
A NEURAL MATERIAL POINT METHOD
FOR PARTICLE-BASED SIMULATIONS

Omer Rochman Sharabi∗, Sacha Lewin∗, Gilles Louppe
University of Liège
{o.rochman,sacha.lewin,g.louppe}@uliege.be

ABSTRACT

Mesh-free Lagrangian methods are widely used for simulating fluids, solids, and
their complex interactions due to their ability to handle large deformations and
topological changes. These physics simulators, however, require substantial com-
putational resources for accurate simulations. To address these issues, deep learn-
ing emulators promise faster and scalable simulations, yet they often remain ex-
pensive and difficult to train, limiting their practical use. Inspired by the Ma-
terial Point Method (MPM), we present NeuralMPM, a neural emulation frame-
work for particle-based simulations. NeuralMPM interpolates Lagrangian par-
ticles onto a fixed-size grid, computes updates on grid nodes using image-to-
image neural networks, and interpolates back to the particles. Similarly to MPM,
NeuralMPM benefits from the regular voxelized representation to simplify the
computation of the state dynamics, while avoiding the drawbacks of mesh-based
Eulerian methods. We demonstrate the advantages of NeuralMPM on several
datasets, including fluid dynamics and fluid-solid interactions. Compared to ex-
isting methods, NeuralMPM reduces training times from days to hours, while
achieving comparable or superior long-term accuracy, making it a promising ap-
proach for practical forward and inverse problems. A project page is available at
https://neuralmpm.isach.be

1 INTRODUCTION

The Navier-Stokes equations describe the time evolution of fluids and their interactions with solid
materials. As analytical solutions rarely exist, numerical methods are required to approximate the
solutions. On the one hand, Eulerian methods discretize the fluid domain on a fixed grid, simplifying
the computation of the dynamics, but requiring high-resolution meshes to solve small-scale details
in the flow. Lagrangian methods, on the other hand, represent the fluid as virtual moving particles
defining the system’s state, hence maintaining a high level of detail in regions of high density. While
effective at handling deformations and topological changes (Monaghan, 2012), Lagrangian methods
struggle with collisions and interactions with rigid objects (Lind et al., 2020; Vacondio et al., 2021).

Regardless of the discretization strategy, large-scale high-resolution numerical simulations are com-
putationally expensive, limiting their practical use in downstream tasks such as forecasting, inverse
problems, or computational design. To address these issues, deep learning emulators have shown
promise in accelerating simulations by learning an emulator model that can predict the system’s
state at a fraction of the cost. Next to their speed, neural emulators also have the strategic advantage
of being differentiable, enabling their use in inverse problems and optimization tasks (Allen et al.,
2022; Forte et al., 2022; Zhao et al., 2022). Moreover, they have the potential to be learned directly
from real data, bypassing the costly and resource-intensive process of building a simulator (He et al.,
2019; Jumper et al., 2021; Lam et al., 2023; Lemos et al., 2023; Pfaff et al., 2021). In this direction,
particle-based neural emulators (Prantl et al., 2022; Sanchez-Gonzalez et al., 2020; Ummenhofer
et al., 2020) have seen success in accurately simulating fluids and generalizing to unseen environ-
ments. These emulators, however, suffer from the same issues as traditional Lagrangian methods,
with collisions and interactions with rigid objects being particularly challenging. These emulators
may also require long training and inference times, limiting their practical use.

∗Equal contribution.

1

ar
X

iv
:2

40
8.

15
75

3v
2

 [
cs

.L
G

]
 1

3
O

ct
 2

02
4

https://neuralmpm.isach.be

Taking inspiration from the hybrid Material Point Method (MPM) (Nguyen et al., 2023; Sulsky et al.,
1993) that combines the strengths of both Eulerian and Lagrangian methods, we introduce Neu-
ralMPM, a neural emulation framework for particle-based simulations. As in MPM, NeuralMPM
maintains Lagrangian particles to represent the system’s state but models the system dynamics on
voxelized representations. In this way, NeuralMPM benefits from a regular grid structure to simplify
the computation of the state dynamics but avoids the drawbacks of mesh-based Eulerian methods.
By interpolating the particles onto a fixed-size grid, it also bypasses the need to perform an expen-
sive neighbor search at every timestep, substituting it with two interpolation steps based on cheap
voxelization (Xu et al., 2021). By defining the system dynamics on a grid, NeuralMPM can also
leverage well-established grid-to-grid neural architectures. The resulting inductive bias allows the
model to more easily process the global and local structures of the point cloud, instead of having to
discover them, and frees capacity for learning the dynamics of the system represented by the grid.
Compared to previous data-driven approaches (Prantl et al., 2022; Sanchez-Gonzalez et al., 2020;
Ummenhofer et al., 2020), these improvements reduce the training time from days to hours, while
achieving higher or comparable accuracy.

2 COMPUTATIONAL FLUID DYNAMICS

Computational fluid dynamics simulations can be classified into two broad categories, Eulerian and
Lagrangian, depending on the discretization of the fluid (Rakhsha et al., 2021). In Eulerian simula-
tions, the domain is discretized with a mesh, with state variables ut

i (such as mass or momentum)
maintained at each mesh point i. Well-known examples of Eulerian simulations are the finite differ-
ence method, where the domain is divided into a uniform regular grid (also called an Eulerian grid),
and the finite element method, where the domain is divided into regions, or elements, that may have
different shapes and density, allowing to increase the resolution in only some areas of the domain
(Iserles, 2008; Morton & Mayers, 2005). Lagrangian simulations, on the other hand, discretize the
fluid as a set of virtual moving particles {pti, ut

i}Ni=1, each described by its position pti and state
variables ut

i that include the particle velocity vti . To simulate the fluid, the particles move according
to the dynamics of the system, producing a new set of particles {pt+1

i , ut+1
i }Ni=1 at each timestep.

Simulations in Lagrangian coordinates are particularly useful when the fluid is highly deformable, as
the particles can move freely and adapt to the fluid’s shape. Among Lagrangian methods, Smoothed
Particle Hydrodynamics (SPH) is one of the most popular, where the fluid is represented by a set
of particles that interact with each other through a kernel function that smooths the interactions.
SPH has been widely used in large-scale astrophysical simulations, such as galactic dynamics (Few
et al., 2016; Wissing & Shen, 2023) or planetary collision (Kegerreis et al., 2022), and in ocean
engineering (Gotoh & Khayyer, 2016; Lyu et al., 2022; Tan et al., 2023) to model deformations and
fractures.

