within a single table or between multiple 
Polaris displays.

In Section 3, we describe how the visual specification is used 
to generate graphics. In Section 4, we describe the supported 
data transformations and how the visual specifications are 
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used to generate the database queries for statistical analysis.

3. GENERATING GRAPHICS
The visual specification consists of three components: (a) the 
specification of the table configuration, (b) the type of graphic 
inside each pane, and (c) the details of the visual encodings 
(for more details, see17). We discuss each of these in turn.

3.1. Table algebra
We define an algebra as a formal mechanism to specify table 
configurations. When analysts place fields on shelves, as 
shown in Figure 1, they are implicitly creating expressions 
in this algebra.

A complete table configuration consists of three separate 
expressions in this table algebra. Two of the expressions 
define the configuration of the x and y axes of the table, par-
titioning the table into rows and columns. The third expres-
sion defines the z-axis of the table, which partitions the 
display into layers. The x, y, and z expressions form clauses 
in the language.

The operands in this table algebra are the names of the 
ordinal and quantitative fields of the database. We will use 
A, B, and C to represent ordinal fields and P, Q, and R to rep-
resent quantitative fields. We assign sequences of values to 
each field symbol in the following manner: to ordinal fields 
we assign the members of the ordered domain of the field, 
and to quantitative fields we assign the single element set 
containing the field name.

Ordinal and quantitative fields generate tables with 

different structures. Ordinal fields partition the table into 
rows and columns using headers, whereas quantitative 
fields generate axes.

A valid expression in our algebra is one or more field sym-
bols with operators between each pair of adjacent symbols, 
and with parentheses used to alter the precedence of the 
operators. The operators in the algebra are cross (×), nest 
(/), and concatenation (+), listed in order of precedence. The 
precise semantics of each operator is defined in terms of its 
effects on sequences.
Concatenation: The plus operator concatenates two 
sequences:

Cross: The cross operator performs a Cartesian product of 
elements in the two sequences:
Nest: The nest operator is similar to the cross operator, but 
it only creates sequence entries for which there exist records 

A=domain(A)={a
1
,...,a

n
}

P ={P}

A+B ={a
1
,...,a

n
}+{b

1
,...,b

m
}

	 ={a
1
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n
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m
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A+P ={a
1
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n
}+{P}
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n
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P+Q = {P}+{Q}
	 = {P,Q}

Figure 1: The Polaris user interface. Analysts construct table-based displays of data by dragging fields from the database schema onto 
shelves throughout the display. A given configuration of fields on shelves is called a visual specification. The specification unambiguously 
defines the analysis and visualization operations to be performed by the system to generate the display.
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with those domain values. If we define R to be the dataset 
being analyzed, r to be a record, and A(r) to be the value of 
the field A for the record r, then we can define the nest opera-
tor as follows:

A/B ={a
i
b
j
 | ∃r ∈R st A(r)= a

i
 & B(r)= b

j
} 

The intuitive interpretation of the nest operator is “B 
within A”. For example, given the fields quarter and month, 
the expression quarter/month would be interpreted as those 
months within each quarter, resulting in three entries for 
each quarter. In contrast, quarter × month would result in 
12 entries for each quarter. Data cubes represent hierar-
chies explicitly and there is no need to compute the nest 
relationship.

Using the above semantics for each operator, every expres-
sion in the algebra can be reduced to a single sequence, with 
each entry in the sequence being an ordered term consisting 
of zero or more ordinal values with zero or more quantitative 
field names. We call this set evaluation of an expression the 

normalized form. The normalized form of an expression 
determines one axis of the table: the table axis is partitioned 
into columns (or rows or layers) so that there is a one-to-one 
correspondence between set entries in the normalized set 
and columns. Figure 2 illustrates the configurations result-
ing from a number of expressions.

Analysts can also combine multiple data sources in a 
single Polaris visualization. When multiple data sources are 
imported, each data source is mapped to a distinct layer (or 
set of layers). While all data sources and all layers share the 
same configuration for the x and y axes of the table, each 
data source can have a different expression for partitioning 
its data into layers.

In retrospect, the Polaris table algebra is very similar to 
the operations in the MDX query language for data cubes.

