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Abstract: Multiple zeta star values have become a central concept in number theory with a
wide variety of applications. In this article, we propose a generalization, which we will refer to as
recurrent sums, where the reciprocals are replaced by arbitrary sequences. We introduce a toolbox
of formulas for the manipulation of such sums. We begin by developing variation formulas that
allow the variation of a recurrent sum of orderm to be expressed in terms of lower order recurrent
sums. We then proceed to derive theorems (which we will call inversion formulas) which show
how to interchange the order of summation in a multitude of ways. Later, we introduce a set of
new partition identities in order to then prove a reduction theorem which permits the expression of
a recurrent sum in terms of a combination of non-recurrent sums. Finally, we use these theorems
to derive new results for multiple zeta star values and recurrent sums of powers.
Keywords: Recurrent sums, Partitions, Multiple zeta star values, Riemann zeta function, Bell
polynomials, Stirling numbers, Bernoulli numbers, Faulhaber formula.
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1 Introduction and notation

The harmonic series was first studied and proven to diverge in the 14-th century by Nicole Oresme
[32]. Later, in the 17th century, new proofs for this divergence were provided by Pietro Mengoli
[29], Johann Bernoulli [5], and Jacob Bernoulli [3,4]. However, a more general form of this series
does converge. Euler was the first to study such sums of the form:
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ζ(s) =
∞∑
n=1

1

ns
,

where s is a real number. In the famous Basel problem, Euler proved that ζ(2) =
π2

6
(see [12, 13,

16]. Fourteen additional proofs can be found in [11]). He later provided a general formula for
this zeta function for positive even values of s.

Euler’s definition was then extended to a complex variable s by Riemann in his 1859 article
“On the Number of Primes Less Than a Given Magnitude”. More recently, the multiple harmonic
series, an even more general form of the zeta function, has been introduced and studied. Note
that Euler was the first to study these multiple harmonic series for length 2 in [15]. A multiple
harmonic series (MHS) or multiple zeta values (MZV) is defined as:

ζ(s1, s2, . . . , sk) =
∑

1≤N1<N2<···<Nk

1

N s1
1 N

s2
2 · · ·N

sk
k

.

A very important variant of the MHS (see [25,27,30]) often referred to as multiple zeta star values
MZSV or multiple harmonic star series MHSS (or simply multiple zeta values) is defined by:

ζ?(s1, s2, . . . , sk) =
∑

1≤N1≤N2≤···≤Nk

1

N s1
1 N

s2
2 · · ·N

sk
k

.

This variant of the MHS is directly related to the Riemann zeta function ζ(s) [18,23]. Additionally,
it is involved in a variety of sums and series including the Arakawa–Kaneko zeta function [37]
and Euler sums.

Such sums have tremendous importance in number theory. They have been of interest to
mathematicians for a long time and have been systematically studied since the 1990s with the
work of Hoffman [23, 24] and Zagier [38]. However, their importance is not limited to Number
Theory. In fact, such sums/series have appeared in physics even before the phrase “multiple zeta
values” had been coined. As an example, the number ζ(6, 2) appeared in the quantum field theory
literature in 1986 [8]. They play a major role in the connection of knot theory with quantum
field theory [9, 26]. MZVs and MZSVs became even more important after they became needed
for higher order calculations in quantum electrodynamics (QED) and quantum chromodynamics
(QCD) [6, 7].

These sums are a particular case of what we called recurrent sums as they are of the form∑
1≤N1≤···≤Nm≤n

a(m);Nm · · · a(1);N1

with a(i);Ni = 1
N
si
i

for all i. The particular case has been extensively studied while the general case
received much less interest. Although there are hundreds if not thousands of formulae to help in
the study of multiple harmonic star sums and multiple zeta star values, barely any formulae can
be found for its general counterpart. In this article, we are interested in studying this more general
form which is expressed as follows: ∑

1≤N1≤···≤Nm≤n

a(m);Nm · · · a(1);N1 .
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We will also consider the particular case where all sequences are the same:∑
1≤N1≤···≤Nm≤n

aNm · · · aN1 .

This structure of sums appears in a variety of areas of mathematics. The objective is to develop
formulae to improve and facilitate the way we work with recurrent sums. This includes deriving
formulae to calculate the variation of such sums, formulae to interchange the order of summation
as well as formulae to represent recurrent sums in terms of a combination of non-recurrent sums.
Note that this type of sums is intimately related to partitions as they appear in the representation
of recurrent sums as a combination of simple non-recurrent sums. Therefore, this article will
also focus on partition identities that are needed to prove the previously stated theorems as well
as the ones that can be derived from these same theorems. Among these partition identities that
can be found through these theorems, a definition of binomial coefficients in terms of a sum over
partitions will be presented. Similarly, we produce some identities involving special sums, over
partitions, of Bernoulli numbers. Furthermore, we are also interested in applying the formulae
developed for the general case to some particular cases. First, we will apply our results to the
multiple sums of powers in order to generalize Faulhaber’s formula.

Then, we will go back to the most famous particular case which is the MZSV and show how
our results on the general case can improve in this case. A particularly beautiful identity that
we will present is the following which relates the recurrent sum of 1

N2
to the zeta function for

positive even values (this heavily relies on Schneider’s work [35]):

∞∑
Nm=1

· · ·
N2∑
N1=1

1

N2
m · · ·N2

1

=
∑

∑
i.yk,i=m

m∏
i=1

1

(yk,i)! iyk,i
(ζ(2i))yk,i =

(
2− 1

22(m−1)

)
ζ(2m).

Although this paper focuses on the generalized version of the multiple zeta star values, the
multiple zeta values itself is a particular form of a type of sums presented in [21] and which is
closely related to the recurrent sums by the relations also presented in that cited article.

The main theorems of this paper have potential applications such as the following: Surprisingly,
this form appears in the general formula for the n-th integral of xm(lnx)m

′ . In the paper [20],
the relations presented in this paper are used to derive and prove this general formula for the
n-th integral of xm(lnx)m

′ . In the Part 2 of this study [21], the partition identities here presented
are combined with additional partition identities in order to produce identities for odd and even
partitions.

Let us now introduce some notation in order to facilitate the representation of such sums in
this paper. For any m, q, n ∈ N where n ≥ q and for any set of sequences a(1);N1 , . . . , a(m);Nm

defined in the interval [q, n], let Rm,q,n(a(1);N1 , . . . , a(m);Nm) represent the general recurrent sum
of order m for the sequences a(1);N1 , . . . , a(m);Nm with lower and upper bounds, respectively q
and n. For simplicity, however, we will denote it simply as Rm,q,n.
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Rm,q,n =
n∑

Nm=q

a(m);Nm · · ·
N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1

=
n∑

Nm=q

· · ·
N3∑
N2=q

N2∑
N1=q

a(m);Nm · · · a(2);N2a(1);N1

=
∑

q≤N1≤···≤Nm≤n

a(m);Nm · · · a(2);N2a(1);N1 .

(1)

The most common case of a recurrent sum is that where all sequences are the same,

Rm,q,n(aN1 , . . . , aNm) =
n∑

Nm=q

aNm · · ·
N3∑
N2=q

aN2

N2∑
N1=q

aN1

=
n∑

Nm=q

· · ·
N3∑
N2=q

N2∑
N1=q

aNm · · · aN2aN1

=
∑

q≤N1≤···≤Nm≤n

aNm · · · aN2aN1 .

(2)

For simplicity, we will denote it as R̂m,q,n. We could also denote it as Rm,q,n(aN).
This type of sums is described as recurrent because they can also be expressed using the following
recurrent form: Rm,q,n =

∑n
Nm=q a(m);NmRm−1,q,Nm

R0,i,j = 1 ∀i, j ∈ N.
(3)

Remark 1. A recurrent sum of order 0 is always equal to 1. It is not equivalent to an empty sum
(which is equal to 0).

In this paper, recurrent sums will be studied. In Section 2, formulas for the calculation of
variation of these sums in terms of lower order recurrent sums will be presented. Then, in
Section 3, inversion formulas will be presented, which will allow the interchange of the order
of summation in such sums. Finally, in Section 4, we will present a set of partition identities as
well as a reduction formula that allows the representation of a recurrent sum as a combination
of simple (non-recurrent) sums. These relations will be, then, used to simplify certain special
sums/series such as the recurrent sum of powers and the multiple zeta star values.

2 Variation formulas

In this section, we will develop formulas to express the variation of a recurrent sum of order m
(Rm,q,n+1 − Rm,q,n) in terms of lower order recurrent sums. Equivalently, these formulas can be
used to express Rm,q,n+1 in terms of Rm,q,n and lower order recurrent sums.
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2.1 Simple expression

We start by proving the most basic form for the variation formula as illustrated by the following
lemma. This is needed in order to prove the general form of this formula.

Remark 2. Although the formulas presented in this section will be for recurrent sums with a
common lower bound q, they hold for recurrent sums with distinct lower bounds. It suffices to
replace Rm,q,n by Rm,qm,n where qm = (q1, . . . , qm).

Lemma 2.1. For any m, q, n ∈ N, we have that

Rm+1,q,n+1 = a(m+1);n+1Rm,q,n+1 +Rm+1,q,n.
Proof.

Rm+1,q,n+1 =
n+1∑

Nm+1=q

· · ·
N2∑
N1=q

a(m+1);Nm+1 · · · a(1);N1

= a(m+1);n+1

n+1∑
Nm=q

· · ·
N2∑
N1=q

a(m);Nm · · · a(1);N1 +
n∑

Nm+1=q

· · ·
N2∑
N1=q

a(m+1);Nm+1 · · · a(1);N1 .

Substituting the recurrent sums with the notation, we get the lemma.

Now we apply the basic case from Lemma 2.1 to show the general variation formula that
allows Rm,q,n+1 to be expressed in terms of Rm,q,n and of recurrent sums of order going from 0

to (m− 1).

