login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058794
Row 3 of A007754.
16
2, 18, 52, 110, 198, 322, 488, 702, 970, 1298, 1692, 2158, 2702, 3330, 4048, 4862, 5778, 6802, 7940, 9198, 10582, 12098, 13752, 15550, 17498, 19602, 21868, 24302, 26910, 29698, 32672, 35838, 39202, 42770, 46548, 50542, 54758, 59202, 63880
OFFSET
0,1
COMMENTS
For n >= 2, a(n) is the number of ways a triangle with side length n-1 can be completely surrounded by diamonds. See illustrations in Links. - Craig Knecht, Oct 08 2024
FORMULA
a(n) = n^3 + 6*n^2 + 9*n + 2.
G.f.: 2*(1 + 5*x - 4*x^2 + x^3)/(1-x)^4. - Colin Barker, Jan 10 2012
a(n) = (n + 2)*(n^2 + 4*n + 1) = 2*A154560(n). - Bruno Berselli, Jan 10 2015
E.g.f.: (2 + 16*x + 9*x^2 + x^3)*exp(x). - G. C. Greubel, Nov 29 2018
MAPLE
seq(sum(n^2-3, k=1..n), n=2..40); # Zerinvary Lajos, Jan 28 2008
seq ((n^3)-3*n, n=2..40); # Zerinvary Lajos, Jun 17 2008
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {2, 18, 52, 110}, 40] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)
Table[n^3 + 6 n^2 + 9 n + 2, {n, 0, 40}] (* Bruno Berselli, Jan 10 2015 *)
PROG
(Magma) [n^3+6*n^2+9*n+2: n in [0..40]]; // Vincenzo Librandi, Sep 22 2016
(PARI) vector(40, n, n--; n^3+6*n^2+9*n+2) \\ G. C. Greubel, Nov 29 2018
(Sage) [(n^3+6*n^2+9*n+2) for n in range(40)] # G. C. Greubel, Nov 29 2018
(GAP) List([0..40], n -> n^3+6*n^2+9*n+2); # G. C. Greubel, Nov 29 2018
CROSSREFS
Sequence in context: A077591 A050808 A058653 * A114109 A085293 A119118
KEYWORD
nonn,easy
AUTHOR
Christian G. Bower, Dec 02 2000
STATUS
approved