3.2. Types of graphics
Given a table configuration, the next step is to specify the 
type of graphic in each pane. We have developed a tax-
onomy of graphics that results in an intuitive and concise 
specification of graphic types. This taxonomy is based on 
both the axes within each pane (implicitly specified from 
the table configuration via the role and scale of the inner-
most field in the sequence) as well as the mark type repre-
senting a tuple (e.g., text, shape, bar, etc.). We group this 
taxonomy into three families (illustrated in Figure 3) based 
on the axes: ordinal–ordinal, ordinal–quantitative, and 
quantitative–quantitative.

Each family contains a number of variants depending 
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Figure 2: The graphical interpretation of several expressions in the table algebra. Each expression in the table algebra can be reduced to a 
single sequence of terms, and that sequence can then be directly mapped into a configuration for an axis of the table.
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on how records are mapped to marks. For example, select-
ing a bar in an ordinal–quantitative pane will result in a bar 
chart, whereas selecting a line mark results in a line chart. 
The mark set currently supported in Polaris includes the 
rectangle, circle, glyph, text, Gantt bar, line, polygon, and 
image. There are two types of marks; single tuple marks and 
multituple marks. Multituple marks form a single graphi-
cal entity from a set of marks; an example is a polygon mark 
where each vertex of the polygon is a single tuple.

Following Cleveland,8 we further structure the space of 
graphics by the number of independent and dependent 
variables. For example, a graphic where both axes encode 
independent variables is different than a graphic where one 
axis encodes an independent variable and the other encodes 
a dependent variable ( y = f (x) ). By default, dimensions of 
the database are interpreted as independent variables and 
measures as dependent variables. We briefly discuss the 
defining characteristics of the three families within our cat-
egorization. It should be noted that these rules allow us to 
automatically choose a default mark given the types of the 
fields on the axes.
Ordinal–Ordinal Graphics: The characteristic member of 
this family is the table, either of numbers or of marks encod-
ing attributes of the source records.

In ordinal–ordinal graphics, the axis variables are typi-
cally independent of each other, and the task is focused on 
understanding patterns and trends in some function f (Ox,Oy) 
Æ R, where R represents the fields encoded in the retinal 
properties of the marks. This can be seen in the heatmap in 
Figure 3, where the analyst is studying gene expression as a 
function of experiment and gene. Figure 6(a) shows another 
example where lines of source code are color-encoded with 
the number of cache misses attributable to that line.
Ordinal–Quantitative Graphics: Well-known representatives 
of this family of graphics are the bar chart, the dot plot, and 
the Gantt chart.

In an ordinal–quantitative graphic, the quantitative vari-
able is often dependent on the ordinal variable, and the 

analyst is trying to understand or compare the properties of 
some set of functions f (O) Æ Q. The cardinality of the record 
set affects the structure of the graphics in this family: When 
the cardinality of the record set is one, the graphics are sim-
ple bar charts or dot plots. When the cardinality is greater 
than one, additional structure may be introduced to accom-
modate the additional records (e.g., a stacked or clustered 
bar chart).

The ordinal and quantitative values may be independent 
variables, such as in a Gantt chart. Here, each pane repre-
sents all events in a category; each event has a type as well as 
a beginning and end time. Figure 6(c) shows a table of Gantt 
charts, with each Gantt chart displaying the thread sched-
uling and locking activity on a CPU within a multiprocessor 
computer.
Quantitative–Quantitative Graphics: Graphics of this type 
are used to understand the distribution of data as a function 
of one or both quantitative variables and to discover causal 
relationships between the two quantitative variables, such 
as in a scatterplot matrix. Figure 3 illustrates another exam-
ple of a quantitative–quantitative graphic: the map. In this 
figure, the analyst is studying election results by county.

3.3. Visual mappings
Each record in a pane is mapped to a mark. There are two 
components to the visual mapping. The first component, 
described in Section 3.2, determines the type of graphic and 
mark. The second component encodes fields of the records 
into visual or retinal properties of the selected mark. The 
visual properties in Polaris are based on Bertin’s retinal 
variables:4 shape, size, orientation, color (value and hue), 
and texture.