Theorem 2.2. For anym, q, n ∈ N where n ≥ q and for any set of sequences a(1);N1 , . . . , a(m);Nm

defined in the interval [q, n+ 1], we have that

n+1∑
Nm=q

· · ·
N2∑
N1=q

a(m);Nm · · · a(1);N1 =
m∑
k=0

(
m−k−1∏
j=0

a(m−j);n+1

)(
n∑

Nk=q

· · ·
N2∑
N1=q

a(k);Nk · · · a(1);N1

)
.

Using the notation from Eq. (1), this theorem can be written as

Rm,q,n+1 =
m∑
k=0

(
m−k−1∏
j=0

a(m−j);n+1

)
Rk,q,n.

Proof. Base case (for m = 1):

1∑
k=0

(
−k∏
j=0

a(1−j);n+1

)
Rk,q,n = (a(1);n+1)(1) + (1)

(
n∑

N1=q

a(1);N1

)
= R1,q,n+1.

Induction hypothesis:

Rm,q,n+1 =
m∑
k=0

(
m−k−1∏
j=0

a(m−j);n+1

)
Rk,q,n.
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Induction step: From Lemma 2.1,

Rm+1,q,n+1 = a(m+1);n+1Rm,q,n+1 +Rm+1,q,n.

By applying the induction hypothesis,

Rm+1,q,n+1 = a(m+1);n+1

m∑
k=0

(
m−k−1∏
j=0

a(m−j);n+1

)
Rk,q,n +Rm+1,q,n

=
m∑
k=0

(
m−k∏
j=0

a(m+1−j);n+1

)
Rk,q,n +Rm+1,q,n.

Noticing that
m+1∑

k=m+1

(
m−k∏
j=0

a(m+1−j);n+1

)
Rk,q,n = Rm+1,q,n,

hence, the case for (m+ 1) is proven. Thus, the theorem is proven by induction.

Corollary 2.2.1. If all sequences are the same, Theorem 2.2 reduces to the following form:

n+1∑
Nm=q

· · ·
N2∑
N1=q

aNm · · · aN1 =
m∑
k=0

(an+1)m−k
(

n∑
Nk=q

· · ·
N2∑
N1=q

aNk · · · aN1

)
.

Using the notation from Eq. (2), this theorem can be written as

R̂m,q,n+1 =
m∑
k=0

(an+1)m−k R̂k,q,n.

Example 2.1. Consider that m = 2, we have the two following cases:

• If all sequences are distinct,

n+1∑
N2=q

bN2

N2∑
N1=q

aN1 −
n∑

N2=q

bN2

N2∑
N1=q

aN1 = (bn+1)
n∑

N1=q

aN1 + (bn+1)(an+1).

• If all sequences are the same,

n+1∑
N2=q

aN2

N2∑
N1=q

aN1 −
n∑

N2=q

aN2

N2∑
N1=q

aN1 = (an+1)
n∑

N1=q

aN1 + (an+1)2.

Remark 3. Set a(m);N = · · · = a(2);N = 1, Theorem 2.2 becomes

n+1∑
Nm=q

Nm∑
Nm−1=q

· · ·
N2∑
N1=q

aN1 =
m∑
k=1

 n∑
Nk=q

Nk∑
Nk−1=q

· · ·
N2∑
N1=q

aN1

+ an+1.

2.2 Simple recurrent expression

A recursive form of Theorem 2.2 can be obtained by expanding and factoring the theorem’s
expression.
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Theorem 2.3. For anym, q, n ∈ N where n ≥ q and for any set of sequences a(1);N1 , . . . , a(m);Nm

defined in the interval [q, n+ 1], we have that

n+1∑
Nm =q

· · ·
N2∑

N1 =q

a(m);Nm · · · a(1);N1 −
n∑

Nm =q

· · ·
N2∑

N1 =q

a(m);Nm · · · a(1);N1

= a(m);n+1

a(m−1);n+1

[
· · · a(2);n+1

(
a(1);n+1(1) +

n∑
N1=q

a(1);N1

)
+

n∑
N2=q

N2∑
N1=q

a(2);N2a(1);N1

]

+
n∑

Nm−1=q

· · ·
N2∑
N1=q

a(m−1);Nm−1 · · · a(1);N1

 .

Using the notation from Eq. (1), this theorem can be written as

Rm,q,n+1 = a(m);n+1

{
a(m−1);n+1

[
· · · a(2);n+1

(
a(1);n+1 (R0,q,n) +R1,q,n

)
+R2,q,n

]
+Rm−1,q,n

}
+Rm,q,n

where R0,q,n = 1.

Proof. Base case (for m = 1): From Lemma 2.1,

R1,q,n+1 = a(1);n+1(R0,q,n+1) +R1,q,n = a(1);n+1(R0,q,n) +R1,q,n.

Induction hypothesis:

Rm,q,n+1 = a(m);n+1

{
a(m−1);n+1

[
· · · a(2);n+1

(
a(1);n+1 (R0,q,n) +R1,q,n

)
+R2,q,n

]
+Rm−1,q,n

}
+Rm,q,n.

Induction step: From Lemma 2.1, Rm+1,q,n+1 = a(m+1);n+1Rm,q,n+1 +Rm+1,q,n.

By applying the induction hypothesis,

Rm+1,q,n+1 = a(m+1);n+1

{
a(m);n+1

[
· · · a(2);n+1

(
a(1);n+1 (R0,q,n) +R1,q,n

)
+R2,q,n

]
+Rm,q,n

}
+Rm+1,q,n.

Hence, the theorem is proven by induction.

Corollary 2.3.1. If all sequences are the same, Theorem 2.3 reduces to the following form:

n+1∑
Nm=q

· · ·
N2∑
N1=q

aNm · · · aN1 −
n∑

Nm=q

· · ·
N2∑
N1=q

aNm · · · aN1

= an+1

an+1

[
· · · an+1

(
an+1(1) +

n∑
N1=q

aN1

)
+

n∑
N2=q

N2∑
N1=q

aN2aN1

]
+

n∑
Nm−1=q

· · ·
N2∑
N1=q

aNm−1 · · · aN1

 .

Using the notation from Eq. (2), this theorem can be written as

R̂m,q,n+1 = an+1

{
an+1

[
· · · an+1

(
an+1

(
R̂0,q,n

)
+ R̂1,q,n

)
+ R̂2,q,n

]
+ R̂m−1,q,n

}
+ R̂m,q,n

where R̂0,q,n = 1.
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Example 2.2. Consider that m = 2, we have the two following cases:

• If all sequences are distinct,

n+1∑
N2=q

bN2

N2∑
N1=q

aN1 −
n∑

N2=q

bN2

N2∑
N1=q

aN1 = (bn+1)

{
an+1(1) +

n∑
N1=q

aN1

}
.

• If all sequences are the same,

n+1∑
N2=q

aN2

N2∑
N1=q

aN1 −
n∑

N2=q

aN2

N2∑
N1=q

aN1 = (an+1)

{
an+1(1) +

n∑
N1=q

aN1

}
.

2.3 General expression

The variation of a recurrent sum can also be expressed in terms of only a certain range of lower
order recurrent sums. In other words, Rm,q,n+1 can be expressed in terms of Rm,q,n and of
recurrent sums of order going only from p to (m − 1). To do so, we develop the following
theorem.

Theorem 2.4. For any m, q, n ∈ N where n ≥ q, for any p ∈ [0,m], and for any set of sequences
a(1);N1 , . . . , a(m);Nm defined in the interval [q, n+ 1], we have that

n+1∑
Nm =q

· · ·
N2∑

N1 =q

a(m);Nm · · · a(1);N1 =
m∑

k=p+1

(
m−k−1∏
j=0

a(m−j);n+1

)(
n∑

Nk=q

· · ·
N2∑
N1=q

a(k);Nk · · · a(1);N1

)

+

(
m−p−1∏
j=0

a(m−j);n+1

) n+1∑
Np=q

· · ·
N2∑
N1=q

a(p);Np · · · a(1);N1

 .

Using the notation from Eq. (1), this theorem can be written as

Rm,q,n+1 =
m∑

k=p+1

(
m−k−1∏
j=0

a(m−j);n+1

)
Rk,q,n +

(
m−p−1∏
j=0

a(m−j);n+1

)
Rp,q,n+1.

Proof. By applying Theorem 2.2,

Rm,q,n+1 =
m∑
k=0

(
m−k−1∏
j=0

a(m−j);n+1

)
Rk,q,n

=
m∑

k=p+1

(
m−k−1∏
j=0

a(m−j);n+1

)
Rk,q,n +

p∑
k=0

(
m−k−1∏
j=0

a(m−j);n+1

)
Rk,q,n

=
m∑

k=p+1

(
m−k−1∏
j=0

a(m−j);n+1

)
Rk,q,n +

(
m−p−1∏
j=0

a(m−j);n+1

)
p∑

k=0

(
m−k−1∏
j=m−p

a(m−j);n+1

)
Rk,q,n.

From Theorem 2.2, with m substituted by p, we have

Rp,q,n+1 =

p∑
k=0

(
p−k−1∏
j=0

a(p−j);n+1

)
Rk,q,n =

p∑
k=0

(
m−k−1∏
j=m−p

a(m−j);n+1

)
Rk,q,n.

Hence, by substituting, we get the theorem.
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Corollary 2.4.1. If all sequences are the same, Theorem 2.4 reduces to the following form:
n+1∑
Nm =q

· · ·
N2∑

N1 =q

aNm · · · aN1 =
m∑

k=p+1

(an+1)m−k
(

n∑
Nk=q

· · ·
N2∑
N1=q

aNk · · · aN1

)

+ (an+1)m−p

 n+1∑
Np=q

· · ·
N2∑
N1=q

aNp · · · aN1

 .

