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QUASI-ORDERINGS AND TOPOLOGIES
ON FINITE SETS

HENRY SHARP, JR.

1. Throughout this paper S is the finite set {51, Sz, s,,}, and
if 5 is a topology on .S then A~ denotes the 3-closure of the subset 4
of S. It is our purpose to investigate topologies on .S and to answer
a few combinatorial questions related to these topologies. The con-
nection between T-topologies and partial orderings on finite sets
(Theorem 7) already appears in several standard references [1, p. 28]
and [2, p. 14]. That there is a one-to-one correspondence between
the topologies on S and the quasi-orderings on S follows from the
next paragraph.

For each set ACS, 4—=U {s;}— over all s;& A4, hence to identify
a topology on S it suffices to display the closures of all singletons.
For this purpose we choose the relation matrix

ti=1, s € {5,
=0, otherwise.

The Kuratowski closure axioms [3, p. 43] imply that [¢,;] is reflexive
(A CA-) and transitive (4= =47).

Let T = [t;;] be the matrix corresponding to a topology 3 and let
F; and B, be the subsets of S having characteristic functions

{(51, ti), (Sg tiz)y = = = (Sny tin)} and {(511 1), (S, ta)y = = ) (Sny ln;‘)}-
Note that s; & F; iff s;&B;. For each 4, F;= {s,-}— is the minimal closed

set containing s;.
THEOREM 1. For each j, B; is the minimal open set in 3 containing s;.

ProoF. We show first that S—B; is closed. If s;&S—B; and if
siCF;, then f;=0 and f{4=1. Transitivity forbids #;=1, hence
F;CS—B,. To show that B; is minimal, let U be any open set con-
taining s;. If sx&€S— U then F,CS— U and s;& Fy. Hence sy & B; and
S—UCS—B,

CoROLLARY. The weight [1, p. 7] of any topology on S does not ex-
ceed n+1.

Adjoining & to the family of distinct minimal open sets B; pro-
duces a basis for the topology which we call the minimal basis.

THEOREM 2. If 1], ti;=1 iff B;CB,;.
Received by the editors July 29, 1964.
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The following example shows that the assumption that M is closed
cannot be deleted. Consider the union of two disjoint closed discs in
the plane together with the segment joining their centers. From each
disc delete all the points of a diameter not parallel to the line of
centers excepting the end points and the center itself. The set de-
scribed is M and S, is the intersection of the line of centers with M.
Then M is not closed, satisfies Valentine's condition and Condition
A, but it is not the union of two star-shaped sets.
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Proor. 1f B;CB; then s;C€B; and t;;=1. On the other hand sup-
pose t;;=1. For each k if &;=1 then ty;=1 and B;CB;.

COROLLARY. If i5#]j, t;;=t;i=11iff Bi=B,;.
THEOREM 3. If 1], t;j=11ff F;CF.
The proof is like that of Theorem 2.
COROLLARY. If i5], tij=t;;=11iff Fj=F.

THEOREM 4. A reflexive, nXn, zero-one matrix T corresponds to a
topology on S iff T*=T.

PrOOF. Matrix multiplication here involves Boolean arithmetic.
The theorem follows from the fact that a reflexive relation p is transi-
tive iff pp=p [2, p. 209].

2. Let 3 and 3* be topologies on S with corresponding matrices
T=[t:;;] and T*= [£5]. Then 3=3*iff t;;=1} for each 7 and j. On the
other hand 3 and 3* are topologically equivalent iff there exists a
permutation 7(S) =S under which the minimal bases of 3 and 3* cor-
respond. The matrices 7 and T* are called isomorphic (nonisomorphic)
if 3 and 3* are equivalent (nonequivalent) [3]. It follows that T and
T* are isomorphic iff there exists an 7 X7 permutation matrix P such
that T*=P'TP, where P’ is the transpose of P.

If 5 is a topology on S then the family 3 of complements of mem-

bsbers of 3 also is a topology on S. We shall call 3’ the lranspose (or the
dual) topology with respect to 3.

TurEoREM 5. If T is the matrix corresponding to the topology 3 then
T’ (the transpose of T) is the malrix corresponding to the topology 3.