Hybrid Eulerian-Lagrangian methods combine the strengths of both frameworks. Like Lagrangian
methods, they carry the system state information via particles, thereby automatically adjusting the
resolution to the local density of the system. By using a regular grid, however, they simplify gradient
computation, make entity contact detection easier, and prevent cracks from propagating only along
the mesh. Among hybrid methods, the Material Point Method has gained popularity for its ability
to handle large deformations and topological changes. MPM combines a regular Eulerian grid with
moving Lagrangian particles. It does so in four main steps: (1) the quantities carried by the particles
are interpolated onto a regular grid Gt = p2g({pti, ut

i}) using a particle-to-grid (p2g) function, (2)
the equations of motion are solved on the grid, where derivatives and other quantities are easier to
compute, resulting in a new grid state Gt+1 = f(Gt), (3) the resulting dynamics are interpolated
back onto the particles as {ut+1

i } = g2p(Gt+1, {pti}), using a grid-to-particle (g2p) function, (4) the
positions of the particles are updated by computing particle-wise velocities and using an appropriate
integrator, such as Euler, i.e., pt+1

i = pti + ∆tvt+1
i . The grid values are then reset for the next

step. MPM has been used in soft tissue simulations (Ionescu et al., 2005), in molecular dynamics
(Lu et al., 2006), in astrophysics (Li & Liu, 2002), in fluid-membrane interactions (York II et al.,
2000), and in simulating cracks (Daphalapurkar et al., 2007) and landslides (Llano Serna et al.,
2015). MPM is also widely used in the animation industry, perhaps most notably in Disney’s 2013
film Frozen (Stomakhin et al., 2013), where it was used to simulate snow.

Notwithstanding the success of numerical simulators, they remain expensive, slow, and, most of the
time, non-differentiable. In recent years, differentiable neural emulators have shown great promise

2

in accelerating fluid simulations, most notably in a series of works to emulate SPH simulations
in a fully data-driven manner. Graph network-based simulators (GNS) (Sanchez-Gonzalez et al.,
2020) use a graph neural network (GNN) and a graph built from the local neighborhood of the
particles to predict the acceleration of the system. The approach requires building a graph out
of the point cloud at every timestep to obtain structural information about the cloud, which is an
expensive operation. In addition, the GNN needs to extract global information from its nodes, which
is only possible with a high number of message-passing steps, resulting in a large computational
graph and long training and inference times. This large computational graph, along with repeated
construction, makes fully autoregressive training over long rollouts impractical, as the gradients need
to backpropagate all the way back to the first step. Cheaper strategies exist, like the push-forward
trick (Brandstetter et al., 2022), but they have been shown to be inferior to fully backpropagating
through trajectories (List et al., 2024; Sharabi & Louppe, 2023). As autoregressive training is not
available, the stability of the learned dynamics can be compromised, making the model prone to
diverging or oscillating. Noise injection training strategies can be used to increase the stability
of the rollouts, but the magnitude of the noise becomes a critical parameter. Han et al. (2022)
introduce improvements to GNS to make them subequivariant to certain transformations. They show
increased accuracy on simulations involving solid objects. An alternative approach is the continuous
convolution (CConv) (Ummenhofer et al., 2020; Winchenbach & Thuerey, 2024), an extension of
convolutional networks to point clouds. In this method, a convolutional kernel is applied to each
particle by interpolating the values of the kernel at the positions of its neighbors, which are found via
spatial hashing on GPU, a cheaper alternative to tree-based searches that allows for autoregressive
training. In (Prantl et al., 2022), Deep Momentum Conserving Fluids (DMCF) build upon CConv to
design a momentum-conserving architecture. Nevertheless, to account for long-range interactions,
the authors introduce different branches, with different receptive fields, into their network. The
number of branches, and their hyperparameters, need to be tuned to capture global dependencies,
leading to long training times even with optimized CUDA kernels. Finally, Zhang et al. (2020),
propose an approach that uses nearest neighbors to construct the local features of each particle.
Those local features are then averaged onto a regular grid. Like GNS, this method suffers from
the need to repeat the neighbor search at every simulation timestep. Ultimately, the performance of
point cloud-based simulators is tightly linked to the method used to process the spatial structure of
the cloud. Brute force neighbour search is O(N2), K-d trees are O(N logN), and voxelization and
hashing are O(N) (Hastings & Mesit, 2005; Xu et al., 2021).

An alternative to data-driven modeling is the use of hybrid models, where parts of a classical solver
are replaced with learned components. For instance, Yin et al. (2021) employ a neural network to
learn unknown physics, which is then integrated into a simulator. Similarly, Li et al. (2024) use
a neural network to bypass computational bottlenecks in MPM simulators, while Ma et al. (2023)
learn general constitutive laws, allowing for one-shot trajectory learning. These approaches achieve
impressive results by leveraging extensive physics knowledge, but this reliance also limits their
applicability. Hybrid models inherit both the strengths and weaknesses of classical and ML methods.

3 NEURALMPM

We consider a Lagrangian system evolving in time and defined by the positions pti and velocities vti
of a set of N particles i = 1, ..., N . We denote with P t and V t the set of positions and velocities
of all particles at time t and with St = (P t, V t) the full state of the system. In a more complex
setting, the state of the system can include other local properties, such as pressure or elastic stiffness
of materials, and global properties, such as an external force. In this work, for simplicity, we let
the network learn the relevant simulation parameters implicitly. The evolution of the particles is
described by a function f mapping the current state of the system to its next state St+1 = f(St).
Given a starting system S0 = (P 0, V 0), its full trajectory, or rollout, is denoted by S1:T . Our goal
is to build an emulator f̂θ(·) capable of predicting a full rollout f̂1:T

θ (S0) of T timesteps from the
initial state S0. Following MPM, NeuralMPM operates in four steps, as illustrated in Figure 1:

Step 1: Voxelization. Using the particle positions P t, the velocities V t are interpolated onto
a regular fixed-size grid. This interpolation is performed through voxelization, which divides the
domain into regular volumes (voxels). Each grid node is identified as the center of a voxel (e.g.,
square in 2D) in the domain, and the velocities of the particles in the voxel are averaged to give

3

Voxelization

Processing

Update
velocities

Update
velocities

Update
velocities

Update
positions

Update
positions

Update
positions

Figure 1: NeuralMPM works in 4 steps. (1) The positions P t and velocities V t of the particles are
used to compute the velocity V t

g and density Dt
g of each grid node through voxelization. (2) From

this grid, the processor neural network predicts the grid velocities at the next m timesteps. The
next m positions are computed iteratively by (3) performing bilinear interpolation of the predicted
velocities onto the previous positions and (4) updating the positions using the predicted velocities.

the node’s velocity. Similarly, the density is computed as the normalized number of particles in the
voxel. This results in the grid tensor Gt that contains the grid velocities V t

g and density Dt
g .