Using the notation from Eq. (2), this theorem can be written as

R̂m,q,n+1 =
m∑

k=p+1

(an+1)m−k R̂k,q,n + (an+1)m−p R̂p,q,n+1.

Example 2.3. For p = 2 and if the sequences are the same:
n+1∑
Nm =q

· · ·
N2∑

N1 =q

aNm · · · aN1 =
m∑
k=3

(an+1)m−k
(

n∑
Nk=q

· · ·
N2∑
N1=q

aNk · · · aN1

)

+ (an+1)m−2

(
n+1∑
N2=q

N2∑
N1=q

aN2aN1

)
.

Example 2.4. For p = m− 2 and if the sequences are the same:

n+1∑
Nm=q

· · ·
N2∑
N1=q

aNm · · · aN1 −
n∑

Nm=q

· · ·
N2∑
N1=q

aNm · · · aN1

= (an+1)

 n∑
Nm−1=q

· · ·
N2∑
N1=q

aNm−1 · · · aN1

+ (an+1)2

 n+1∑
Nm−2=q

· · ·
N2∑
N1=q

aNm−2 · · · aN1

 .

Remark 4. Set a(m);N = · · · = a(2);N = 1, Theorem 2.4 becomes

n+1∑
Nm=q

Nm∑
Nm−1=q

· · ·
N2∑
N1=q

aN1 =
m∑

k=p+1

 n∑
Nk=q

Nk∑
Nk−1=q

· · ·
N2∑
N1=q

aN1

+
n+1∑
Np=q

Np∑
Np−1=q

· · ·
N2∑
N1=q

aN1 .

2.4 General recurrent expression

Similarly, the theorem introduced in the previous section can be reformulated in a recursive form
by expanding and factoring the expression of Theorem 2.4 to obtain the following expression.

Theorem 2.5. For any m, q, n ∈ N where n ≥ q, for any p ∈ [0,m], and for any set of sequences
a(1);N1 , . . . , a(m);Nm defined in the interval [q, n+ 1], we have that

Rm,q,n+1 = a(m);n+1

{
a(m−1);n+1

[
· · · a(p+2);n+1

(
a(p+1);n+1 (Rp,q,n+1) +Rp+1,q,n

)
+Rp+2,q,n

]
+Rm−1,q,n

}
+Rm,q,n.

Proof. From Theorem 2.3, with m substituted by p, we have

Rp,q,n+1 = a(p);n+1

{
a(p−1);n+1

[
· · · a(2);n+1

(
a(1);n+1 (R0,q,n) +R1,q,n

)
+R2,q,n

]
+Rp−1,q,n

}
+Rp,q,n.

Substituting into the expression of Theorem 2.3, the inner part becomes Rp,q,n+1 and we get the
desired formula.
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Corollary 2.5.1. If all sequences are the same, Theorem 2.5 reduces to the following form:

R̂m,q,n+1 = an+1

{
an+1

[
· · · an+1

(
an+1

(
R̂p,q,n+1

)
+R̂p+1,q,n

)
+R̂p+2,q,n

]
+R̂m−1,q,n

}
+R̂m,q,n.

Example 2.5. For p = 1 and if the sequences are the same:
n+1∑
Nm =q

· · ·
N2∑

N1 =q

aNm · · · aN1 −
n∑

Nm =q

· · ·
N2∑

N1 =q

aNm · · · aN1

= an+1

an+1

[
· · · an+1

(
n+1∑
N1=q

aN1

)
+

n∑
N2=q

N2∑
N1=q

aN2aN1

]
+

n∑
Nm−1=q

· · ·
N2∑
N1=q

aNm−1 · · · aN1

 .

Example 2.6. For p = m− 2 and if the sequences are the same:
n+1∑
Nm =q

· · ·
N2∑

N1 =q

aNm · · · aN1 −
n∑

Nm =q

· · ·
N2∑

N1 =q

aNm · · · aN1

= an+1

an+1

 n+1∑
Nm−2=q

· · ·
N2∑
N1=q

aNm−2 · · · aN1

+
n∑

Nm−1=q

· · ·
N2∑
N1=q

aNm−1 · · · aN1

 .

3 Inversion formulas

In this section, we develop formulas to interchange the order of summation in a recurrent sum.

3.1 Particular case (for two sequences)

We start by proving the inversion formula with two sequences which is required in order to prove
the more general inversion formula with m sequences.

Theorem 3.1. For q, n ∈ N where n ≥ q and for any two sequences aN1 and bN2 defined in the
interval [q, n], we have that

n∑
N2=q

bN2

N2∑
N1=q

aN1 =
n∑

N1=q

aN1

n∑
N2=N1

bN2 .

Proof. Let us note the left term of the theorem as B. By expanding the sum, we get

B = bq

(
q∑

N1=q

aN1

)
+ bq+1

(
q+1∑
N1=q

aN1

)
+ · · ·+ bn−1

(
n−1∑
N1=q

aN1

)
+ bn

(
n∑

N1=q

aN1

)
= bq (aq) + bq+1 (aq + aq+1) + · · ·+ bn−1 (aq + · · ·+ an−1) + bn (aq + · · ·+ an) .

By regrouping the bN terms instead of the aN terms, the expression becomes

B = aq (bq + · · ·+ bn) + aq+1 (bq+1 + · · ·+ bn) + · · ·+ an−1 (bn−1 + bn) + an (bn)

= aq

(
n∑

N2=q

bN2

)
+ aq+1

(
n∑

N2=q+1

bN2

)
+ · · ·+ an−1

(
n∑

N2=n−1

bN2

)
+ an

(
n∑

N2=n

bN2

)

=
n∑

N1=q

aN1

n∑
N2=N1

bN2 .

This completes the proof.
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3.2 General case (form sequences)

We now prove the more general inversion formula with m sequences which allows us to invert
the order of summation for a recurrent sum of order m.

Theorem 3.2. For anym, q, n ∈ N where n ≥ q and for any set of sequences a(1);N1 , . . . , a(m);Nm

defined in the interval [q, n], we have that
n∑

Nm=q

a(m);Nm · · ·
N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1 =
n∑

N1=q

a(1);N1

n∑
N2=N1

a(2);N2 · · ·
n∑

Nm=Nm−1

a(m);Nm .

Proof. Base case (for m = 2): This statement is true as proven in Theorem 3.1.
Induction hypothesis:

n∑
Nm=q

a(m);Nm · · ·
N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1 =
n∑

N1=q

a(1);N1

n∑
N2=N1

a(2);N2 · · ·
n∑

Nm=Nm−1

a(m);Nm .

Induction step: To simplify the proof, we use the notation from Eq. (1) to represent the left hand
side term:

Rm+1,q,n =
n∑

Nm+1=q

a(m+1);Nm+1 · · ·
N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1

=
n∑

Nm+1=q

a(m+1);Nm+1

(
Nm+1∑
Nm=q

a(m);Nm · · ·
N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1

)
.

Let bNm be the following sequence (that dependents only on Nm),

bNm = a(m);Nm

Nm∑
Nm−1=q

a(m−1);Nm−1 · · ·
N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1 .

By applying this substitution in the previous expression, we obtain a recurrent sum of order 2 that
contains the two sequences a(m+1);Nm+1 and bNm . Then, we apply the inversion formula for the
case of two sequences (Theorem 3.1) to get the following,

Rm+1,q,n =
n∑

Nm+1=q

a(m+1);Nm+1

(
Nm+1∑
Nm=q

bNm

)

=
n∑

Nm=q

bNm

 n∑
Nm+1=Nm

a(m+1);Nm+1


=

n∑
Nm=q

a(m);Nm · · ·
N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1

 n∑
Nm+1=Nm

a(m+1);Nm+1

.
The sum of a(m+1);Nm+1 has Nm and n as lower and upper bounds. Thus, knowing that n is a
constant, the sum of a(m+1);Nm+1 depends only on Nm. This allows us to extract this sum from
the inner sums to get

Rm+1,q,n =
n∑

Nm=q

a(m);Nm

n∑
Nm+1=Nm

a(m+1);Nm+1

 · · · N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1 .
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Let ANm be the following sequence (that only depends on Nm),

ANm = a(m);Nm

n∑
Nm+1=Nm

a(m+1);Nm+1 .

By substituting ANm into the previous expression, we get a recurrent sum of order m in terms
of the following m sequences: ANm , a(m−1);Nm−1 , . . . , a(1);N1 . Then the inversion formula for the
case of m sequences (which was assumed to be true in the induction hypothesis) is applied,

Rm+1,q,n =
n∑

Nm=q

ANm · · ·
N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1

=
n∑

N1=q

a(1);N1

n∑
N2=N1

a(2);N2 · · ·
n∑

Nm=Nm−1

ANm

=
n∑

N1=q

a(1);N1

n∑
N2=N1

a(2);N2 · · ·
n∑

Nm=Nm−1

a(m);Nm

n∑
Nm+1=Nm

a(m+1);Nm+1 .

We conclude that it must hold for all m ≥ 2.

Similarly, the innermost summation can be turned into the outermost summation as illustrated
by Theorem 3.3.

Theorem 3.3. For anym, q, n ∈ N where n ≥ q and for any set of sequences a(1);N1 , . . . , a(m);Nm

defined in the interval [q, n], we have that

n∑
Nm=q

a(m);Nm · · ·
N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1

=
n∑

N1=q

a(1);N1

n∑
Nm=N1

a(m);Nm · · ·
N4∑

N3=N1

a(3);N3

N3∑
N2=N1

a(2);N2 .

Proof. From Theorem 3.2,

n∑
Nm=q

a(m);Nm · · ·
N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1 =
n∑

N1=q

a(1);N1

n∑
N2=N1

a(2);N2 · · ·
n∑

Nm=Nm−1

a(m);Nm .