Proor. We show first that (7")2=T". Let T= [t;;] and T"= (5]
Then (77)%= [vs;] where

n
vii = 2 bishei-
k=1

But T2=T, therefore v;;=t;; and (I")*=T1". By Theorem 4, T’ cor-
responds to a topology on S, and the nonempty members of its
minimal basis are the 3-closures F;. Hence the topology consists of
the family of all unions UF;; that is, of all 3-closed sets.

TarorREM 6. The topology 3 is not connected iff for some k, 0<k<n,
both T and T’ contain the same kX (n—Fk) zero submatrix.

ProoF. A topology 3 is not connected iff there exists a nonempty
proper subset 4 of .S such that AE3 and AEY. This means that
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A =UB;=UF; over all i such that s;& 4. But the complement, S—A4,
has the same property. Let % be the cardinal of 4 and the theorem
follows.

In finite topological spaces the separation properties characterizing
To-, Ty-, T, etc., spaces are of limited help in the study of topological
structure. The only interesting partition of topologies in this hier-
archy occurs at the T level. The theorem stated next formalizes the
relation mentioned at the beginning of the paper.

THEOREM 7. The topology 3 on S is T, of its matrix T is anti-sym-
melric (that is, T defines a partial ordering on S).

COROLLARY. The weight of a topology 3 on S is n+1 iff 31s T.

In general, the topologies 3 and 3’ are neither equal nor equivalent.
In the event, however, that 3 =3 the matrix 7 is symmetric and we
call its corresponding topology symmetric. The symmetric topologies
correspond to the equivalence relations on .S. Theorems 6 and 7
imply that 3’ is T or connected iff 3 is.

In the matrix T corresponding to the topology 3, let C(%)
=(c1, €y - - -, €a) be the column sum vector and let R(3) =(ry, 7,

*, 7x) be the row sum vector (4, p. 61]. The class of vectors each
of which is some permutation of the coordinates of C (orof R) is a
topological invariant. Also, the sum, 7, of the entriesin 7 is a topologi-
cal invariant. These, unfortunately, are not topological characters;
for the two matrices below describe nonequivalent topologies.

[1 0 0 0 07 1 0 0 0 0 07

i 1L 0 1.

In each matrix C=(4, 3,2, 1, 1, 1) and R=(1,1, 2, 2, 2, 4).
We shall call the matrix T'= ;] triangular if t;;=0 for all 1<

THEOREM 8. The matrix T corresponding to a topology 3 is isomorphic
to a triangular matrix iff 3 is T.

Proor. If T is isomorphic to a triangular matrix then biit;i=0 for
all 25£j. Now assume that 3 is T,. There exists a permutation matrix
P such that 7* = P'TP has a monotone (nonincreasing) column sum
vector. If 7% is not triangular, then for some 4 <jty=1. By Theorem 2
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Bf CB}, and by the Corollary to Theorem 7 Bf#BJ, hence ¢;<c,
which is a contradiction.

THEOREM 9. Let 3 be a topology on S. There exists a topology 3*
equivalent to 3 such that C(3*) and R(3*) each are monotone (non-
increasing) iff 3 is symmelric.

Proor. Sufficiency is evident since ¢;=7,. If 3 is not symmetric
then for some 755 t;;=1 while ¢;;=0. By Theorems 2 and 3 ¢, Z¢;
and 7;27;, but since ¢;; =0 strict inequality holds in each case.

THEOREM 10. Among the symmelric topologies only the discrete is T,
and only the indiscrete is connected.

Proor. If ti;=t;;=1 and if 3 is T, then by Theorem 7 i=j. To
prove the latter statement, we may assume by Theorem 9 that the
column sum and row sum vectors are monotone. The least coordinate
in the column sum vector is ¢., and we assume that chn=k<n. If
tin=1 then B,=B, and T contains k identical columns each with 7 — &
zero entries. By Theorem 6 7 is not connected.

The following corollary refers to different, although possibly
homeomorphic, topologies.

COROLLARY. If n>1 then the number of different T, topologies is
odd, the number of different connected topologies is odd, and the number
of connected T topologies is even [6].

| 3. If nis 3 the frivial topologies (discrete and indiscrete) corre-
pond, respectively, to the matrices

|’1 0 O'I 1 1 1
010 and 11 1/
I_O 0 lJ IJ 11

It is evident that the extreme values of 7, in general, are n and n?;
but it is not the case that all intermediate values are possible.