Step 2: Processing. Taking advantage of the regular grid representation of the cloud, the grid
velocities {V̂ i}t+m

i=t+1 of the next m timesteps are predicted using a neural network. We chose a U-
Net (Ronneberger et al., 2015) as it is a well-established image-to-image model, known to perform
well in various tasks, including physical applications. The combination of kernels applied with
different receptive fields (from smaller to larger) allows the U-Net to efficiently extract both local
and global information. Nonetheless, any grid-to-grid architecture could be used. We experiment
with the FNO (Li et al., 2021) architecture in Appendix B and find it to underperform, leading us
to keep the U-Net. A fully convolutional U-Net and an FNO have the additional advantage of being
able to generalize to different domain shapes, a desirable property (Section 4.3).

Step 3: Update of particle velocities. The predicted velocities V̂ t+1 at the next timestep are then
interpolated back to the particle level onto the positions P t using bilinear interpolation. The velocity
of each particle is computed as a weighted average of the four surrounding grid velocities, based on
its Euclidean distance to each of them.

Step 4: Update of particle positions. Finally, the positions of the particles are updated with Euler
integration using the next velocities and known current positions of the particles, that is P̂ t+1 =

P t +∆tV̂ t+1. Steps 3 and 4 are performed m times to compute the next m positions from the set
of grid velocities computed at step 2.

Additional features of the individual particles can be included in the grid tensor Gt by interpolating
them in the same way as the velocities. Local, such as boundary conditions, or global, such as gravity
or external forces, features are represented as grid channels. For simulations with multiple types of
particles, the features of each material are interpolated independently and stacked as channels in Gt.

NeuralMPM is trained end-to-end on a set of trajectories S0:T to minimize the mean squared error
||P t+1 − P̂ t+1

θ (St)||22 between the ground-truth and predicted next positions of the particles. At
inference time, the model is exposed to much longer sequences, which requires carefully stabiliz-
ing the rollout procedure to prevent the accumulation of large errors over time. To address this,
we first make use of autoregressive training (Prantl et al., 2022; Ummenhofer et al., 2020), where
the model is unrolled K times on its own predictions, producing a sequence of Ŝk = f̂θ(Ŝ

k−1)

4

for k = 1, ...,K and initial input Ŝ0 = S0, before backpropagating the error through the entire
rollout. Unlike more costly methods that require alternative stabilization strategies, such as noise
injection (Sanchez-Gonzalez et al., 2020), NeuralMPM’s efficiency makes autoregressive training
possible. Nevertheless, to further stabilize the training, we couple autoregressive training with time
bundling (Brandstetter et al., 2022), resulting in a training strategy where the model predicts m steps
Ŝ1:m at once from a single initial state, inside an outer autoregressive loop of K steps of length m.
We show in Section 4 that this training strategy leads to more accurate rollouts.

4 EXPERIMENTS

We conduct a series of experiments to demonstrate the accuracy, speed, and generalization capa-
bilities of NeuralMPM. Specifically, we examine its robustness to hyperparameter and architectural
choices through an ablation study (4.1). We compare NeuralMPM to GNS and DMCF in terms of
accuracy, training time, convergence, and inference speed (4.2). We also evaluate the generalization
capabilities of NeuralMPM (4.3) and illustrate how its differentiability can be leveraged to solve
an inverse design problem (4.4). Through these experiments, we demonstrate that NeuralMPM is a
flexible, accurate, and fast method for emulating complex particle-based simulations. The baselines
established by Winchenbach & Thuerey (2024) and hybrid simulators (Li et al., 2024; Ma et al.,
2023) have promising results. However, we do not compare against them as they either use differ-
ent benchmarks or are specifically tailored for certain physical domains, requiring material-specific
knowledge. In contrast, NeuralMPM, like GNS and DMCF, requires only particle positions without
being restricted to any particular domain.

Data. We consider 6 datasets with variable sequence lengths, numbers of particles, and materials.
The first three datasets, WATERRAMPS, SANDRAMPS, and GOOP, contain a single material, wa-
ter, sand, and goop, respectively, with different material properties. The first two datasets contain
random ramp obstacles to challenge the model’s generalization capacity. The fourth dataset, MULTI-
MATERIAL, mixes the three materials together in the same simulations. These four datasets are taken
from Sanchez-Gonzalez et al. (2020) and were simulated using the Taichi-MPM simulator (Hu et al.,
2018b). They each contain 1000 trajectories for training and 30 (GOOP) or 100 (WATERRAMPS,
SANDRAMPS, MULTIMATERIAL) for validation and testing. The fifth dataset, DAM BREAK 2D,
was generated using SPH and contains 50 trajectories for learning, and 25 for validation and testing.
The last dataset, VARIABLEGRAVITY, was also generated using Taichi-MPM. It consists of simu-
lations with variable gravity of a water-like material, and contains 1000 trajectories for training and
100 for validation and testing.

Protocol. NeuralMPM is trained on trajectories with varying initial conditions and number of
particles. The training batches are sampled randomly in time and across sequences. We use
Adam (Kingma & Ba, 2014) with the following learning rate schedule: a linear warm-up over
100 steps from 10−5 to 10−3, 900 steps at 10−3, then a cosine annealing (Loshchilov & Hutter,
2017) for 100, 000 iterations. We use a batch size of 128, K = 4 autoregressive steps per iteration,
bundle m = 8 timesteps per model call (resulting in 24 predicted states), and a grid size of 64× 64.
For most of our experiments, we use a U-Net (Ronneberger et al., 2015) with three downsampling
blocks with a factor of 2, 64 hidden channels, a kernel size of 3, and MLPs with three hidden lay-
ers of size 64 for pixel-wise encoding and decoding into a latent space. For a fair comparison, we
ran training and inference for NeuralMPM, DMCF, and GNS on the exact same hardware. GNS
and DMCF were trained until convergence (a maximum of 120 and 240 hours, respectively), while
NeuralMPM required 20 hours or less to converge. For WATERRAMPS, SANDRAMPS, GOOP, and
MULTIMATERIAL, we use the same parameters as those reported by authors. We hyperparameter
search DMCF for DAM BREAK 2D and both GNS and DMCF for VARIABLEGRAVITY and report
the best performance obtained for a budget of 60 GPU-days per dataset. Further details on training
can be found in Appendix A.

4.1 ABLATION STUDY

To study the robustness of NeuralMPM to hyperparameter and architectural choices, we start with
the default architecture and hyperparameters and ablate its components individually to examine their
impact on performance. We vary the number K of autoregressive steps with and without noise, the

5

WATERRAMPS SANDRAMPS GOOP MULTIMATERIAL DAM BREAK 2D

In
iti

al
Pr

ed
ic

tio
ns

G
ro

un
d

Tr
ut

h

Figure 2: Example snapshots. We train and evaluate NeuralMPM on WATERRAMPS, SAN-
DRAMPS and GOOP, each consisting of a single material, on MULTIMATERIAL that mixes water,
sand and goop, and on DAM BREAK 2D, a rectangular-shaped SPH dataset. NeuralMPM is able to
learn various kinds of materials, their interactions, and their interactions with solid obstacles. De-
spite being inspired by MPM, it is not limited to data showing MPM-like behaviour.