Applying Theorem 3.2 to the inner part of the right-hand side sum would transform it as follows

n∑
N2=N1

a(2);N2 · · ·
n∑

Nm=Nm−1

a(m);Nm =
n∑

Nm=N1

a(m);Nm · · ·
N4∑

N3=N1

a(3);N3

N3∑
N2=N1

a(2);N2 .

Hence, substituting back into Theorem 3.2 would give us the desired formula.

3.3 Inversion of p sequences fromm sequences

Finally, as we will show in this section, it is possible to partially invert the order of summation
for a recurrent sum. In other words, as shown by the following theorem, it is possible to invert
the order of summation of only the p innermost summations from m summations.
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Theorem 3.4. For any m, q, n ∈ N where n ≥ q, for any p ∈ [1,m], and for any set of sequences
a(1);N1 , . . . , a(m);Nm defined in the interval [q, n], we have that

n∑
Nm =q

a(m);Nm · · ·
Np+1∑
Np =q

a(p);Np · · ·
N2∑

N1 =q

a(1);N1

=
n∑

Nm=q

a(m);Nm · · ·
Np+2∑
Np+1=q

a(p+1);Np+1

Np+1∑
N1=q

a(1);N1

Np+1∑
N2=N1

a(2);N2 · · ·
Np+1∑

Np=Np−1

a(p);Np .

Proof. By replacing m by p and n by Np+1 in Theorem 3.2, we get the following relation,

Np+1∑
Np=q

a(p);Np · · ·
N3∑
N2=q

a(2);N2

N2∑
N1=q

a(1);N1 =

Np+1∑
N1=q

a(1);N1

Np+1∑
N2=N1

a(2);N2 · · ·
Np+1∑

Np=Np−1

a(p);Np .

Thus, substituting into the left-hand side term of the theorem, we prove the theorem.

Similarly, the innermost summation can be pulled back to the p-th position as illustrated by
Theorem 3.5.

Theorem 3.5. For any m, q, n ∈ N where n ≥ q, for any p ∈ [1,m], and for any set of sequences
a(1);N1 , . . . , a(m);Nm defined in the interval [q, n], we have that

n∑
Nm=q

a(m);Nm · · ·
Np+1∑
Np=q

a(p);Np · · ·
N2∑
N1=q

a(1);N1

=
n∑

Nm=q

a(m);Nm · · ·
Np+2∑
Np+1=q

a(p+1);Np+1

Np+1∑
N1=q

a(1);N1

Np+1∑
Np=N1

a(p);Np

Np∑
Np−1=N1

a(p−1);Np−1 · · ·
N3∑

N2=N1

a(2);N2 .

Proof. By applying Theorem 3.3 (withm substituted by p and n substituted byNp+1) to Theorem
3.4, we get the desired theorem.

4 Reduction formulas

The objective of this section is to introduce formulas which can be used to reduce recurrent sums
from their originally recurrent form to a form containing only simple non-recurrent sums.

4.1 A brief introduction to partitions

In this paper, partitions are involved in the reduction formula for a recurrent sum. For this reason,
in this section, we will present a brief introduction to partitions.

Definition. A partition of a non-negative integer m is a set of positive integers whose sum
equals m. The summands of the partition are known as parts and the number of parts is referred
to as the length of the partition. The sum of the parts is called the content of the partition.
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We can represent a partition of m as an ordered set (yk,1, . . . , yk,m) that verifies

yk,1 + 2yk,2 + · · ·+myk,m =
m∑
i=1

i yk,i = m. (4)

The coefficient yk,i is the multiplicity of the integer i in the k-th partition of m. Note that
0 ≤ yk,i ≤ m while 1 ≤ i ≤ m. Also note that the number of partitions of an integer m is
given by the partition function denoted p(m) and hence, 1 ≤ k ≤ p(m). In the remainder of this
text, the subscript k will be added to indicate that a given parameter is associated with a given
partition. The value of p(m) is obtained from the generating function developed by Euler in the
mid-eighteen century [14],

∞∑
m=0

p(m)xm =
∞∏
j=1

1

1− xj
. (5)

Other ways of computing p(m) include Euler’s recurrent formula, Hardy and Ramanujan’s
asymptotic expression [22], Rademacher’s formula [34], and, most recently, Ono and Bruinier’s
formula for p(m) as a finite sum [10].

Throughout this article, we will use the following standard notation for partitions: We denote
the set of all partitions of an integer m as Pm. We use π ` m for the relation “partition π sums
to m”. The content of a partition π is denoted by c(π). Notice that π ∈ Pm, π ` m, and
c(π) = m mean the same thing. Likewise, we use #(π) for the number of parts of the partition
π. #(π) can also be seen as the sum of the multiplicities:

#(π) = yk,1 + yk,2 + · · ·+ yk,m =
m∑
i=1

yk,i. (6)

Remark 5. By convention, zero has only one partition (p(0) = 1). This partition has length zero
(if c(π) = 0, then #(π) = 0).

We will be dealing with sums of the form
∑
f(π), that is, sums over all partitions π of

an integer. We indicate that a sum is over all partitions of m by the index π(m). We restrict
the partitions being summed over to those of length r by adding the index #(π) = r. For
simplicity, we define

∑
f(i) to mean

∑m
i=1 f(i). In particular,

∑
i.yk,i =

∑m
i=1 i.yk,i and∑

yk,i =
∑m

i=1 yk,i.
Moreover, the most famous ways of representing a partition are using Ferrers diagrams or

using Young diagrams. There also exists some variants of Ferrers diagrams that are used [33].

Remark 6. For readers intrested in a more detailed explanation of partitions, see [1].

Before we can proceed to the next section, we need to introduce some combinatorical and
number theoretical concepts that will be crucial when working with partitions. We begin by
defining the following notation: Let [xr] (P (x)) represent the coefficient of xr in P (x). Let
xm = x(x+1) · · · (x+m−1) represent the rising factorial. Let (x)m = x(x−1) · · · (x−m+1)

represent the falling factorial. Now that the needed notation has been presented, we introduce the
Stirling numbers.
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The original definition of Stirling numbers of the first kind S(m, r) [28] was as the coefficients
in the expansion of (x)m:

(x)m =
m∑
k=0

S(m, k)xk or S(m, r) = [xr](x)m. (7)

In a similar way, the unsigned Stirling numbers of the first kind, denoted |S(m, r)| or
[
m
r

]
, can be

expressed in terms of the rising factorial xm:

xm =
m∑
k=0

[
m

k

]
xk or

[
m

r

]
= [xr]

(
xm
)
. (8)

From this definition, the famous finite sum of the unsigned Stirling numbers of the first kind can
be directly deduced by substituting x by 1 to get

m∑
k=0

[
m

k

]
= 1(1 + 1) · · · (1 +m− 1) = m! . (9)

Note that |S(m, r)| can also be defined as the number of permutations of m elements with r

disjoint cycles. Similarly, the previous relation can be obtained by noticing that permutations are
partitioned by number of cycles.

The final concept we need to introduce is partial Bell polynomials. A Bell polynomial is
defined as
Bm,r(x1, x2, . . . , xm−r+1)

=
∑

y1+2y2+···+(m−r+1)ym−r+1=m
y1+y2+···+ym−r+1=r

m!

y1! y2! · · · ym−r+1!

(x1

1!

)y1 (x2

2!

)y2
· · ·
(

xm−r+1

(m− r + 1)!

)ym−r+1

.

These polynomials can also be rewritten more compactly as

Bm,r(x1, x2, . . . , xm−r+1) = m!
∑
π(m)

#(π)=r

m−r+1∏
i=1

1

yk,i!

(xi
i!

)yk,i
. (10)

Similarly, the complete Bell polynomial can be defined in terms of the partial Bell polynomial by
the following relation:

Bm(x1, . . . , xm) =
m∑
r=0

Bm,r(x1, . . . , xm−r+1), (11)

where B0,0 = 1, Bm,0 = 0 for m ≥ 1, and B0,r = 0 for r ≥ 1. Also, note that B0 = 1.

4.2 Reduction Theorem and partition identities

We will start this section by proving several lemmas which are needed in order to prove the main
theorem of this section (Theorem 4.6, which we will call the Reduction Theorem). However,
some of these lemmas are important on their own as they provide relations governing partitions.

We start by presenting the following trivial remark.

Remark 7. No partition of a non-negative integer m constructed from a sum of r terms (positive
integers) can contain an integer larger or equal to m− r + 2.
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Now, we can proceed with proving the required lemmas.

Lemma 4.1. Let m and r be two non-negative integers with r ≤ m, the following sum over
partitions of m of length r can be expressed in terms of the unsigned Stirling numbers of the first
kind as follows, ∑

π(m)
#(π)=r

m∏
i=1

1

iyk,i(yk,i)!
=

1

m!

[
m

r

]
=

1

m!
[xr]

(
xm
)
.

Proof. A property of Bell polynomials, shown in [36], is that the value of the partial Bell polynomial
on the sequence of factorials equals an unsigned Stirling number of the first kind,

Bm,r(0! , 1! , . . . , (m− r)! ) = |S(m, r)|=
[
m

r

]
.

Likewise, by a numerical substitution into the definition of partial Bell polynomials (Eq. (10)),

Bm,r(0! , 1! , . . . , (m− r)! ) = m!
∑
π(m)

#(π)=r

m−r+1∏
i=1

1

iyk,i(yk,i)!
.

Hence, by equating, we get

∑
π(m)

#(π)=r

m−r+1∏
i=1

1

iyk,i(yk,i)!
=

1

m!

[
m

r

]
.

As we stated in a previous remark, the biggest integer that can appear in a partition of an integer
m using r terms is m− r + 1 (which means that yk,m−r = · · · = yk,m = 0). Thus, we get

∑
π(m)

#(π)=r

m∏
i=1

1

iyk,i(yk,i)!
=
∑
π(m)

#(π)=r

m−r+1∏
i=1

1

iyk,i(yk,i)!
=

1

m!