Allowing analysts to explicitly encode different fields of 
the data to retinal properties of the display greatly enhances 
the data density and the variety of displays that can be gen-
erated. However, in order to keep the specification succinct, 
analysts should not be required to construct the mappings. 
Instead, they should be able to simply specify that a field be 

Figure 3: The families of graphics within our taxonomy with examples of well-known charts from each family. The taxonomy structures 
the space of graphics into three families by the types of fields assigned to their axes and then further structures each family by the  
number of independent and dependent variables. Using this taxonomy we can derive the type of graphic within each pane from the table  
axes expressions and the mark type.
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encoded as a visual property. The system should then gen-
erate an effective mapping from the domain of the field to 
the range of the visual property. While generating effective 
default mappings is not a fundamental aspect of the lan-
guage, it has proven to be important and is discussed in 
more detail in Section 7. Here, we briefly discuss how effec-
tive mappings are generated for each retinal property. The 
default mappings are illustrated in Figure 4.
Shape: Polaris uses the set of shapes recommended by 
Cleveland for encoding ordinal data.7 We have extended this 
set of shapes to include several additional shapes to allow a 
larger domain of values to be encoded.
Size: Analysts can use size to encode either an ordinal or 
quantitative field. When encoding a quantitative domain as 
size, a linear map from the field domain to the area of the 
mark is created. The minimum size is chosen so that all 
visual properties of a mark with the minimum size can be 
perceived.10 If an ordinal field is encoded as size, the domain 
needs to be small, at most four or five values, so that the ana-
lyst can discriminate between different categories.4

Orientation: A key principle in generating mappings of ordi-
nal fields to orientation is that the orientation needs to vary 
by at least 30° between categories,10 thus constraining the 
automatically generated mapping to a domain of at most six 
categories. For quantitative fields, the orientation varies lin-
early with the domain of the field.
Color: When encoding an ordinal domain, we use a pre-
defined palette to select the color for each domain entry. The 
colors in the palette are well separated in the color spectrum, 
predominantly on hue.19 We have ordered the colors to avoid 
adjacent colors with different brightness or substantially 
different wavelengths in an attempt to include harmonious 
sets of colors in each palette.4,10,19 We additionally reserve a 
saturated red for highlighting items that have been selected 
or brushed.

When encoding a quantitative variable, it is important to 
vary only one psychophysical variable, such as hue or value. 
The default palette we originally used for encoding quan-
titative data was the isomorphic colormap developed by 
Rogowitz.13 We have since had palettes hand-designed by a 
color expert in the HSV space that balance perceptual prop-
erties with aesthetics.

4. DATA TRANSFORMATIONS, VISUAL QUERIES, AND 
GENERATING DATABASE QUERIES
An important aspect of the Polaris formalism is the unifica-
tion of graphics and data transformations. A single visual 
specification must completely specify both the data retrieval 
and the data presentation. Thus, the formalism must sup-
port the complete range of data transformations possible in 
a query language such as SQL,17 including the common rela-
tional operators: selection, filtering, grouping and aggrega-
tion, and sorting. It can be shown that any query expressible 
in SQL can be expressed as a specification in the Polaris 
formalism.17

The Polaris interface exposes all capabilities of the 
underlying database query language: the state of the inter-
face generates both a visual specification and a statement in 
the visual query language. All fields on shelves are inserted 
into a select statement. Measure fields are aggregated while 
dimension fields are inserted into a GROUPBY statement, 
with additional dimension fields specified in a Level-of-
Detail shelf. Each dimension can also be sorted, and dif-
ferent aggregation functions can be associated with each 
measure; these options are chosen by drop-down menus on 
each field on the shelf. There is also a filter shelf that rep-
resents items in the WHERE clause. Finally, dialog boxes 
expose general calculations and joins.

Figure 5 shows the overall data flow in Polaris.
Step 1: Selecting the Records: The first phase of the data flow 
retrieves records from the database, applying user-defined 
filters to select subsets of the database and computing any 
user-defined calculations.

