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In this paper we prove two consequences of the subnormal character 
of the Hessenberg matrixD when the hermitian matrixM of an inner 
product is a moment matrix. If this inner product is defined by a 
measure supported on an algebraic curve in the complex plañe, then 
D satisfies the equation of the curve in a noncommutative sense. We 
also prove an extensión of the Krein theorem for discrete measures 
on the complex plañe based on properties of subnormal operators. 
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1. Introduction 

Let /x be a positive and finite Borel measure with real support. It is well known that there exists a 
sequence of orthonormal polynomials (NOPS), {pn(x)}¡^_0, satisfying a three term recurrence relation, 

1 and p - i ( x ) = 0. These 

xpn(x) = o n + i p n + i ( x ) + bnpn(x) + a„p„_i (x) , 

with coefficients {an}n^=\ and {bn}¡2-0
 a n d initial conditions po(x) 

coefficients are the non-zero entries of the tridiagonaljacobi mat r ix / . 
Recently, interest in extending the results of the real case to Borel measures supported in some 

bounded set of the complex plañe has increased; see [14,15]. The role of the tridiagonaljacobi matrix is 
now played by the upper Hessenberg matrix D, which corresponds to the operator of multiplication by 
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z, with respect to the basis given by the NOPS. The connection between the matrix/ as an operator and 
orthogonal polynomials has been extensively studied by Dombrowski; see [8,9]. In another different 
way Cantero has studied the relation between O.P. and five-diagonal operators; see [3,4]. 

It is well known that when the support of a measure is real and bounded, then the associated infinite 
Jacobi matrix/ defines a bounded operator in l2. This operator is also algebraic in the sense that./ is a 
zero of the equation z — z = 0 defining the support. Here, we show that this property extends to the 
case of measures with bounded support on curves given by polynomials inz andz. In this case the role 
ofJ is played by D. Orthogonal polynomials associated with measures supported on arbitrary curves 
have been extensively studied; see [17, Chapter XVI]. For closed bounded sets in the complex plañe, 
see [20]. For some particular curves different from the unit circle, see, for instance, [2,18]. 

In the theory of spectral measures it is natural to ask under what conditions the support of the 
measure is a countable set with a finite number of limit points. An answer is provided by Krein's 
theorem from 1938. A matrix versión of this theorem, (see [5,pp. 128-141]), establishes that if M is a 
real moment matrix with bounded support in the real line and/ is the associated Jacobi matrix, then 
the measure has as the only accumulation points of its support the finite set o\, ai, ..., am e R if and 
only if Q(/) ¡s a compact operator, where Q(x) = n¡f=i(x — ak)-

More recently, Golinskii has proved the analogue of this theorem for the unit circle, (see [11, p. 
68]), and Zhedanov has constructed, using the symmetrized Al-Salam-Carlitz polynomials, examples 
of orthogonal polynomials for a discrete measure on the unit circle having one or two limit points; see 
[21, pp. 89-90]. 

In this paper we prove a sort of noncommutative Cayley-Hamilton theorem for the matrix D, when 
the support is bounded on a curve expressible as a polynomial in z and z. Also, we have proved a 
theorem that generalizes the Krein theorem for measures not necessarily on the real line. 

We work with the 2 x 2 matrix representation of normal extensions of subnormal operators, and 
we can obtain results for N through this matrix representation. We obtain also weaker results for D by 
restricting to l2 the results for N. 

The paper is organized as follows. In Section 2, we give some preliminaries on orthogonal poly­
nomials, the Hessenberg matrices and subnormal operators. In Section 3, we prove a result about 
orthogonal polynomials on algebraic curves. Finally, Section 4 contains a proofof a general case of the 
Krein theorem. 

2. Preliminaries 

Given an infinite Hermitian positive definite (HPD) matrix, M = (Cy)f?_0, whether it comes from 
a measure or not, we cali M' the matrix obtained by removing from M its first column. Let Mn and M'n 

be the corresponding sections of order n of M and M', respectively, i.e., the principal submatrices of 
order nofM and M'. 

Suppose that M is an HPD matrix and let Mn = TnT* be the Cholesky decomposition of Mn, which 
is unique if t¡¡ > 0. There can be built an infinite upper Hessenberg matrix D = (d,j)f?=i with sections 
of order n satisfying 

Dn = T-XOS)"1 = T*Fn(T*y\ 

where Fn is the Frobenius matrix associated to Pn(z), and [Pn(z)} is the monic OPS associated to M, 
with 

coo c10 c20 • • • cn0 

Coi Cll C21 ... Qji 

Q),n-1 Cl,n-1 £2,1-1 • • • cn,n-\ 

Pn(z) 
1 



Throughout Pn(z) will be the monic polynomial and pn(z) will be the normalized polynomial. The fact 
that Tn is a lower triangular matrix, implies that 

D = r^M'CT*) -1 = T*SR(T*y\, 

where SR is the infinite matrix associated to the shift-right operator in £2.\Ne must be careful, because 
T_1, T* and (T*)_1 are infinite triangular matrices but they do not necessarily define operators in l2. 