[
m

r

]
.

The second expression follows from the definition of unsigned Stirling numbers of the first
kind.

By adding the arguments of the sum from Lemma 4.1 for all possible partition lengths, we
obtain the following identity.

Lemma 4.2. Let m be a non-negative integer, the following sum over all partitions of m can be
shown to equal 1 independently of the value of m,∑

π(m)

m∏
i=1

1

iyk,i(yk,i)!
= 1.

Proof. From Lemma 4.1, we have∑
π(m)

#(π)=r

m∏
i=1

1

iyk,i(yk,i)!
=

1

m!

[
m

r

]
.
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Hence, ∑
π(m)

m∏
i=1

1

iyk,i(yk,i)!
=

m∑
r=0

∑
π(m)

#(π)=r

m∏
i=1

1

iyk,i(yk,i)!
=

m∑
r=0

1

m!

[
m

r

]
=

1

m!

m∑
r=0

[
m

r

]
.

Using Eq. (9), we obtain the lemma.

A more general form of Lemma 4.1 is illustrated in the following lemma.

Lemma 4.3. Let (yk,1, . . . , yk,m) = {(y1,1, . . . , y1,m), (y2,1, . . . , y2,m), . . .} be the set of all partitions
of m. Let (`1, . . . , `m) be a partition of j ≤ m such that

∑
`i = `.∑

π(m)
#(π)=r

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=
∑
π(m)

#(π)=r
yk,i≥`i

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=
1

(m− j)!

[
m− j
r − `

] m∏
i=1

1

i`i(`i)!
.

Remark 8. Knowing that the largest element of a partition of j is at most j, we can rewrite it as

∑
π(m)

#(π)=r

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=
∑
π(m)

#(π)=r
yk,i≥`i

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=
1

(m− j)!

[
m− j
r − `

] j∏
i=1

1

i`i(`i)!
.

Proof. We split the sum as follows,∑
π(m)

#(π)=r

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=
∑
π(m)

#(π)=r
∃i,yk,i<`i

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

+
∑
π(m)

#(π)=r
yk,i≥`i

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

.

Knowing that
(
yk,i
`i

)
= 0, if yk,i < `i, then the elements of this sum for which ∃i, yk,i < `i are

zero. Thus, the first term is zero and we obtain the first equality of the lemma.∑
π(m)

#(π)=r

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=
∑
π(m)

#(π)=r

m∏
i=1

1

i`i`i!

m∏
i=1

1

iyk,i−`i(yk,i − `i)!
.

As `1, . . . , `m are all constants, then
∏m

i=1
1

i`i`i!
is constant. This factor is constant and is common

to all terms of the sum, therefore, we can factor it and take it outside the sum.∑
π(m)

#(π)=r

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=

(
m∏
i=1

1

i`i`i!

) ∑
π(m)

#(π)=r

m∏
i=1

1

iyk,i−`i(yk,i − `i)!
.

Having that (`1, . . . , `m) is a partition of j ≤ m, hence,
∑
i.`i = j ≤ m. Additionally, π(m)

corresponds to
∑
i.yk,i = m. Thus, the condition π(m) can be replaced by

∑
i.(yk,i − `i) =∑

i.yk,i−
∑
i.`i = m− j. Similarly, ` =

∑
`i and #(π) = r corresponds to

∑
yk,i = r, hence,

the condition #(π) = r can be replaced by
∑

(yk,i − `i) =
∑
yk,i−

∑
`i = r−`. Hence, letting

Yk,i = yk,i − `i, we define the partitions Π ≡ (Yk,1, . . . , Yk,m−j) of m − j with lengths specified
by r − `. Hence, we can write:
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∑
π(m)

#(π)=r

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=

(
m∏
i=1

1

i`i`i!

) ∑
∑
i.Yk,i=m−j∑
Yk,i=r−`

m∏
i=1

1

iYk,iYk,i!
=

(
m∏
i=1

1

i`i`i!

) ∑
Π(m−j)

#(Π)=r−`

m∏
i=1

1

iYk,iYk,i!
.

Knowing that the largest element of a partition of (m− j) is at most (m− j), hence,∑
π(m)

#(π)=r

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=

(
m∏
i=1

1

i`i`i!

) ∑
Π(m−j)

#(Π)=r−`

m−j∏
i=1

1

iYk,iYk,i!
.

Applying Lemma 4.1, with yk,i substituted by Yk,i, m substituted by m− j, and r substituted by
r − `, we get the second equality of the lemma.

Remark 9. If j > m, then
∑
i.Yk,i = m− j < 0, which makes Lemma 4.1 invalid, which then

makes this lemma invalid.

Similarly, a more general form of Lemma 4.2 is illustrated in the following lemma.

Lemma 4.4. Let (yk,1, . . . , yk,m) = {(y1,1, . . . , y1,m), (y2,1, . . . , y2,m), . . .} be the set of all partitions
of m. Let (`1, . . . , `m) be a partition of j ≤ m.∑

π(m)

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=
∑
π(m)
yk,i≥`i

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=
m∏
i=1

1

i`i(`i)!
.

Remark 10. Knowing that the largest element of a partition of j is at most j, we can rewrite it as∑
π(m)

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=
∑
π(m)
yk,i≥`i

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=

j∏
i=1

1

i`i(`i)!
.

Proof. We split the sum as follows,∑
π(m)

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=
∑
π(m)

∃i,yk,i<`i

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

+
∑
π(m)
yk,i≥`i

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

.

Knowing that
(
yk,i
`i

)
= 0, if yk,i < `i, then the elements of this sum for which ∃i, yk,i < `i are

zero. Thus, the first term is zero and we obtain the first equality of the lemma.∑
π(m)

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=
∑
π(m)

m∏
i=1

1

i`i`i!

m∏
i=1

1

iyk,i−`i(yk,i − `i)!
.

As `1, . . . , `m are all constants, then
∏m

i=1
1

i`i`i!
is constant. This factor is constant and is common

to all terms of the sum, therefore, we can factor it and take it outside the sum.∑
π(m)

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=

(
m∏
i=1

1

i`i`i!

)∑
π(m)

m∏
i=1

1

iyk,i−`i(yk,i − `i)!
.

Having that (`1, . . . , `m) is a partition of j ≤ m, hence,
∑
i.`i = j ≤ m. Additionally, the

condition π(m) is equivalent to
∑
i.yk,i = m. Thus, the condition π(m) can be replaced by∑

i.(yk,i − `i) =
∑
i.yk,i −

∑
i.`i = m − j(≥ 0). Hence, we define the set of partitions Π of

m− j were the multiplicities of the parts are given by Yk,i = yk,i − `i. Thus, we have:
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∑
π(m)

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=

(
m∏
i=1

1

i`i`i!

) ∑
∑
i.Yk,i=m−j

m∏
i=1

1

iYk,iYk,i!
=

(
m∏
i=1

1

i`i`i!

) ∑
Π(m−j)

m∏
i=1

1

iYk,iYk,i!
.

Knowing that the largest element of a partition of (m− j) is at most (m− j), hence,

∑
π(m)

m∏
i=1

(
yk,i
`i

)
iyk,i(yk,i)!

=

(
m∏
i=1

1

i`i`i!

) ∑
Π(m−j)

m−j∏
i=1

1

iYk,iYk,i!
.

Applying Lemma 4.2, with yk,i substituted by Yk,i and m substituted by m− j, we get the second
equality of the lemma.

Remark 11. If j > m, then
∑
i.Yk,i = m− j < 0, which makes Lemma 4.2 invalid, which then

makes this lemma invalid.

Proposition 4.1. Let Bm,r(x1, . . . , xm−r+1) be the partial Bell polynomial and Bm(x1, . . . , xm)

be the complete Bell polynomial. Then

∑
π(m)

m∏
i=1

1

(yk,i)!

(
1

i

n∑
N=q

(aN)i

)yk,i

=
1

m!

m∑
r=0

Bm,r(x1, . . . , xm−r+1) =
1

m!
Bm(x1, . . . , xm)

where xi = (i− 1)! (
∑n

N=q (aN)i).

Proof. Knowing that the largest integer that can appear in a partition of an integer m using r
terms is m− r + 1, we can write

∑
π(m)

#(π)=r

m∏
i=1

1

(yk,i)!

(
1

i

n∑
N=q

(aN)i

)yk,i

=
∑
π(m)

#(π)=r

m−r+1∏
i=1

1

(yk,i)!

(
1

i

n∑
N=q

(aN)i

)yk,i

.

We can notice that the right-hand side term of the previous expression corresponds to a multiple
of a special value of the partial Bell polynomial where xi = (i − 1)! (

∑n
N=q (aN)i),∀i ∈ [1,m].

Hence, ∑
π(m)

#(π)=r

m∏
i=1

1

(yk,i)!

(
1

i

n∑
N=q

(aN)i

)yk,i

=
1

m!
Bm,r(x1, . . . , xm−r+1).

Additionally, the sum over the partitions of m is equivalent to the sum for r going from 0 to m of
the sums over the partitions of m of length r. Thus,

∑
π(m)

m∏
i =1

1

(yk,i)!

(
1

i

n∑
N=q

(aN)i

)yk,i

=
m∑
r=0

∑
π(m)

#(π)=r

m∏
i=1

1

(yk,i)!

(
1

i

n∑
N=q

(aN)i

)yk,i

=
1

m!

m∑
r=0

Bm,r(x1, . . . , xm−r+1).

Applying the definition of a complete Bell polynomial (Eq. (11)), we get the second equality.
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Finally, we introduce a lemma that expresses a product of sums as a sum of products.

Lemma 4.5. A product of sums can be turned into a sum of products as follows,
m∏
j=1

nj∑
Nj=qj

a(j);Nj =
nm∑

Nm=qm

· · ·
n1∑

N1=q1

m∏
j=1

a(j);Nj .