For an ordinal field A, the user may specify a subset of the 
domain of the field as valid. If filter(A) is the user-selected sub-
set, then a relational predicate expressing the filter for A is:

For a quantitative field P, the user may define a subset of the 
field’s domain as valid. If min(P) and max(P) are the user-
defined extents of this subset, then a relational predicate 
expressing the filter for P is:

We can define the relational predicate filters as the conjunc-
tion of all of the individual field filters. Then, the first stage 
of the data transformation network is equivalent to the SQL 
statement:

It is possible within the complete formalism to define more 
sophisticated filtering, such as filters on the cross-product 
of multiple fields or filters with ordering dependencies (fil-
ter A is computed relative to filter B).
Step 2: Partitioning the Records into Panes: The second 

A in filter(A)

Figure 4: The different retinal properties that can be used to encode 
fields of the data and examples of the default mappings that are 
generated when a given type of data field is encoded in each of the 
retinal properties.

(P ≥ min(P)and P ≤ max(P))

SELECT *
WHERE {filters}
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Figure 5: The transformations and data flow within Polaris. The visual specification generates queries to the database to select subsets of the 
data for analysis, then to filter, sort, and group the results into panes, and then finally to group, sort and aggregate the data within panes.

phase of the data flow partitions the retrieved records into 
groups corresponding to each pane in the table. As we dis-
cussed in Section 3.1, the normalized set form of the table axis 
expressions determines the table configuration. The table is 
partitioned into rows, columns, and layers corresponding to 
the entries in these sets.

The ordinal values in each set entry define the criteria by 
which records will be sorted into each row, column, and layer. 
Let Row(i) be the predicate that represents the selection crite-
ria for the ith row, Column( j ) be the predicate for the jth col-
umn, and Layer(k) the predicate for the kth layer. For example, 
if the y-axis of the table is defined by the normalized set:

then there are four rows in the table, each defined by an 
entry in this set, and Row would be defined as:

Given these definitions, the records to be partitioned into the 
pane at the intersection of the ith row, the jth column, and 
the kth layer can be retrieved with the following query:

To generate the groups of records corresponding to each 
of the panes, we must iterate over the table executing this 
SELECT statement for each pane, which is clearly nonopti-
mal. Various optimizations are discussed in.17

Step 3: Transforming Records within the Panes: The last 
phase of the data flow is the transformation of the records 
in each pane. If the visual specification includes aggre-
gation, then each measure in the database schema must 
be assigned an aggregation operator. If the user has not 

selected an aggregation operator for a measure, that mea-
sure is assigned the default aggregation operator (SUM). 
We define the term aggregates as the list of the aggre-
gations that need to be computed. For example, if the 
database contains the quantitative fields Profit, Sales, 
and Payroll, and the user has explicitly specified that the 
average of Sales should be computed, then aggregates is 
defined as:

Aggregate field filters (for example, SUM(Profit) > 500) 
could not be evaluated in Step 1 with all of the other filters 
because the aggregates had not yet been computed. Thus, 
those filters must be applied in this phase. We define the 
relational predicate filters as in Step 1 for unaggregated 
fields.

Additionally, we define the following lists:

G: the field names in the grouping shelf,
S: the field names in the sorting shelf, and
dim: the dimensions in the database.

The necessary transformation can then be expressed by the 
SQL statement:

If no aggregate fields are included in the visual specification, 
then the remaining transformation simply sorts the records 
into drawing order:

{a
1
b
1
P, a

1
b
2
P, a

2
b
1
P, a

2
b
2
P}

Row(1) = (A = a
1
 and B = b

1
)

Row(2) = (A = a
1
 and B = b

2
)

Row(3) = (A = a
2
 and B = b

1
)

Row(4) = (A = a
2
 and B = b

2
)

SELECT *
WHERE {Row(i) and Column(j) and  
	 Layer(k)}

aggregates =  
SUM(Profit),AVG(Sales),SUM(Payroll)

SELECT {dim},{aggregates}
GROUP BY {G}
HAVING {filters}
ORDER BY {S}

SELECT *
ORDER BY {S}
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5. RESULTS
Polaris is useful for performing the type of exploratory 
data analysis advocated by statisticians such as Bertin3 and 
Cleveland.8 We demonstrate the capabilities of Polaris as an 
exploratory interface to multidimensional databases by con-
sidering the following scenario.