An important result of Atzmon (see [1]) established conditions on an infinite HPD matrix M = 
(cj,k)?°k=o t 0 be t n e m o m e n t matrix of a measure on the unit disk, i.e., for there to exist í í c C and a 
probability measure /x : £2 -> R+, withc,^ = JQz^zkdfi(z). 

This result was extended in [19] to a bounded set on the complex plañe using only the subnormal 
characterofthis matrix as an operator D : l2 -> l2. 

An operator S on a Hilbert space H is subnormal if there is a Hilbert space K containing H and 
a normal operator Non/C such that NH C H and S = N\H. In what follows, S will always denote 
a subnormal operator on H and N will be its minimal normal extensión on K D H. If we write 
K. = 7-¿©7-¿~L,thenN has the 2 x 2 matrix representation (see [7, p. 41]) 

- ( : : ) • 

If M is a moment matrix with measure /x supported on a bounded set in the complex plañe, the 
infinite matrix D defines a bounded subnormal operator. In this case H = l2 and K = l2 © {l2) . 
We use the same symbol D to denote the infinite matrix and the matrix as an operator in l2. It is well 
known that there is an isometric isomorphism between L2(/x) and K. 

As usual P(/x) denotes the linear space of polynomials with complex coefficients associated to the 
measure /x. We denote by SM the operator of multiplication by z in P2(/x), the closure in L2(/x) of 
the space P(/x), and NM will be the operator of multiplication by z in l? (/x). It is known that NM is 
the minimal normal extensión of SM. In this case all the operators are bounded because the support 
is bounded. It is easy to prove that SM is unitarily equivalent to the infinite Hessenberg matrix D as 
an operator in l2, and NM is unitarily equivalent to the operator N, which is the minimal normal 
extensión of D. 

Lemma 1 ([1,19]). LetM = (cjj)S2.0 be an infinite HDPmatrix and \\D\\ < +oo, then M is a moment 
matrix ifand only ifD is subnormal. 

It is not difficult to prove that this moment problem is always determined when the support of the 
measure is bounded as a consequence of the Stone-Weierstrass theorem in the bidimensional case. 

3. Polynomials in D and D* 

The following theorem extends the results of [18] about orthogonal polynomials on harmonic 
algebraic curves. 

Theorem 2. Let /x be a probability measure with bounded support and supp(/x) C y C C, where y is 
an algebraic curve which can be expressed as a polynomial in z and z, that is Xj"/c=o

 aj,kz^k = 0, with 
Oj¿ e C. Then the infinite matrix D associated toM = (c/k)2Lo'suc^ t^lat cJ,k = -¡y z^kdix(z), satisfies 

m 

X ajk(D*)krJ = 0, 
j,k=0 

where we have replaced zby D and z by D* in the equation ofy, and the two producís zz and zz by D*D. 



Proof. Since \x is a probability measure, D is subnormal. We denote by N the minimal normal extensión 
oí D, N = mne(D). As before, we denote by NM multiplication by z in I?. We know that a (N) = 
a(N^) = supp(/z), and there is a spectral measure E(X) on the Borel subsets of supp(/z) such that 
JV = fam\ zdE(z). Therefore, by means of the spectral theorem for normal operators we have 

X ajkNi(N*)k = X V * * dE(z). 
j,k=o Ja^ V,*=o / 

By hypothesis, the points of er(N) satisfy the equation of the curve and er(JV) = supp(/x).Thus 

m 

X ^ ( N * ) * = 0. 
j,k=0 

From the 2 x 2 matrix representation of a subnormal operator we have 

/D x\ t /D* 0 \ 
JV = and N* = 

\ 0 Y / \ X* Y* / 
Henee 

l o YJ / I D (Y*)" 

This yields 

¡D*D D*X \ t /0D*+XX* XY*\ 
N*N= \iNN*=l 

\X*D X*X + Y*Y) \ YX* YY* ) 
We already know that N*N = NN*. At this point, we consider the product N*N to obtain an equation 
in D and D* in the [1,1] entry of the 2 x 2 matrix Zjj¿=o ajk(N*)kNi. It is easy to check that 

i*^-(*-r,"n)-(:3-
and finally we obtain 

m 

X ^(D*)^' = 0. 
j,k=0 

From the proof it can be seen how to replace z by D and z by D*. Consequently, (z')kJ = z^{z)k takes 
the form {D*)kÚ, but not Ú{D*)k. 