Proof. We begin by rewriting the right-hand side term as follows,
nm∑

Nm=qm

· · ·
n1∑

N1=q1

m∏
j=1

a(j);Nj =
nm∑

Nm=qm

a(m);Nm · · ·
n2∑

N2=q2

a(2);N2

n1∑
N1=q1

a(1);N1 .

Knowing that the index of each sum is independent of that of the other sums, we can split this
structure as follows:

nm∑
Nm=qm

· · ·
n1∑

N1=q1

m∏
j=1

a(j);Nj =

(
nm∑

Nm=qm

a(m);Nm

)
· · ·

(
n1∑

N1=q1

a(1);N1

)
=

m∏
j=1

nj∑
Nj=qj

a(j);Nj .

This completes the proof.

Example 4.1. (a1 + a2 + a3)(b1 + b2) =
∑2

N2=1

∑3
N1=1 aN1bN2 .

Now that all the required lemmas have been proven, we show the following theorem which
allows the representation of a recurrent sum in terms of non-recurrent sums.

Theorem 4.6 (Reduction theorem). Let m be a non-negative integer, k be the index of the k-th
partition of m (1 ≤ k ≤ p(m)), i be an integer between 1 and m, and yk,i be the multiplicity of i
in the k-th partition of m. The reduction theorem for recurrent sums is stated as follows:

n∑
Nm=q

· · ·
N2∑
N1=q

aNm · · · aN1 =
∑
π(m)

m∏
i=1

1

(yk,i)!

(
1

i

n∑
N=q

(aN)i

)yk,i

.

Proof. Base case (for n = q, ∀m ∈ N):

∑
π(m)

m∏
i=1

1

(yk,i)!

(
1

i

q∑
N=q

(aN)i

)yk,i

=
∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i
(aq)

i.yk,i = (aq)
m
∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i
.

By applying Lemma 4.2, we get∑
π(m)

m∏
i=1

1

(yk,i)!

(
1

i

q∑
N=q

(aN)i

)yk,i

= (aq)
m =

q∑
Nm=q

· · ·
N2∑
N1=q

aNm · · · aN1 .

Induction hypothesis (for n, ∀m ∈ N):

n∑
Nm=q

· · ·
N2∑
N1=q

aNm · · · aN1 =
∑
π(m)

m∏
i=1

1

(yk,i)!

(
1

i

n∑
N=q

(aN)i

)yk,i

.

Induction step: To be concise, we denote by I the right term of the equality to be proven, i.e.,

I =
∑
π(m)

m∏
i=1

1

(yk,i)!

(
1

i

n+1∑
N=q

(aN)i

)yk,i

=
∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i

(
n∑

N=q

(aN)i + (an+1)i

)yk,i

.

By applying the binomial theorem, we get:
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I =
∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i

yk,i∑
v=0

(
yk,i
v

)( n∑
N=q

(aN)i

)v(
(an+1)i

)yk,i−v
=
∑
π(m)

m∏
i=1

yk,i∑
v=0

1

(yk,i)! iyk,i

(
yk,i
v

)( n∑
N=q

(aN)i

)v

(an+1)i.yk,i−i.v.

Let

Av,i,k =
1

(yk,i)! iyk,i

(
yk,i
v

)( n∑
N=q

(aN)i

)v

(an+1)i.yk,i−i.v.

By expanding then regrouping (or by using Lemma 4.5), it can be seen that

m∏
i=1

yk,i∑
v=0

Av,i,k =

yk,m∑
vm=0

· · ·
yk,1∑
v1=0

m∏
i=1

Avi,i,k.

This is because, for any given k, by expanding the product of sums (the left-hand side term), we
will get a sum of products of the form Av1,1Av2,2 · · ·Avm,m (

∏m
i=1 Avi,i) for all combinations of

v1, v2, . . . , vm such that 0 ≤ v1 ≤ yk,1, . . . , 0 ≤ vm ≤ yk,m, which is equivalent to the right-hand
side term. Hence,

I =
∑
π(m)

yk,m∑
vm=0

· · ·
yk,1∑
v1=0

m∏
i=1

1

(yk,i)! iyk,i

(
yk,i
vi

)( n∑
N=q

(aN)i

)vi

(an+1)i.yk,i−i.vi .

A more compact way of writing the repeated sum over the vi’s is by expressing it with one sum
that combines all the conditions. The set of conditions 0 ≤ v1 ≤ yk,1, . . . , 0 ≤ vm ≤ yk,m can be
expressed as the condition 0 ≤ vi ≤ yk,i for i ∈ [1,m].

I =
∑
π(m)

∑
0≤vi≤yk,i

m∏
i=1

1

(yk,i)! iyk,i

(
yk,i
vi

)( n∑
N=q

(aN)i

)vi

(an+1)i.yk,i−i.vi .

Similarly, let j represent
∑
i.vi. Hence, we can add the trivial condition that is j =

∑
i.vi to

the sum over vi. This condition is equivalent to the condition Π(j) which refers to the sum being
over all partitions Π of j. Additionally,

•
∑
i.vi = j is minimal when v1 = 0, . . . , vm = 0. Hence jmin = 0.

•
∑
i.vi = j is maximal when v1 = yk,1, . . . , vm = yk,m. Hence jmax =

∑
i.yk,i = m.

Therefore, we have that 0 ≤ j ≤ m or, equivalently, that j can go from 0 to m. Hence,
knowing that adding a true statement to a condition does not change the condition, we can add
this additional condition to get

I =
∑
π(m)

m∑
j=0
Π(j)

0≤vi≤yk,i

m∏
i=1

1

(yk,i)! iyk,i

(
yk,i
vi

)( n∑
N=q

(aN)i

)vi

(an+1)i.yk,i−i.vi .

Knowing that
(
yk,i
vi

)
= 0 if vi > yk,i, hence, the terms produced for vi > yk,i would be zero. Thus,

we can remove the condition 0 ≤ vi ≤ yk,i because terms that do not satisfy this condition will
be zeros and, therefore, would not change the value of the sum.
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I =
∑
π(m)

m∑
j=0
Π(j)

m∏
i=1

1

(yk,i)! iyk,i

(
yk,i
vi

)( n∑
N=q

(aN)i

)vi

(an+1)i.yk,i−i.vi .

We expand the expression then, from all values of k (from all partitions (yk,1, . . . , yk,m) ofm), we
regroup together the terms having a combination of exponents (v1, . . . , vm) that forms a partition
of the same integer j and we do so for all j ∈ [0,m]. Hence, performing this manipulation
allows us to interchange the sum over π(m) (over

∑
i i.yk,i = m) with the sums over j. Thus, the

expression becomes as follows,

I =
m∑
j=0
Π(j)

∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i

(
yk,i
vi

)( n∑
N=q

(aN)i

)vi

(an+1)i.yk,i−i.vi

=
m∑
j=0
Π(j)

∑
π(m)

(an+1)
∑
i.yk,i−

∑
i.vi

[
m∏
i=1

(
n∑

N=q

(aN)i

)vi][ m∏
i=1

1

(yk,i)! iyk,i

(
yk,i
vi

)]

=
m∑
j=0
Π(j)

(an+1)m−j
[
m∏
i=1

(
n∑

N=q

(aN)i

)vi]∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i

(
yk,i
vi

).
Applying Lemma 4.4, we get

I =
m∑
j=0
Π(j)

(an+1)m−j
[
m∏
i=1

(
n∑

N=q

(aN)i

)vi]( m∏
i=1

1

ivi(vi)!

)

=
m∑
j=0
Π(j)

(an+1)m−j
(

m∏
i=1

1

ivi(vi)!

(
n∑

N=q

(aN)i

)vi)
.

Knowing that for any given value of j there are multiple combinations of v1, . . . , vm that satisfy∑
i.vi = j, hence, every value of j corresponds to a sum of the sum’s argument for all partitions

of j (for all combinations of v1, . . . , vm satisfying
∑
i.vi = j). Therefore, we can split the outer

sum with two conditions into two sums each with one of the conditions as follows,

I =
m∑
j=0

(an+1)m−j
∑
Π(j)

(
m∏
i=1

1

ivi(vi)!

(
n∑

N=q

(aN)i

)vi)
.

Knowing that the largest element of a partition of j is at most j,

I =
m∑
j=0

(an+1)m−j

∑
Π(j)

j∏
i=1

1

ivi(vi)!

(
n∑

N=q

(aN)i

)vi
.

By using the induction hypothesis, the expression becomes

I =
m∑
j=0

(an+1)m−j

 n∑
Nj=q

· · ·
N2∑
N1=q

aNj · · · aN1

.
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Using Corollary 2.2.1, we get

I =
n+1∑
Nm=q

· · ·
N2∑
N1=q

aNm · · · aN1 .

The theorem is proven by induction.

Corollary 4.6.1. If the recurrent sum starts at 1, Theorem 4.6 becomes

n∑
Nm=1

· · ·
N2∑
N1=1

aNm · · · aN1 =
∑
π(m)

m∏
i=1

1

(yk,i)!

(
1

i

n∑
N=1

(aN)i

)yk,i

.

Example 4.2. For m = 2, we have

n∑
N2=1

N2∑
N1=1

aN2aN1 =
1

2

(
n∑

N=1

aN

)2

+
1

2

(
n∑

N=1

(aN)2

)
.

Example 4.3. For m = 3, we have

n∑
N3=1

N3∑
N2=1

N2∑
N1=1

aN3aN2aN1 =
1

6

(
n∑

N=1

aN

)3

+
1

2

(
n∑

N=1

aN

)(
n∑

N=1

(aN)2

)
+

1

3

(
n∑

N=1

(aN)3

)
.