1 2 3 4
0

1

2

3

4

5

6

7

M
S

E
(1

0−
3)

K without noise

1 2 3 4

K with noise

1 2 4 8 16 32

Time bundle m

32 64 128

Grid size

0.005 0.001 0
0

1

2

3

4

5

6

7

M
S

E
(1

0−
3)

Grid noise

0.001 0.0006 0.0003 0

Particle noise

2 3 4 5

Depth

32 64 128

Width

Figure 3: Ablation results. Mean squared error (MSE) of full rollouts on unseen test data for GOOP.
The default parameters are in blue. The dashed orange line shows the best rollout MSE of GNS
as reported by Sanchez-Gonzalez et al. (2020) on the same data (1.89 × 10−3), while the dotted
line (2.4 × 10−3) indicates the MSE we obtained for GNS after 240 hours (20M training steps).
NeuralMPM is robust to hyperparameter changes, with the biggest effects coming from the number
of timesteps bundled together (m) and grid noise. For a rollout of length T , the model is called
T/m times, meaning lower values of m require maintaining stability for longer. Autoregressive
training coupled with time bundling is sufficient to stabilize the model, eliminating the need for
noise injection. Although GNS reportedly outperforms NeuralMPM by a small margin, these results
could not be reproduced in our experiments.

6

Time

G
ro

un
d

Tr
ut

h
O

ur
s

G
N

S
D

M
C

F

Figure 4: Example WATERRAMPS trajectory against baselines. Each method is unrolled starting
from the initial conditions of a random test trajectory not seen during training. We display six
snapshots evenly spaced in time.

number of bundled timesteps m predicted by a single model call, and the depth and number of
hidden channels of the network. We also investigate adding noise to stabilize rollouts, either directly
to the particles’ positions or to the grid-level representation after voxelization.

Figure 3 summarizes the ablation results. A larger number K of autoregressive steps yields more
accurate rollouts without the need to add noise. Indeed, injecting noise does not improve accuracy
and is even detrimental for K = 4. Individually tuning the noise levels for grids and particles
can modestly lower error rates, but is either very sensitive or negligible. The model performs bet-
ter when bundling more timesteps, enabling faster rollouts as a single forward pass predicts more
steps. We found m = 8 to be optimal with the other default hyperparameters, outperforming larger
bundling. This is because more network capacity is needed to extract information for the next 16 or
32 timesteps from a single state. Instead, we opted for a shallower and narrower network to balance
speed and memory footprint with performance gains. In terms of network architecture, we chose a
U-Net. We experiment with an FNO (Li et al., 2021) in Appendix B and find it to underperform,
leading us to keep the U-Net architecture. We find the U-Net’s width and depth to have a minor
impact on performance, confirming that a larger network is not needed. The grid size, however, is
critical. A low resolution loses fine details, while a high resolution turns meaningful structures, such
as liquid blobs or walls, into isolated voxels.

4.2 COMPARISON WITH PREVIOUS WORK

We compare NeuralMPM against GNS and DMCF. We use the official implementations and train-
ing instructions to assess training times, inference times, as well as accuracy. We compare against
both GNS and DMCF on WATERRAMPS, SANDRAMPS, GOOP, DAM BREAK 2D, and VARIABEL-
GRAVITY. We also compare against GNS on MULTIMATERIAL, but not against DMCF since it
does not support multiple materials.

Accuracy. We report quantitative results comparing the long-term accuracy in Table 1 and show
trajectories of NeuralMPM in Figure 2, as well as comparisons against baselines on WATERRAMPS
in Figure 4. On the mono-material datasets WATERRAMPS, SANDRAMPS, and GOOP, NeuralMPM
performs competitively with GNS and better than DMCF in terms of mean squared error (MSE). For

7

Data (Simulator) N T NeuralMPM GNS DMCF
MSE↓ EMD↓ MSE↓ EMD↓ MSE↓ EMD↓

WATERRAMPS (MPM) 2.3k 600 13.92 68 11.75 90 20.45 105
SANDRAMPS (MPM) 3.3k 400 3.12 61 3.11 84 6.22 91

GOOP (MPM) 1.9k 400 2.18 55 2.4 73 5.25 85
MULTIMATERIAL (MPM) 2k 1000 9.6 66 14.79 105 - -
DAM BREAK 2D (SPH) 5k 401 29.07 348 87.04 384 74.77 381

VARIABLEGRAVITY (MPM) 600 1000 14.48 92 134 350 28.77 97

Table 1: Full rollout MSE & EMD (both ×10−3) for NeuralMPM and the baselines on each dataset,
with the maximum number of particles N and sequence length T . Each method was trained until
full convergence (NeuralMPM: 15h, GNS: 240h, DMCF: 120h), and the best model was used.

0 1 2 3 4 5 10 20 40 60 100 150 240
Time [h]

11
13
15

20

30

60

80

100

M
S

E
(1

0−
3)

NeuralMPM

DMCF

GNS

1 Hour 5 Hours 15 Hours Best
Ground
Truth

O
ur

s
G

N
S

D
M

C
F

Figure 5: Training convergence. (Left) NeuralMPM trains and converges much faster than GNS
and DMCF. Note the log scale on both axes. (Right) Snapshots of models trained for increasing
durations then unrolled until the same timestep on a held-out simulation. For a fair comparison,
out-of-bounds particles in GNS and DMCF were clamped.

MULTIMATERIAL, NeuralMPM reduces the MSE by almost half, which we attribute to it being a
hybrid method, known to better handle interactions, mixing, and collisions between different materi-
als. In DAM BREAK 2D, NeuralMPM outperforms both baselines, despite the data being simulated
using SPH. Finally, NeuralMPM surpasses the performance of DMCF in VARIABLEGRAVITY, even
though the latter accounts for gravity explicitly. In terms of Earth Mover’s Distance (EMD), Neu-
ralMPM outperforms both baselines across all benchmarks, suggesting that NeuralMPM is better at
capturing the spatial distribution of the particles.

Training. In Figure 5, we report the evolution of the mean squared error of full emulated rollouts
on the held-out test set during training, for each method, along with predicted snapshots at increas-
ing training durations. NeuralMPM converges significantly faster than both baselines while reaching
lower error rates. Furthermore, the convergence of the training procedure and quality of the archi-
tecture can be assessed much earlier during training, effectively saving compute and enabling the
development of more refined final models. Moreover, NeuralMPM is also more memory-efficient,
which enables the use of higher batch sizes of 128, as opposed to only 2 in GNS and DMCF.