Corollary 3. Let /x be a probability measure with bounded support. The following five assertions are 
satisfiedforallz, z e supp(/x). 

(1) ¡f z - z = 0, then D = D*. 
(2) ¡f\z\ = \,thenD*D = l. 
(3) ¡f z- fi = \z- p\ eei, thena{D - //3) = a(D* - //3), with a = eei. 
(4) ¡f \z- fi\=R, then D*D = Jü + fiD* + (R2 - |/3|2)/. 
(5) If ¡z - c\ + \z + c\ = 2a, with a2 = b2 + c2, then 

[D2 + (D*)2](o2 - b2) + 4o2b2/ = 2D*D(o2 + b2). 



Note that the condition DD* = / in (2) is not true if \x satisfies Szego's condition. 
Another less obvious application is related to measures whose support is a cross-like set formed 

by the intervals [—1,1] and [—i, fl.The support isgivenbyxy = 0 with \x + yi\ ^ l.The expression 
xy 0 is equivalent to z = z . Therefore D = (D*) . Using that D and D* are upper and lower 
Hessenberg matrices it is easy to check that D and (D*) are pentadiagonal. 

4. Extensión of Krein's theorem 

In the next theorem, we prove a generalization of the Krein theorem for the hermitian complex 
case. 

We need first to prove two results about puré atomic distributions. Let Z = {z\, z-¿, ...} be a 
< +oo. For such a bounded set of complex points, with weights {w\, v\¡2, • •.}, where X¡^ i 

distribution we have the moment matrix M = (cjj)S2.0, where Cjk = Y^=\^nZnwn- Let D be the 

associated Hessenberg matrix. Obviously the support of this measure is supp(/x) = Z. 

Proposition 4. / /C \Zisa conmeted set and the interior ofZ is empty, then the infinite Hessenberg matrix 
D corresponds to a normal operator in l2. 

Proof. ThesetK = Ziscompact. As usual we denote byC(IC) the spaceofallcontinuousfunctions with 
support K. The set K satisfies the hypothesis of Mergelyan's theorem (see [ 10, p. 97]), and consequently 
given/ e C(K) and e > O, 3Q(z) such that |/(z) — Q(z)| < e. This implies that /supp(„,) |/(z) — 
() (z)|2d/z(z) < e2Coo- Clearly C(K) = P2(/x). Since C(K) is dense in ]} (K) (see, for example, [13, p. 

61]), we conclude thatP (/x) = IAK). Therefore we are in a complete case. It follows thatS^ 
and also D = N. Consequently D is a normal operator. 

JV„ 

Proposition 5. LetZ be as in Proposition 4 and Z' P\Z •• 
Z. Then 

, where Z' is the set of accumulation points of 

D L/*(5yZ¿)y=iU and U*U = UU* i. 

r*\- l whereU = V(T*) and Tis the Cholesky factor in the decompositionM = TT*,andVistheVandermonde 
matrix of the atoms 

I ^/w~¡ JW\Z\ jv¿\z\ • • • \ 

V ' • / 

Proof. Let L = (á,jZ¡)íj=1. It is clear that M' = V*LV. Using D 
r*\ - i D = T V*LV(T*) .The elements ofthe ¡th column of the infinite matrix (T*) are the coefficients 

T-^M'(T*)~\ it follows that 

of p¡_i(z) with respect to the basis {z 

calcúlate U*U, 

k l g l 0 . Therefore U V(T*y'1 w¡p, - i (z i ) ) i J = 1 . Now we 

(U*U)ÍJ = ^pi{zk)pj{zk)wk h, 

file:///Zisa


duetotheorthogonalityoftheNOPSonthesetZ = {z\, z-¿,.. .J.Ontheotherhand, the product UU* is 

( 00 

V ^ V ^ X Pk (z¡ )Pk (zj ) 
k=0 

To prove the statement we need also that (UU*)¡¡ = S¡¡. For that we introduce the bounded func-
tionals L¡ : P2(/x) -> P2(/x) defined by L¡(f) = /(z¡). Recall that the inner product in P(/x) is 
(Q(z), R(z)) = Z £ i Q(z/c)K(z/c)w/c. It is extended to P2(/x) as usual. Obviously ||L¡|| < l / ^w¡ . It is 
clear that the n-kernel Kn(z, z¡) = X¡J=oP/<(z)P/<(z¡). withn > i, has the reproducing property, that is 
(Q(z), Kn(z,z¡)) = Q(z¡).The functionK(z, z¡) = limnKn(z,z¡) defined onZ = {z\,zi, ...} has the 
same property. 