Example 4.4. For m = 4, we have

n∑
N4 =1

N4∑
N3 =1

N3∑
N2 =1

N2∑
N1 =1

aN4aN3aN2aN1 =
1

24

(
n∑

N=1

aN

)4

+
1

4

(
n∑

N=1

aN

)2( n∑
N=1

(aN)2

)

+
1

3

(
n∑

N=1

aN

)(
n∑

N=1

(aN)3

)

+
1

8

(
n∑

N=1

(aN)2

)2

+
1

4

(
n∑

N=1

(aN)4

)
.

An additional partition identity that can be deduced from Theorem 4.6 is as follows.

Corollary 4.6.2. For any m,n ∈ N, we have that∑
π(m)

m∏
i=1

1

(yk,i)!

(n
i

)yk,i
=

(
n+m− 1

m

)
.

Proof. From paper [19], we have the following relation,

n∑
Nm=1

· · ·
N2∑
N1=1

1 =

(
n+m− 1

m

)
.

By applying Theorem 4.6, we get

∑
π(m)

m∏
i=1

1

(yk,i)!

(
1

i

n∑
N=1

1

)yk,i

=
∑
π(m)

m∏
i=1

1

(yk,i)!

(n
i

)yk,i
=

(
n+m− 1

m

)
.
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Example 4.5. For n = 1, Corollary 4.6.2 reduces to Lemma 4.1.

∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i
=

(
m

m

)
= 1.

Example 4.6. For n = 3, Corollary 4.6.2 gives

∑
π(m)

m∏
i=1

3yk,i

(yk,i)! iyk,i
=

(
m+ 2

m

)
=

(m+ 1)(m+ 2)

2
.

4.3 General Reduction Theorem

Let |A| represent the number of elements in the set A. Let m be a non-negative integer and let
{(y1,1, . . . , y1,m), (y2,1, . . . , y2,m), . . .} be the set of all partitions of m. Let us consider the set
M = {1, . . . ,m}. The permutation group Sm is the set of all permutations of the set {1, . . . ,m}.
Let σ ∈ Sm be a permutation of the set {1, . . . ,m} and let σ(i) represent the i-th element of this
given permutation. The number of such permutations is given by:

|Sm|= m! . (12)

The cycle-type of a permutation σ is the ordered set where the i-th element represents the
number of cycles of size i in the cycle decomposition of σ. The number of ways of arranging i
elements cyclically is (i − 1)!. The number of possible combinations of yk,i cycles of size i is
[(i− 1)! ]yk,i . Hence, the number of permutations having cycle-type (yk,1, . . . , yk,m) is given by:

m∏
i=1

[(i− 1)! ]yk,i . (13)

A partition P of a set M is a set of non-empty disjoint subsets of M such that every element
of M is present in exactly one of the subsets. Let

P = {P1,1, . . . , P1,y1︸ ︷︷ ︸
y1 sets

, . . . , Pm,1, . . . , Pm,ym︸ ︷︷ ︸
ym sets

}

represent a partition of a set of m elements (for our purpose let it be the set {1, . . . ,m}). Let
Pi,y represent the y-th subset of order (size) i and let yi represent the number of subsets of size i
contained in this partition of the set. It is interesting to note that (y1, . . . , ym) will always form a
partition of the non-negative integer m. However, the number of partitions of m is different from
the number of partitions of a set ofm elements because there are more than one partition of the set
of m elements that can be associated with a given partition of m. In fact, we can easily determine
that the number of partitions of a set of m elements associated with the partition (y1, . . . , ym) is
given by:

|Ωk|=
m!

1!yk,1 · · ·m!yk,m (yk,1)! · · · (yk,m)!
=

m!∏m
i=1 i!

yk,i yk,i!
, (14)
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where Ωk is the set of all partitions of the set ofm elements associated to partition (yk,1, . . . , yk,m).
This is because the number of ways to divide m objects into l1 groups of 1 element, l2 groups of
2 elements, etc., and lm groups of m elements is given by:

m!

1!l1 · · ·m!lm l1! · · · lm!
=

m!∏m
i=1 i!

li li!
. (15)

We will denote by Ω the set of all partitions of the set of m elements.
Finally, a partition P of a set M is a refinement of a partition ρ of the same set M if every

element in P is a subset of an element in ρ. We denote this as P � ρ.
Using the notation introduced, we can formulate a generalization of Theorem 4.6 where all

sequences are distinct.

Theorem 4.7. Let m,n, q ∈ N such that n ≥ q. Let a(1);N , . . . , a(m);N be m sequences defined in
the interval [q, n]. we have that

∑
σ∈Sm

(
n∑

Nm=q

· · ·
N2∑
N1=q

a(σ(m));Nm · · · a(σ(1));N1

)
=
∑
P∈Ω

m∏
i=1

[(i− 1)! ]yk,i

yk,i∏
g=1

 n∑
N=q

∏
h∈Pi,g

a(h);N

.
Remark 12. The theorem can also be written as

∑
σ∈Sm

(
n∑

Nm=q

· · ·
N2∑
N1=q

a(σ(m));Nm · · · a(σ(1));N1

)

=
∑
π(m)

∑
Ωk

m∏
i=1

[(i− 1)! ]yk,i

yk,i∏
g=1

 n∑
N=q

∏
h∈Pi,g

a(h);N


= |Sm|

∑
π(m)

1

|Ωk|
∑
Ωk

m∏
i=1

1

yk,i! iyk,i

yk,i∏
g=1

 n∑
N=q

∏
h∈Pi,g

a(h);N

.
As every partition of a set of m elements is associated with a given partition of m, hence, adding
up all the partitions of the set for every given partition ofm is equivalent to adding up all partitions
of the set. The first form is obtained by regrouping together, from the set of all partitions of the
set {1, . . . ,m}, those who are associated with a given partition of m.

The second expression is obtained by noting that

|Sm|
|Ωk|

m∏
i=1

1

yk,i! iyk,i
=

m∏
i=1

[(i− 1)! ]yk,i .

These forms are shown as they can be more easily used to show that this theorem reduces to
Theorem 4.6 if all sequences are the same.

Proof. Both sides of the equation produce all combinations of terms which are products of the m
sequences. Hence, the strategy of this proof is to show that every combination appears with the
same multiplicity on both sides.

Without loss of generality, we can assume that all sequences are distinct. We can write:
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∑
σ∈Sm

(
n∑

Nm=q

· · ·
N2∑
N1=q

a(σ(m));Nm · · · a(σ(1));N1

)
=
∑
σ∈Sm

(
n∑

Nm=q

· · ·
N2∑
N1=q

a(m);Nσ(m)
· · · a(1);Nσ(1)

)
.

Hence, we can consider the symmetric group Sm as acting on N = (N1, . . . , Nm) that has an
isotropy group Sm(N) and an associated partition ρ of the set of m elements. The partition ρ
is the set of all equivalence classes of the relation given by a ∼ b if and only if Na = Nb and
Sm(N) = {σ ∈ Sm | σ(i) ∼ i ∀i}. Thus,

a(m);Nm · · · a(1);N1 (16)

appears |Sm(N)| times in the expansion of the left hand side of the theorem.
Likewise, in the right-hand side, (16) can only appear in the terms corresponding to partitions

P which are refinements of ρ. The expression (16) appears∑
P�ρ

m∏
i=1

[(i− 1)! ]yk,i (17)

times in the right-hand side of the theorem. Also let us notice that [(i − 1)! ]yk,i corresponds
to (|Pi,1|−1)! · · · (|Pi,yk,i|−1)! because |Pi,1| = · · · = |Pi,yk,i| = i. Hence,

∏m
i=1 [(i− 1)! ]yk,i

corresponds to
∏

Ph,g⊂P (|Ph,g|−1)!, which is equal to the number of permutations having
cycle-type specified by P .

Knowing that any element of Sm(N) has a unique cycle-type specified by a partition that
refines ρ, hence, we conclude that∑

P�ρ

m∏
i=1

[(i− 1)! ]yk,i = |Sm(N)|. (18)

As both sides of the theorem produce the same terms and with the same multiplicity, we can say
that these sides are equal to each other.

Example 4.7. For m = 2, Theorem 4.7 gives

n∑
N2=q

N2∑
N1=q

aN2bN1 +
n∑

N2=q

N2∑
N1=q

bN2aN1 =

(
n∑

N=q

aN

)(
n∑

N=q

bN

)
+

(
n∑

N=q

aNbN

)
.

Example 4.8. For m = 3, Theorem 4.7 gives∑
σ ∈S3

(
n∑

N3=q

N3∑
N2=q

N2∑
N1=q

a(σ(3));N3a(σ(2));N2a(σ(1));N1

)

=

(
n∑

N=q

a(1);N

)(
n∑

N=q

a(2);N

)(
n∑

N=q

a(3);N

)

+

(
n∑

N=q

a(1);N

)(
n∑

N=q

a(2);Na(3);N

)
+

(
n∑

N=q

a(2);N

)(
n∑

N=q

a(1);Na(3);N

)

+

(
n∑

N=q

a(3);N

)(
n∑

N=q

a(1);Na(2);N

)
+ 2

(
n∑

N=q

a(1);Na(2);Na(3);N

)
.

192



Remark 13. Although Theorem 4.7 is a generalization of Theorem 4.6, Theorem 4.7 is limited
by the fact that we cannot isolate a recurrent sum of a specific order, instead we need to add up
the recurrent sum for all different orderings of the sequences. However, the author thinks that
it cannot be simplified further for the general case, i.e., without specifying the sequences. For a
given choice of sequences, one should potentially be able to isolate the recurrent sum with the
desired order using the properties of the given sequences.

4.4 Applications to special sums

In this section, we will apply the reduction formula presented in Theorem 4.6 to simplify certain
special recurrent sums. The first special sum that we will simplify is a recurrent sum of Np which
will produce a recurrent form of the Faulhaber formula. The second special sum is the multiple
zeta star sum for positive even arguments.