At Stanford, researchers developing Argus,9 a paral-
lel graphics library, found that its performance had linear 
speedup when using up to 31 processors, after which its per-
formance diminished rapidly. Using Polaris, we recreate the 
analysis they performed using a custom-built visualization 
tool.5

Initially, the developers hypothesized that the diminish-
ing performance was a result of too many remote memory 
accesses, a common performance problem in parallel pro-
grams. They collected and visualized detailed memory 
statistics to test this hypothesis. Figure 6(a) shows a visual-
ization constructed to display this data. The visualization is 
composed of two linked Polaris instances. One displays a 
bird’s eye view of multiple source code files with each line of 
code represented by a single pixel height bar and the other 
displays the detailed source-code. In both views, the hue of 
each line of code encodes the number of cache misses suf-
fered by that line. Upon seeing these displays, they could tell 
that memory was in fact not the problem.

The developers next hypothesized that lock conten-
tion might be a problem, so they reran Argus and collected 
detailed lock and scheduling information. The data is shown 
in Figure 6(b) using a dashboard within Polaris to create a 
composite visualization with two linked projections of the 
same data. One projection shows a scatterplot of the start 
cycle versus cycle duration for the lock events (requests and 
holds). The second shows a histogram over time of initiated 
lock events. The scatterplot shows that toward the end of the 
run, the duration of lock events (both holds and requests) 
was taking an unexpectedly long time. That observation cor-
related with the histogram showing that the number of lock 
requests peaked and then tailed off towards the end of the 
run indicated that this might be a fruitful area for further 
investigation.

A third visualization, shown in Figure 6(c), shows the 
same data using Gantt charts to display both lock events and 
process-scheduling events. This display shows that the long 
lock requests correspond to descheduled periods for most 
processes. One process, however, has a descheduled period 
corresponding to a period during which the lock was held. 
This behavior, which was due to a bug in the operating sys-
tem, was the source of the performance issues.

This example illustrates several important points about 
the exploratory process. Throughout the analysis, both the 
data that users want to see and how they want to see it change 
continually. Analysts first form hypotheses about the data 
and then create new views to test those hypotheses. Certain 
displays enable an understanding of overall trends, whereas 
others show causal relationships. As the analysts better 
understand the data, they may want to drill-down in the vis-
ible dimensions or display entirely different dimensions.

Polaris supports this exploratory process through its 
visual interface. By formally categorizing the types of 

graphics, Polaris is able to provide a simple interface for rap-
idly generating a wide range of displays, allowing analysts to 
focus on the analysis task rather than interface.

Figure 6: A scenario demonstrating the use of Polaris to analyze the 
performance of a parallel graphics library.
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6. EXPERIENCE
In the 6 years since this work was originally published, we 
have gained considerable experience with the formalism 
and the interface. In that time, the technology has been com-
mercialized and extended by Tableau Software as Tableau 
Desktop and is used by thousands of companies and tens of 
thousands of users. The system has also been adapted to the 
web, so it is possible to perform analysis within a browser. 
The uses are diverse, ranging from disease research in the 
jungles of Central America to marketing analysis in Fortune 
50 companies to usability analysis by video game designers, 
and the data sizes range from small spreadsheets to billions 
of rows of data. The many types of users indicate the ubiq-
uity of data and the demand for new tools. This experience 
has emphasized three points to us: (1) the importance of a 
formal approach, (2) the importance of an architecture that 
leverages database technology rather than replaces it, and 
(3) the importance of building effective defaults into the 
graphical interface.

One question early on was: “do we need a formalism?” 
Most visualization systems have predefined types of charts 
and use wizards to help the user construct graphs. Having 
a language allows us to generate an unlimited number of 
different types of graphics. Restricting the set of views to 
a small set limits the power of visualization; this would be 
like building into a query language a small set of predefined 
queries. Experience has shown that this flexibility makes 
it possible to incrementally build new views, which is key 
to smoothly supporting the analysis process. Both of these 
aspects of Polaris are enabled by the formal nature of the 
algebra, where every addition or deletion leads to a new alge-
braic statement.