Inference time and memory. In Figure 6, we display the time and memory performance of Neu-
ralMPM, the two baselines GNS and DMCF, and the reference solver Taichi-MPM. In terms of
speed, NeuralMPM strongly outperforms all three methods, partly thanks to time bundling, which
considerably reduces the number of model calls required for a given number of frames to emulate.
In terms of memory, although NeuralMPM remains inferior to Taichi-MPM, which is highly opti-
mized, it can emulate tens of millions of particles on a single GPU, while GNS and DMCF struggle
to reach half a million.

8

102 103 104 105 106 107

Number of particles

1

5
10
25

100
250
500

1000

FP
S

(F
ra

m
es

 p
er

 se
co

nd
)

Taichi-MPM
NeuralMPM
DMCF
GNS

102 103 104 105 106 107

Number of particles

100MB

1GB

5GB
10GB
20GB

G
PU

 M
em

or
y

U
sa

ge

Figure 6: Time and memory performance. Average FPS (left) and GPU VRAM usage (right)
for increasing numbers of particles for a traditional solver (Taichi-MPM (Hu et al., 2018a)), Neu-
ralMPM, and the two baselines. The two baselines quickly require very large amounts of memory
and become very slow. Although Taichi-MPM is more memory efficient for high numbers of parti-
cles, NeuralMPM remains much faster, emulating 30 million particles at 25FPS.

4.3 GENERALIZATION

WATERDROP-XL Larger rectangular domains

In
iti

al
Initial

Pr
ed

ic
tio

ns
Predictions

t
1

G
ro

un
d

Tr
ut

h Predictions
t
2

Figure 7: Generalization. (Left) NeuralMPM generalizes to domains with more particles (∼ 4×
here) with minimal inference time overhead due to the processing of the voxelized representation.
(Right) A NeuralMPM model trained on a square domain can naturally generalize to larger rectan-
gular domains (twice as wide here) when using a fully convolutional U-Net.

One notable advantage of NeuralMPM is its invariance to the number of particles, as the transi-
tion model only processes the voxelized representation. To demonstrate this, we train a model
on WATERRAMPS, which contains about 2.3k particles and 600 timesteps, and evaluate it on
WATERDROP-XL, which features about four times more particles, 1000 timesteps, and no obsta-
cles. An example snapshot is displayed in Figure 7. The larger number of particles only affects
interpolation steps between the grid and particles, resulting in a negligible impact on total inference
time, making the model nearly as fast despite 4 times more particles. We also validate generalization
quantitatively by comparing the error rates on WATERDROP-XL of a model trained directly on it
and the model trained solely on WATERRAMPS. With the same training budget, the latter achieves
a lower MSE at 20.92× 10−3 against 28.09× 10−3. More trajectories are displayed in Figure 18.

If a domain-agnostic processor architecture is used, such as a fully convolutional U-Net or an FNO,
then NeuralMPM can generalize to different domain shapes without retraining, as shown in Fig 7.
We demonstrate this ability by considering a model solely trained on WATERRAMPS, a square do-
main of size 0.84 × 0.84 mapped to 64 × 64 grids. Without retraining, we perform inference with
this model on larger unseen environments of size 1.68× 0.84, and change the grid size to 128× 64.
The unseen environments were built by merging and modifying initial conditions of held-out test

9

trajectories from WATERRAMPS. NeuralMPM emulates particles in this larger and rectangular do-
main despite being trained on a smaller square domain with a smaller grid, showing that a U-Net
can generalize to other domains. No ground truth is displayed as Sanchez-Gonzalez et al. (2020)
provide no information about the data generation. More trajectories are shown in Figure 19.

4.4 INVERSE DESIGN PROBLEM

Finally, we demonstrate the application of NeuralMPM for inverse problems on a toy inverse design
task that consists in optimizing the direction of a ramp to make the particles reach a target location,
similar to (Allen et al., 2022). We place a blob of water at different starting locations, and we then
place a ramp at some location, with a random initial angle α. The goal is to spin the ramp by tuning
α in order to make the water end up at a desired location. The main challenges of this task are the
long-range time horizon of the goal and the presence of nonlinear physical dynamics. We proceed
by selecting the point where we want the water to end up and compute the average distance between
the point and particles at the last simulation frame. We then minimize the distance via gradient
descent, leveraging the differentiability of NeuralMPM to solve this inverse design problem. We
show am example optimization in Figure 8, and additional examples in Appendix B.

Initial Unoptimized Optimized

α

Figure 8: Inverse design problem. We exploit NeuralMPM’s differentiability to optimize the angle
α of a ramp, anchored at the red dot, in order to get the water close to the red square region.

5 CONCLUSION

Summary. We presented NeuralMPM, a neural emulation framework for particle-based simula-
tions inspired by the hybrid Eulerian-Lagrangian Material Point Method. We have shown its ef-
fectiveness in simulating a variety of materials and interactions, its ability to generalize to larger
systems and its use in inverse problems. Crucially, NeuralMPM trains in a fraction of the time it
takes to train alternative approaches, and is substantially faster at inference time. By interpolat-
ing particles onto a fixed-size grid, global information is distilled into a voxelized representation
that is easier to learn and process with powerful image-to-image models. The use of voxelization
allows NeuralMPM to bypass expensive graph constructions, and the interpolation leads to easier
generalization to a larger number of particles and constant runtime. The lack of expensive graph
construction and message passing also allows for more autoregressive steps and parallel rollouts.

Limitations. Like other approaches, NeuralMPM is limited by the computation used to process
the structure of the point cloud. In our case, voxelization means we cannot deal with particles that
lie outside of the domain and are limited to regular grids. Additionally, the size of the voxels is
directly related to the number of particles within a given volume. If the voxels are too large, the
model will fail to capture finer details. Conversely, if they are too small, the model may struggle
due to insufficient local structure. Similarly, performance can degrade in very sparse domains.
Compressible fluids might also present challenges, though this requires further verification.

Future work. Our work is only a first step towards hybrid Eulerian-Lagrangian neural emulators,
leaving many avenues for future research. Extending NeuralMPM to 3D systems is a natural contin-
uation of this work. Future studies could also explore alternative particle-to-grid and grid-to-particle
functions, like the non-uniform Fourier transform (Fessler & Sutton, 2003), or more sophisticated
interpolation methods from classical MPM literature (Nguyen et al., 2023). A less traditional di-
rection is to make NeuralMPM probabilistic and encode richer distributional information about the
particles in the grid nodes, instead of maintaining only a mean value. This could potentially im-
prove NeuralMPM’s ability to resolve subgrid phenomena. Finally, advances in Lagrangian Particle

10

Tracking (Schröder & Schanz, 2023) will eventually make it possible to create datasets from real-
world data, enabling the training of NeuralMPM directly from data without the need for the costly
design process of a numerical simulator.