4.4.1 Recurrent sums of powers

The Faulhaber formula is a formula developed by Faulhaber in a 1631 edition of Academia
Algebrae [17] to calculate sums of powers (Np). The Faulhaber formula is as follows

n∑
N=1

Np =
1

p+ 1

p∑
j=0

(−1)j
(
p+ 1

j

)
Bjn

p+1−j, (19)

where Bj are the Bernoulli numbers of the first kind [31].

In this section, we will use the reduction formula to generalize the Faulhaber formula to a
formula for recurrent sums of powers.

Theorem 4.8. For any m,n, p ∈ N, we have that

n∑
Nm=1

· · ·
N2∑
N1=1

Nm
p · · ·N1

p =
∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i

(
n∑

N=1

N ip

)yk,i

=
∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i

(
nip+1

ip+ 1

ip∑
j=0

(−1)j
(
ip+ 1

j

)
Bj

nj

)yk,i

.

Proof. Applying Theorem 4.6 and then Faulhaber’s formula, we get this theorem.

Let us now consider a couple of particular cases:

• Case 1: m = 2

n∑
N2=1

N2∑
N1=1

N2
pN1

p =
1

2

(
n∑

N=1

Np

)2

+
1

2

(
n∑

N=1

N2p

)

=
1

2

( np+1

p+ 1

p∑
j=0

(−1)j
(
p+ 1

j

)
Bj

nj

)2

+

(
n2p+1

2p+ 1

2p∑
j=0

(−1)j
(

2p+ 1

j

)
Bj

nj

).
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Example 4.9. For p = 2, 3, by applying this theorem, we can get the following formulas:

n∑
N2=1

N2∑
N1=1

N2
2N1

2 =
n(n+ 1)(n+ 2)(2n+ 1)(2n+ 3)(5n− 1)

360
=

(
2n+ 4

5

)
5n− 1

4!
.

n∑
N2=1

N2∑
N1=1

N2
3N1

3 =
n(n+ 1)(n+ 2)(21n5 + 69n4 + 45n3 − 21n2 − 6n+ 4)

672
.

• Case 2: m = 3

n∑
N3=1

N3∑
N2=1

N2∑
N1=1

N3
pN2

pN1
p =

1

6

(
n∑

N=1

Np

)3

+
1

2

(
n∑

N=1

Np

)(
n∑

N=1

N2p

)
+

1

3

(
n∑

N=1

N3p

)
.

Example 4.10. For p = 1, 2, by applying this theorem and exploiting Faulhaber’s formula,

n∑
N3=1

N3∑
N2=1

N2∑
N1=1

N3N2N1 =
n2(n+ 1)2(n+ 2)(n+ 3)

48
=

(
n∑

N=1

N

)[
n(n+ 1)(n+ 2)(n+ 3)

4!

]
.

n∑
N3=1

N3∑
N2=1

N2∑
N1=1

N3
2N2

2N1
2 =

(
2n+ 6

7

)
35n2 − 21n+ 4

144
.

Remark 14. Some of these sequences as well as additional ones were added by the author to the
OEIS:

• A346642 (https://oeis.org/A346642),

• A351766 (https://oeis.org/A351766),

• A351770 (https://oeis.org/A351770),

• A351105 (https://oeis.org/A351105).

4.4.2 Multiple zeta star values

In this section, using the formula developed by Euler and the reduction theorem, we prove an
expression which can be used to calculate multiple zeta star values for positive even arguments.
Then we present additional identities concerning MZSVs as well as special sums over partitions.
For MZSVs of a repeated argument, we use the following notation: ζ?({p}m) represents
ζ?(p, . . . , p) where the multiplicity of p is m.

We start by applying Theorem 4.6 and using the expression of the zeta function for positive
even values to get an expression for the recurrent sum of 1

N2p
, that is, ζ?({2p}m).

Theorem 4.9. For any m ∈ N, p ∈ N∗, we have that

ζ?({2p}m) =
∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i
(ζ(2ip))yk,i = (2iπ)2pm

∑
π(m)

m∏
i=1

(−1)yk,i

(yk,i)!

(
B2ip

(2i)(2ip)!

)yk,i
,

ζ?({2p}m) =
(2iπ)2pm

(2pm)!

∑
π(m)

(
2pm

β

) m∏
i=1

(−1)yk,i(B2ip)
yk,i

(2i)yk,iyk,i!
, β = ({2p}y1 , . . . , {2pm}ym).
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Proof. By applying Theorem 4.6,

ζ?({2p}m) =
∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i

(
∞∑
N=1

(
1

N2p

)i)yk,i

=
∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i
(ζ(2ip))yk,i .

Euler proved that, for m ≥ 1 (see [2] for a proof),

ζ(2m) =
(−1)m+1(2π)2m

2(2m)!
B2m. (20)

Hence,

ζ?({2p}m) =
∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i

(
(−1)ip+1B2ip(2π)2ip

2(2ip)!

)yk,i
= (−1)pm(2π)2pm

∑
π(m)

m∏
i=1

(−1)yk,i

(yk,i)!

(
B2ip

(2i)(2ip)!

)yk,i
.

Example 4.11. For m = 2, 3, Theorem 4.9 gives

ζ?(2p, 2p) =
(2π)4p

(4p)!

[(
4p

2p

)
(B2p)

2

222!
− B4p

4

]
.

ζ?({2p}3) =
(−1)p+1(2π)6p

(6p)!

[(
6p

{2p}3

)
B3

2p

233!
−
(

6p

2p, 4p

)
B2p

2

B4p

4
+
B6p

6

]
.

By using the values of the zeta function for even arguments as well as Theorem 4.9 and
playing with different values, we can notice some identities. In what follows, we prove several
identities related to MZSVs, one of which represents a generalization of the Basel Problem solved
by Euler.

We start with the following theorem which represents an alternative statement of Schneider’s
theorem [35].

Theorem 4.10. For any m ∈ N, we have that

ζ?({2}m) =
∞∑

Nm=1

· · ·
N2∑
N1=1

1

N2
m · · ·N2

1

=
(−1)m+1 (22m − 2)B2mπ

2m

(2m)!
=

(
2− 1

22(m−1)

)
ζ(2m)

or, identically (from Theorem 4.6),∑
π(m)

m∏
i=1

1

(yk,i)! iyk,i
(ζ(2i))yk,i =

(−1)m+1 (22m − 2)B2mπ
2m

(2m)!
=

(
2− 1

22(m−1)

)
ζ(2m).

Proof. In [35], the following relation was proven but in another notation,
∞∑

Nm=1

· · ·
N2∑
N1=1

1

N2
m · · ·N2

1

=

(
22m−1 − 1

22m−2

)
ζ(2m) =

(
2− 1

22(m−1)

)
ζ(2m).

Using the expression of ζ(2m) from Eq. (20), we get
∞∑

Nm=1

· · ·
N2∑
N1=1

1

N2
m · · ·N2

1

=
(−1)m+1 (22m − 2)B2mπ

2m

(2m)!
.

The first equation is proven. Applying Theorem 4.6, we get the second equation.
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Remark 15. From Theorem 4.10, we can deduce that (πx)csc(πx) is a generating function for
ζ?({2}m). In Part 2 of this study [21], we will generalize this result.

Corollary 4.10.1. For any m ∈ N, we have that

∑
π(m)

m∏
i=1

(−1)yk,i

(yk,i)!

(
B2ip

(2i)(2i)!

)yk,i
=

(
1

22m−1
− 1

)
B2m

(2m)!

Proof. By applying Theorem 4.9 with p = 1 to Theorem 4.10, we obtain the corollary.

We will use this to prove that this recurrent harmonic series (or multiple zeta star values) with
2p = 2 will converge to 2 as the number of summations m goes to infinity.

Theorem 4.11. For any m ∈ N, we have that

lim
m→∞

ζ?({2}m) = lim
m→∞

(
∞∑

Nm=1

· · ·
N2∑
N1=1

1

N2
m · · ·N2

1

)
= 2.

Proof. It is known that limm→∞ ζ(2m) = 1. By applying Theorem 4.10,

lim
m→∞

(
∞∑

Nm=1

· · ·
N2∑
N1=1

1

N2
m · · ·N2

1

)
= lim

m→∞

(
2− 1

22(m−1)

)
× lim

m→∞
ζ(2m) = 2.

Example 4.12. For m = 4, we have

∞∑
N4=1

N4∑
N3=1

N3∑
N2=1

N2∑
N1=1

1

N2
4N

2
3N

2
2N

2
1

=
1

24
(ζ(2))4 +

1

4
(ζ(2))2 ζ(4) +

1

3
ζ(2)ζ(6) +

1

8
(ζ(4))2 +

1

4
ζ(8)

=
127π8

604800
=

(
2− 1

22(3)

)
ζ(8) ≈ 1.992466004.

Similarly, we will use this to show that the sum (over all non-negative values of m) of the
recurrent harmonic series with 2p = 2 will diverge.

Remark 16. From Theorem 4.11, we can easily see that

∞∑
m=0

ζ?({2}m) =
∞∑
m=0

(
∞∑

Nm=1

· · ·
N2∑
N1=1

1

N2
m · · ·N2

1

)
→∞.

References

[1] Andrews, G. E. (1998). The Theory of Partitions, Vol. 2. Cambridge University Press.

[2] Arfken, G. B., & Weber, H. J. (2000). Mathematical Methods for Physicists, 5th Edition.
Academic Press.

196



[3] Bernoulli, J. (1689). Propositiones arithmeticae de seriebus infinitis earumque summa finita
[Arithmetical propositions about infinite series and their finite sums]. Basel, J. Conrad.

[4] Bernoulli, J. (1713). Ars Conjectandi, Opus Posthumum; Accedit Tractatus De Seriebus
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