login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005145
n copies of n-th prime.
8
2, 3, 3, 5, 5, 5, 7, 7, 7, 7, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31
OFFSET
1,1
COMMENTS
Seen as a triangle read by rows: T(n,k) = A000040(n), 1 <= k <= n; row sums = A033286; central terms = A031368. - Reinhard Zumkeller, Aug 05 2009
Seen as a square array read by antidiagonals, a subtable of the binary operation multiplication tables A297845, A306697 and A329329. - Peter Munn, Jan 15 2020
REFERENCES
Douglas Hofstadter, "Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought", Basic Books, 1995.
LINKS
FORMULA
From Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006: (Start)
a(n) = prime(floor(1/2 + sqrt(2*n))).
a(n) = A000040(A002024(n)). (End)
From Peter Munn, Jan 15 2020: (Start)
When viewed as a square array A(n,k), the following hold for n >= 1, k >= 1:
A(n,k) = prime(n+k-1).
A(n,1) = A(1,n) = prime(n), where prime(n) = A000040(n).
A(n+1,k) = A(n,k+1) = A003961(A(n,k)).
A(n,k) = A297845(A(n,1), A(1,k)) = A306697(A(n,1), A(1,k)) = A329329(A(n,1), A(1,k)).
(End)
Sum_{n>=1} 1/a(n)^2 = A097906. - Amiram Eldar, Aug 16 2022
EXAMPLE
Triangle begins:
2;
3, 3;
5, 5, 5;
7, 7, 7, 7;
...
MATHEMATICA
Table[Prime[Floor[1/2 + Sqrt[2*n]]], {n, 1, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *)
Flatten[Table[Table[Prime[n], {n}], {n, 12}]] (* Alonso del Arte, Jan 18 2012 *)
Table[PadRight[{}, n, Prime[n]], {n, 15}]//Flatten (* Harvey P. Dale, Feb 29 2024 *)
PROG
(Haskell)
a005145 n k = a005145_tabl !! (n-1) !! (k-1)
a005145_row n = a005145_tabl !! (n-1)
a005145_tabl = zipWith ($) (map replicate [1..]) a000040_list
a005145_list = concat a005145_tabl
-- Reinhard Zumkeller, Jul 12 2014, Mar 18 2011, Oct 17 2010
(PARI) a(n) = prime(round(sqrt(2*n))) \\ Charles R Greathouse IV, Oct 23 2015
(Magma) [NthPrime(Round(Sqrt(2*n))): n in [1..60]]; // Vincenzo Librandi, Jan 18 2020
(Python)
from sympy import primerange
a = []; [a.extend([pn]*n) for n, pn in enumerate(primerange(1, 32), 1)]
print(a) # Michael S. Branicky, Jul 13 2022
CROSSREFS
Sequences with similar definitions: A002024, A175944.
Cf. A000040 (range of values), A003961, A031368 (main diagonal), A033286 (row sums), A097906.
Subtable of A297845, A306697, A329329.
Sequence in context: A053046 A261179 A066658 * A280740 A156350 A076367
KEYWORD
nonn,nice,tabl
AUTHOR
STATUS
approved