REFERENCES

Kelsey Allen, Tatiana Lopez-Guevara, Kimberly L Stachenfeld, Alvaro Sanchez Gonzalez, Peter
Battaglia, Jessica B Hamrick, and Tobias Pfaff. Inverse design for fluid-structure interactions
using graph network simulators. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 13759–
13774. Curran Associates, Inc., 2022.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers.
In International Conference on Learning Representations, 2022.

Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and Olivier
Teboul. Optimal transport tools (ott): A jax toolbox for all things wasserstein. arXiv preprint
arXiv:2201.12324, 2022.

Nitin P. Daphalapurkar, Hongbing Lu, Demir Coker, and Ranga Komanduri. Simulation of dynamic
crack growth using the generalized interpolation material point (gimp) method. International
Journal of Fracture, 143(1):79–102, 01 2007.

J.A. Fessler and B.P. Sutton. Nonuniform fast fourier transforms using min-max interpolation. IEEE
Transactions on Signal Processing, 51(2):560–574, 2003.

C. G. Few, C. Dobbs, A. Pettitt, and L. Konstandin. Testing hydrodynamics schemes in galaxy disc
simulations. Monthly Notices of the Royal Astronomical Society, 460(4):4382–4396, 05 2016.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Antonio Elia Forte, Paul Z. Hanakata, Lishuai Jin, Emilia Zari, Ahmad Zareei, Matheus C. Fer-
nandes, Laura Sumner, Jonathan Alvarez, and Katia Bertoldi. Inverse design of inflatable soft
membranes through machine learning. Advanced Functional Materials, 32(16):2111610, 2022.

Hitoshi Gotoh and Abbas Khayyer. Current achievements and future perspectives for projection-
based particle methods with applications in ocean engineering. Journal of Ocean Engineering
and Marine Energy, 2(3):251–278, 8 2016.

Jiaqi Han, Wenbing Huang, Hengbo Ma, Jiachen Li, Josh Tenenbaum, and Chuang Gan. Learning
physical dynamics with subequivariant graph neural networks. Advances in Neural Information
Processing Systems, 35:26256–26268, 2022.

Erin Hastings and Jaruwan Mesit. Optimization of large-scale, real-time simulations by spatial
hashing. January 2005.

Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak Ravanbakhsh, Wei Chen, and Barnabás Póczos.
Learning to predict the cosmological structure formation. Proceedings of the National Academy
of Sciences, 116(28):13825–13832, June 2019.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. A
moving least squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM Transactions on Graphics (TOG), 37(4):150, 2018a.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. A
moving least squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM Trans. Graph., 37(4), 07 2018b.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

11

Irina Ionescu, James Guilkey, Martin Berzins, Robert M Kirby, and Jeffrey Weiss. Computational
simulation of penetrating trauma in biological soft tissues using the material point method. Stud
Health Technol Inform, 111:213–218, 2005.

Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts
in Applied Mathematics. Cambridge University Press, 2 edition, 2008.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583–589, 8 2021.

J. A. Kegerreis, S. Ruiz-Bonilla, V. R. Eke, R. J. Massey, T. D. Sandnes, and L. F. A. Teodoro.
Immediate origin of the moon as a post-impact satellite. The Astrophysical Journal Letters, 937
(2):L40, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mo-
hamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting. Science,
382(6677):1416–1421, 2023.

Pablo Lemos, Niall Jeffrey, Miles Cranmer, Shirley Ho, and Peter Battaglia. Rediscovering orbital
mechanics with machine learning. Machine Learning: Science and Technology, 4(4):045002, 10
2023.

Jin Li, Yang Gao, Ju Dai, Shuai Li, Aimin Hao, and Hong Qin. Mpmnet: A data-driven mpm
framework for dynamic fluid-solid interaction. IEEE Transactions on Visualization and Computer
Graphics, 30(8):4694–4708, August 2024. ISSN 2160-9306. doi: 10.1109/tvcg.2023.3272156.
URL http://dx.doi.org/10.1109/TVCG.2023.3272156.

Shaofan Li and Wing Kam Liu. Meshfree and particle methods and their applications. Applied
Mechanics Reviews, 55(1):1–34, 01 2002.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021.

Steven J. Lind, Benedict D. Rogers, and Peter K. Stansby. Review of smoothed particle hydro-
dynamics: towards converged lagrangian flow modelling. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 476(2241):20190801, 2020.

Bjoern List, Li-Wei Chen, Kartik Bali, and Nils Thuerey. How temporal unrolling supports neural
physics simulators, 2024. URL https://arxiv.org/abs/2402.12971.

Marcelo Alejandro Llano Serna, Márcio Muniz-de Farias, and Hernán Eduardo Martínez-Carvajal.
Numerical modelling of alto verde landslide using the material point method. DYNA, 82(194):
150–159, 11 2015.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations, 2017.

Hongbing Lu, Nitin Daphalapurkar, B. Wang, Samit Roy, and Ranga Komanduri. Multiscale simu-
lation from atomistic to continuum – coupling molecular dynamics (md) with the material point
method (mpm). Philosophical Magazine, 86:2971–2994, 2006.

12

http://dx.doi.org/10.1109/TVCG.2023.3272156
https://arxiv.org/abs/2402.12971

Hong-Guan Lyu, Peng-Nan Sun, Xiao-Ting Huang, Shi-Yun Zhong, Yu-Xiang Peng, Tao Jiang, and
Chun-Ning Ji. A review of sph techniques for hydrodynamic simulations of ocean energy devices.
Energies, 15(2), 2022.

Pingchuan Ma, Peter Yichen Chen, Bolei Deng, Joshua B. Tenenbaum, Tao Du, Chuang Gan, and
Wojciech Matusik. Learning neural constitutive laws from motion observations for generalizable
pde dynamics, 2023. URL https://arxiv.org/abs/2304.14369.

J.J. Monaghan. Smoothed particle hydrodynamics and its diverse applications. Annual Review of
Fluid Mechanics, 44(Volume 44, 2012):323–346, 2012.

K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential Equations: An Introduc-
tion. Cambridge University Press, 2 edition, 2005.

Vinh Phu Nguyen, Alban de Vaucorbeil, and Stéphane Bordas. The Material Point Method: Theory,
Implementations and Applications (Scientific Computation) 1st ed. 2023 Edition. 02 2023. ISBN
3031240693.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.

Lukas Prantl, Benjamin Ummenhofer, Vladlen Koltun, and Nils Thuerey. Guaranteed conservation
of momentum for learning particle-based fluid dynamics. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 6901–6913. Curran Associates, Inc., 2022.