Nowweconsider the characteristic function/z¡(z), defined by/z¡(z) = 1 ifz = z¡ and O otherwise. 
Then Xz¡ (z)/w¡ is a continuous function because we have Z' n Z = 0 and it is only defined in isolated 
points. Henee Xz¡ (z)/w¡ ¡s defined for every/ e C(K), agrees with K(z, z¡), and for all/ e P2(/x) = 
í.2 (K) we have 

«2)^ (2 ,20) =/(Zi) = (/(Z), ^ ^ \ = £ / ( z k ) ^ ^ W k . 
\ W¡ / fc=l W¡ 

Then /z ¡(z)/w¡ = iC(z, z¡), a.e. in L2 . In particular /z ¡(z)/w¡ = K(z, z¡) at the points with positive 
measure, i.e., K(ZJ, z¡) = Xz¡ (zj)/w¡ = &ÍJ/WÍ on Z and therefore UU* = I. 

Theorem 6 (Extensión of Krein's theorem to the complex case). Let M be a moment matrix with 
bounded support and let D be the associated Hessenberg matrix. Then the measure associated to M has 
o\, ai, ..., am e C, as the only accumulation points ofits support, if and only ifQ(D) isa compact operator, 
whereQ(z) = rr?= 1(z-o- f c) . 

Proof. 
Necessary condition. As the support is a bounded set and it has a finite number of limit points, 

necessarily the measure is atomic. Assume that L = diag(zi, z-¿, . . . ) is the matrix of the atoms re-
ordered such that d(z¡, U^a/f) ^ d(z¡+i, Uj^er^). We have shown before that in this case D is an 
infinite, bounded, and normal Hessenberg matrix, satisfying D = U*LU, with U = V(r*) _ 1 , where 
V = (V/M^zk_1)j^=1. We have proved that U* and U are unitary operators, and we have Dn = U*LnU, 
soQ(D) = Lf* Q (L) Lf. Lis a diagonal matrix, henceQ(L) = (Q(z¡)áy)-j=1.ThezerosofQ(z) areexactly 
the accumulation points of the diagonal elements of L. Therefore limn Q (zn) = O and the diagonal ma­
trix Q(L) defines a compact operator. As U* and U are bounded operators, we have finally that Q(D) 
is a compact operator. 

Sufficient condition. By Lemma 1, if M is a moment matrix then D defines a subnormal operator, and 
it is bounded by hypothesis. If N = mne(D), it is well known that Q(N) is the normal extensión of Q(D), 
see [6, p. 204]. Henee Q(D) is subnormal and bounded. Therefore, Q(D) is hyponormal. By hypothesis 
Q(D) is a compact operator. We find on [12, p. 206] that an operator compact and hyponormal is 
necessarily normal, and consequently Q(D) is a compact and normal operator. The eigenvectors of 
Q(D) are a basis of l2, Q(D) is a diagonalizable operator, and the sequence of eigenvalues of Q(D) 
converges to zero if it is an infinite set. This is the case, because the matrix Q(D) has the same rank 
as the matrix D, which is not finite. Were this not so, the moment matrix M would have finite rank, 
which is not possible. We have that 

a{Q_{D)) = {fi-í,fi2, ...,Hn, •••}, with fin -+ 0. 

Thus CT(Q(D)) = Q(CT(D)). Consequently, 

(i) a{D) is a discrete set, because it is the inverse image via Q(z) of a denumerable set. 

¡.¡=1 



(ii) The limit pointsof er(D) are the solutions ofQ(z) = O.SupposethatS = {z|Q(z) =/xn, n eN¡ = 
Q_1({M}/c€N).isthesetofallsolutionsofCl(z) = /xn,forallneN.ThenS = Q_1(Cl(a(D))) D 
cr(D). Henee the limit points of er(D) are necessarily the zeros of the polynomial Q(z). 

(iii) D is a normal matrix. We know that D is hyponormal because it is subnormal and by ii), a{D) 
has a finite number of limit points. By Corollary 2, [16, p. 1455], if the spectrum of a hyponormal 
operator has a finite number of limit points then the operator is normal. Henee D is normal, and 
a(D)= supp(/x). 

Consequently supp(/x) is a discrete set in C and all the limit points of supp(/x) are zeros of Q(z). 
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