The formalism also enables us to unify the specifica-
tion of the visualization with the database query: users can 
change the query used to fetch the data and their view of it 
simultaneously. In subsequent work, we have proved that 
the language is complete; that is, it is possible to generate 
any statement in the relational algebra. A major problem 
with many visual interfaces is that they restrict the types of 
queries that can be formed.

This unification of visualization and database queries is 
also a key architectural decision that makes it possible to 
use our system as a front-end to large parallel database serv-
ers. This makes it easy to access important data in existing 
data sources, to leverage high performance database tech-
nology (e.g., database appliances, massively parallel com-
putation, column stores), and to avoid data replication and 
application-specific data silos. Why move a terabyte of data 
if you don’t have to?

One potential issue with a compositional language is 
that it creates a large space of possible visualizations. While 
many are effective and aesthetically pleasing, many are not. 
Thus, choosing default graphics is an important part of any 
production system and allows for additional succinctness in 
the language. However, the issue is not just with choosing 
default graphics. Generating effective visual mappings (e.g., 
color, shape) by default is not a fundamental aspect of the 
language, but is equally important. Effective defaults enable 
users to focus on their task and questions rather than the 

details of color or shape selection, especially since many 
users are not trained as graphic designers or psychologists.

7. RELATED WORK
The related work to Polaris can be divided into two catego-
ries: formal graphical specifications and database explora-
tion tools.

7.1. Formal graphical specifications
We have built on the work of several researchers’ insights 
into the formal properties of graphic communication, such 
as Bertin’s Semiology of Graphics,4 Cleveland’s experimen-
tal results on the perception of data,7,8 Wilkinson’s formal-
ism for statistical graphics,22 and Mackinlay’s APT system.12 
However, the Polaris formalism is innovative in several ways. 
One key aspect of our approach is that all specifications can 
be compiled directly into queries. Existing formalisms do 
not consider the generation of queries to be related to the 
presentation of information. Another innovation is the use 
of an algebra to describe table-based displays. Tables are 
particularly effective for displaying multidimensional data, 
as multiple dimensions of the data can be explicitly encoded 
in the structure of the table. Finally, our formalism is the 
basis for several interactive tools for analyzing and explor-
ing large data warehouses and this usage has affected the 
development of the formalism.

7.2. Database exploration tools
The second area of related work is visual query and data-
base exploration tools. Academic projects such as Visage,14 
DEVise,11 and Tioga-21 have focused on developing visualiza-
tion environments that support interactive database explo-
ration through visual queries. Users construct queries and 
visualizations through their interactions with the visualiza-
tion system interface. These systems have flexible mecha-
nisms for mapping query results to graphs, and support 
mapping database records to retinal properties. However, 
none of these systems is based on an expressive formal lan-
guage for graphics nor do they leverage table-based organi-
zations of their visualizations.

Finally, existing systems, such as XmdvTool,21 Spotfire,15 
and XGobi6 have taken the approach of providing a set of 
predefined visualizations, such as scatterplots and parallel 
coordinates. These views are augmented with interaction 
techniques, such as brushing and zooming, which can be 
used to refine the queries. We feel that this approach is much 
more limiting than providing the user with a set of building 
blocks that can be used to interactively construct and refine 
a wide range of displays to suit any analysis task.

8. CONCLUSIONS
We have presented Polaris, a visual query language for data-
bases and a graphical interface for authoring queries in the 
language. The Polaris formalism uses succinct visual specifi-
cations to describe a wide range of table-based visualizations 
of multidimensional information. Visual specifications can 
be compiled into both the queries and the drawing com-
mands necessary to generate the displays, thus unifying anal-
ysis and visualization into a single visual query language.
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Using the Polaris formalism, we have built the Polaris 
interface. The Polaris interface directly supports the cycle 
of analysis. Analysts can incrementally create sophisticated 
visualizations using simple drag-and-drop operations to 
construct a visual specification. This interface has been 
commercialized and extended by Tableau Software and is 
now in use by tens of thousands of users in thousands of 
companies.
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