Milad Rakhsha, Christopher E. Kees, and Dan Negrut. Lagrangian vs. eulerian: An analysis of two
solution methods for free-surface flows and fluid solid interaction problems. Fluids, 6(12), 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pp. 8459–8468. PMLR, 7 2020.

Andreas Schröder and Daniel Schanz. 3d lagrangian particle tracking in fluid mechanics. Annual
Review of Fluid Mechanics, 55(Volume 55, 2023):511–540, 2023. ISSN 1545-4479.

Omer Rochman Sharabi and Gilles Louppe. Trick or treat? evaluating stability strategies in
graph network-based simulators. 2023. URL https://api.semanticscholar.org/
CorpusID:268033249.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. A material
point method for snow simulation. ACM Trans. Graph., 32(4), 07 2013.

Deborah Sulsky, Zhen Chen, and Howard L. Schreyer. A particle method for history-dependent
materials. Computer Methods in Applied Mechanics and Engineering, 118:179–196, 1993.

Zhe Tan, Peng-Nan Sun, Nian-Nian Liu, Zhe Li, Hong-Guan Lyu, and Rong-Hua Zhu. Sph simu-
lation and experimental validation of the dynamic response of floating offshore wind turbines in
waves. Renewable Energy, 205:393–409, 2023.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simu-
lation with continuous convolutions. In International Conference on Learning Representations,
2020.

13

https://arxiv.org/abs/2304.14369
https://api.semanticscholar.org/CorpusID:268033249
https://api.semanticscholar.org/CorpusID:268033249

Renato Vacondio, Corrado Altomare, Matthieu De Leffe, Xiangyu Hu, David Le Touzé, Steven Lind,
Jean-Christophe Marongiu, Salvatore Marrone, Benedict D. Rogers, and Antonio Souto-Iglesias.
Grand challenges for smoothed particle hydrodynamics numerical schemes. Computational Par-
ticle Mechanics, 8(3):575–588, 5 2021.

Rene Winchenbach and Nils Thuerey. Symmetric basis convolutions for learning lagrangian fluid
mechanics, 2024. URL https://arxiv.org/abs/2403.16680.

Robert Wissing and Sijing Shen. Numerical dependencies of the galactic dynamo in isolated galaxies
with sph. Astronomy and Astrophysics, 673:A47, May 2023.

Yusheng Xu, Xiaohua Tong, and Uwe Stilla. Voxel-based representation of 3d point clouds: Meth-
ods, applications, and its potential use in the construction industry. Automation in Construction,
126:103675, 2021.

Yuan Yin, Vincent Le Guen, Jérémie Dona, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas Thome,
and Patrick Gallinari. Augmenting physical models with deep networks for complex dynamics
forecasting*. Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124012, De-
cember 2021. ISSN 1742-5468. doi: 10.1088/1742-5468/ac3ae5. URL http://dx.doi.
org/10.1088/1742-5468/ac3ae5.

Allen R. York II, Deborah Sulsky, and Howard L. Schreyer. Fluid–membrane interaction based on
the material point method. International Journal for Numerical Methods in Engineering, 48(6):
901–924, 2000.

Yalan Zhang, Xiaojuan Ban, Feilong Du, and Wu Di. Fluidsnet: End-to-end learning for lagrangian
fluid simulation. Expert Systems with Applications, 152:113410, 2020. ISSN 0957-4174. doi:
https://doi.org/10.1016/j.eswa.2020.113410. URL https://www.sciencedirect.com/
science/article/pii/S0957417420302347.

Qingqing Zhao, David B Lindell, and Gordon Wetzstein. Learning to solve PDE-constrained in-
verse problems with graph networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 26895–
26910. PMLR, 7 2022.

14

https://arxiv.org/abs/2403.16680
http://dx.doi.org/10.1088/1742-5468/ac3ae5
http://dx.doi.org/10.1088/1742-5468/ac3ae5
https://www.sciencedirect.com/science/article/pii/S0957417420302347
https://www.sciencedirect.com/science/article/pii/S0957417420302347

A TRAINING DETAILS

Hardware. We run all our experiments using the same hardware: 4 CPUs, 24GB of RAM, and an
NVIDIA RTX A5000 GPU with 24GB of VRAM. For reproducing the results of DMCF, we kept
the A5000 GPU but it required up to 96GB of RAM for training.

Data Preprocessing. Similar to Prantl et al. (2022), we slightly alter the original MPM datasets
to add boundary particles, as the original data from Sanchez-Gonzalez et al. (2020) does not have
them. We define the velocity at a timestep to be vt = vt − vt−1. We therefore skip the first step
during training for which no velocity is available.

Implementation. Our implementation, training scripts, experiment configurations, and instruc-
tions for reproducing results are publicly available at https://neuralmpm.isach.be. We
implement NeuralMPM using PyTorch (Paszke et al., 2019), and use PyTorch Geometric (Fey &
Lenssen, 2019) for implementing efficient particle-to-grid functions, more specifically from the
Scatter and Cluster modules. For memory efficiency, we do not store all (up to) 1,000 training
trajectories in memory, and rather use a buffer of about 16 trajectories over which several epochs are
performed before loading a new buffer of random trajectories.

Baselines. We use the official implementations and training instructions of GNS (Sanchez-
Gonzalez et al., 2020) and DMCF (Prantl et al., 2022) to reproduce their results and conduct new
experiments. More specifically, we train GNS as instructed for 20M steps on all four datasets, using
their provided configuration. For DMCF, we follow their default configurations and train for 400K
iterations for each dataset. In datasets that were not used by the original authors, VARIABLEGRAV-
ITY and DAM BREAK 2D, we performed hyperparameter search. GNS and DMCF both were trained
for a total budget of 60 GPU-days per dataset, and the best performance was reported.

Normalization. We normalize the input of the model over each channel individually. We investi-
gated computing the statistics across a buffer, resembling (Ioffe & Szegedy, 2015), and precomput-
ing them on the whole training set and found no difference in performance. During inference, we
use the precomputed statistics.

Code. The code, together with additional videos, is available at the project’s website https:
//neuralmpm.isach.be.

15

https://neuralmpm.isach.be
https://neuralmpm.isach.be
https://neuralmpm.isach.be

B SUPPLEMENTARY RESULTS

Evaluation. In Table 2, we report the numerical MSE rollout values that were reported in the bar
plots depicted in Figure 3 for GOOP. Also, Figure 9 displays the error when rolling out a model
for each dataset, both in terms of MSE and EMD. For both metrics, the error starts low and slowly
accumulates over time. For the EMD, we use the Sinkhorn algorithm provided by (Cuturi et al.,
2022).

