login
A033437
Number of edges in 5-partite Turán graph of order n.
16
0, 0, 1, 3, 6, 10, 14, 19, 25, 32, 40, 48, 57, 67, 78, 90, 102, 115, 129, 144, 160, 176, 193, 211, 230, 250, 270, 291, 313, 336, 360, 384, 409, 435, 462, 490, 518, 547, 577, 608, 640, 672, 705, 739, 774, 810, 846, 883, 921, 960, 1000, 1040, 1081, 1123, 1166, 1210, 1254
OFFSET
0,4
COMMENTS
Apart from the initial term this is the elliptic troublemaker sequence R_n(1,5) (also sequence R_n(4,5)) in the notation of Stange (see Table 1, p. 16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 12 2013
REFERENCES
R. L. Graham et al., eds., Handbook of Combinatorics, Vol. 2, p. 1234.
LINKS
Kevin Beanland, Hung Viet Chu, and Carrie E. Finch-Smith, Generalized Schreier sets, linear recurrence relation, Turán graphs, arXiv:2112.14905 [math.CO], 2021.
Eric Weisstein's World of Mathematics, Turán Graph
Wikipedia, Turán graph
FORMULA
G.f.: (x^5+x^4+x^3+x^2)/((1-x^5)*(1-x)^2).
a(n) = Sum_{k=0..n} A011558(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = floor( 2n^2/5 ). - Wesley Ivan Hurt, Jun 20 2013
a(n) = Sum_{i=1..n} floor(4*i/5). - Wesley Ivan Hurt, Sep 12 2017
MATHEMATICA
Table[Floor[2n^2/5], {n, 0, 60}]
PROG
(Magma) [2*n^2 div 5: n in [0..60]]; // Vincenzo Librandi, Apr 20 2015
(PARI) a(n)=2*n^2\5 \\ Charles R Greathouse IV, Apr 20 2015
CROSSREFS
Elliptic troublemaker sequences: A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)).
Cf. A279169.
Sequence in context: A253620 A282731 A134919 * A338335 A226185 A310071
KEYWORD
nonn,easy,changed
STATUS
approved