THEOREM 11. If 3 is nontrivial then n <7 <n®—n-+1.

Proor. Only the right-hand part of the inequality is in question.
Suppose for some 747 £;;=0. Then for each k such that £ and k#j
either £, =0 or £;=0.

A little more than 10 years ago R. L. Davis published a formula
(among others) for the number of nonisomorphic reflexive relations
on S [5]. The author is not aware of a formula enumerating the sub-
family of transitive relations. Such a formula, in addition to being
of value in logic and combinatorics, would answer the question: how
many:nonequivalent topologies are there on a finite set?
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For small # the preceding theory can be used to good advantage in
the enumeration problem. Though the method lacks subtlety, it is
not impossibly tedious for <5, even without the assistance of a
digital computer. In Table 1, “t” denotes the number of nonequiva-
lent topologies on .S, “tc” denotes the number that are connected, “t0”
denotes the number that are Ty, “tco” denotes the number that are
both connected and 7%, and “/s” denotes the number that are sym-
metric. Figure 1 displays matrices corresponding to all nonequivalent
topologies for n=3 and n=4.

(N3 e S S e

/] ts

tc

2 2
6 S
21 16
94 63

FiGure 1

100 100 110 100 100 110 111
110 110 110 010 111 110 111
001 101 001 111 111 111 111

1000 1000 1100
1100 0100 1100
1010 1110 0010 .
0001 0001 0011

1000 1000 1100
1100 0100 ) 1100
1010 0010 1110
1001 1111 0001

1000 1000 1000
1100 1100 ’ 1110
0010 1010 ~ 1110
1111 1111 1001

1000 1100 1000
1100 1100 1100
1110 1110 1111
1111 1101 1111

1100 1000
1100 1111
1111 1111
1111 1nn
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A CHARACTERIZATION OF THE DIFFERENTIABLE
SUBMANIFOLDS OF R

SAM B. NADLER, JR.

1. Introduction. It is known [3, p. 49] that any class C! differenti-
able submanifold of R*is a (class C') differentiable neighborhood re-
tract. In this paper we prove that the subsets of R which are class
C! neighborhood retracts (of connected open sets) are precisely the
class C! differentiable submanifolds of R*. In particular, Theorem 1
shows that the range of a class C! retraction is a class C' submanifold.

2. If Sis a linear transformation on R*, then rank (S) is the di-
mension of the range space of S.

LemMA 1. If Cis a connected set of idempotent linear transformations
(1.e. projections) on R™ and if S, T&C, then rank (S) =rank (7).

Proor. Let Mn denote the set of all real n X7 matrices and let
Tr: Mn—R be the trace operator, ie., Tr(d)= Z;Ll a;; where
A =(ay). It is easily verified that Tr is continuous on Mz and an
invariant of similarity class [2, p. 96]. Suppose that 4 & Mn is an
idempotent. Then A4 is similar to a matrix B =(b;;) such that b;;=1
for 1<i<rank (4) and b;;=0 otherwise. Hence, Tr(4)=Tr(B)
=Y =k My =rank (4). Letting the trace of a linear operator be
the trace of any matrix representation, it follows that the trace o
any member of C is its rank and, therefore, that Tr is constant on C.
Hence, Tr(S) =Tr(7), i.e., rank (S) =rank (7).

If S and T are projections having the same rank r, then there is an
arc of projections of rank 7 joining S and 7. It now follows from
Lemma 1 that, in the space of linear transformations on R*, there are
precisely n+1 components of idempotent linear transformations, two
idempotents being in the same component if and only if they have
the same rank.

The proof of the next lemma may be found in [1, pp. 273-276].

LEMMA 2 (RANK THEOREM). Let E be an n-dimensional space, F an
m-dimensional space, A an open neighborhood of a point e EE, [ a
continuously differentiable mapping of A into F, such that in A the
rank of f'(x) 1is a constant number p. Then there exists

1. an open neighborhood U C A of a, and a homeomorphism pu of U
onto the open unit n-cube I"= {(xl, Xy, - - 0, Xn) ER™: x.-| <1 for
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