Parameter Value MSE (×10−3)

K (No noise)

1 3.2
2 3.3
3 2.4
4 2.2

K (With noise)

1 3.5
2 2.5
3 2.4
4 3.0

Time bundling m

1 6.6
2 4.5
4 3.5
8 2.1
16 2.9
32 3.5

Grid size
32 5.5
64 2.4
128 7.1

Parameter Value MSE (×10−3)

Grid noise
0 3.2

0.001 2.4
0.005 6.9

Particle noise

0 2.2
0.0003 2.4
0.0006 2.4
0.001 2.1

U-Net Depth

2 3.3
3 3.0
4 2.4
5 2.3

U-Net Width
32 2.6
64 2.3
128 2.2

Table 2: Ablation results for GOOP.

0 200 400
0

2

4

6

8

M
S

E
(1

0−
3)

Goop

0 250 500
0

10

20

30

40
WaterRamps

0 200 400
0

2

5

8

10

SandRamps

0 500 1000
0

10

20

MultiMaterial

0 200 400
Timestep

20

40

60

80

100

E
M

D
(1

0−
3)

0 250 500
Timestep

60

80

100

120

0 200 400
Timestep

60

80

100

Figure 9: Error propagation during rollout. We show the mean and 80th percentile of the MSE
and EMD, computed over particles and simulations, at each timestep during the rollout. The accu-
racy decreases as errors accumulate.

Grid-to-grid network. Although we have used a U-Net architecture for the grid-to-grid proces-
sor, NeuralMPM can be used with any grid-to-grid processor and is not limited to that network. For
example, in Figure 10 and Table 3 we present qualitative and quantitative ablation results, respec-
tively, for NeuralMPM using an FNO network (Li et al., 2021) as the grid-to-grid processor. Results
show that the FNO processor is slightly worse than the U-Net processor.

16

Goop SandRamps WaterRamps
0

5

10

15
M

S
E

(1
0−

3)

Without noise

Goop SandRamps WaterRamps

With noise

Figure 10: FNO processor. NeuralMPM with an FNO processor and default architecture. Rollout
MSE (×10−3) for different datasets.

Data FNO with noise FNO without noise
WATERRAMPS 16.8 16.3

SANDRAMPS 5.5 3.5
GOOP 4.3 3.8

Table 3: Rollout MSE (×10−3) for NeuralMPM with an FNO processor and default architecture,
with and without noise.

Offloading gravity. Additionally, we tried adding the gravity explicitly to the velocity output in
VARIABLEGRAVITY, but saw degraded performance compared feeding the gravity as an input to
the model for large time-bundling values.

Additional inverse problem examples. We show two additional optimization examples in Fig-
ure 11.

Initial Unoptimized Optimized

Figure 11: Inverse design problem. Additional optimization examples. We exploit NeuralMPM’s
differentiability to optimize the angle α of a ramp, anchored at the red dot, in order to get the water
close to the red square region.

17

C GALLERY OF PREDICTED TRAJECTORIES

In addition to the trajectories in Figures 2 and 4, we show additional trajectories emulated with
NeuralMPM for all datasets in Figures 12, 13, 14, 15, 16, 17, 18, and 19. We also release videos
in the supplementary material, which we recommend watching to better see the details and limita-
tions of NeuralMPM. This includes 10 videos per dataset of emulated trajectories on held-out test
simulations.

t = 0 t = 119 t = 239 t = 358 t = 478 t = 598

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 12: Additional WATERRAMPS predicted trajectories. Evenly spaced in time snapshots of
predicted unrolled trajectories against ground truth. All trajectories are from the held-out test set.

18

t = 0 t = 79 t = 159 t = 238 t = 318 t = 398

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 13: Additional SANDRAMPS predicted trajectories. Evenly spaced in time snapshots of
predicted unrolled trajectories against ground truth. All trajectories are from the held-out test set.

19

t = 0 t = 32 t = 65 t = 97 t = 130 t = 398

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 14: Additional GOOP predicted trajectories. Snapshots of predicted unrolled trajectories
against ground truth. All trajectories are from the held-out test set. Due to GOOP quickly reaching
equilibrium, more snapshots are taken in the first half of the trajectory.

20

t = 0 t = 119 t = 239 t = 358 t = 478 t = 598

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 15: Additional MULTIMATERIAL predicted trajectories. Evenly spaced in time snapshots
of predicted unrolled trajectories against ground truth. All trajectories are from the held-out test set.
The first trajectory illustrates a rare failure where the shape of sand particles is not retained, even
though all particles are supposed to maintain the same velocity while airborne, as they are thrown
against the wall.

21

t = 0 t = 125 t = 400
G

ro
un

d
Tr

ut
h

Pr
ed

ic
tio

n
G

ro
un

d
Tr

ut
h

Pr
ed

ic
tio

n
G

ro
un

d
Tr

ut
h

Pr
ed

ic
tio

n
G

ro
un

d
Tr

ut
h

Pr
ed

ic
tio

n

Figure 16: Additional DAM BREAK 2D predicted trajectories. Snapshots of predicted trajectories
against ground truth. All trajectories come from the held-out test set. To better show the differences
of these longer sequences, we select the following timesteps not even in time: t ∈ {0, 125, 400}. In
the last trajectory, NeuralMPM struggles to follow the gravity direction and breaks down over time.

22

t = 0 t = 100 t = 150 t = 250 t = 500 t = 999

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 17: Additional VARIABLYGRAVITY predicted trajectories. Snapshots of predicted trajec-
tories against ground truth. All trajectories come from the held-out test set.

23

t = 0 t = 75 t = 125 t = 200 t = 400 t = 997

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 18: Generalization to more particles on WATERDROP-XL. Snapshots of predicted trajec-
tories emulated using a model trained solely on WATERRAMPS, against ground truth. All trajectories
come from the held-out test set of WATERDROP-XL. To better show the differences of these longer
sequences, we select the following timesteps not even in time: t ∈ {0, 75, 125, 200, 400, 999}. We
can observe that the generalizing model struggles to retain the shape of water while it’s falling.

24

Initial Conditions Snapshot 1 Snapshot 2

Figure 19: Generalization to larger and non-square domains. We train a model on the square
domains in WATERRAMPS using 64 × 64 input grids to the U-Net, and then perform inference
on manually generated non-square environments that are twice as wide and use a 128 × 64 input
grid to the same U-Net. NeuralMPM flawlessly generalizes and emulates particles in these new
environments. Note: no ground truth is available because the authors of GNS did not provide the
physical parameters for simulating WATERRAMPS using Taichi. Chosen time steps are 0, 150, 575.
We recommend watching the videos in the supplementary material for more detailed evaluation.

25

	Introduction
	Computational Fluid Dynamics
	NeuralMPM
	Experiments
	Ablation study
	Comparison with previous work
	Generalization
	Inverse design problem

	Conclusion
	Training details
	Supplementary results
	Gallery of predicted trajectories

