login
A085288
Number of sorted multiplicative partitions of n!.
4
1, 1, 3, 3, 10, 10, 30, 75, 220, 220, 588, 588, 1568, 3696, 11616, 11616, 30492, 30492, 84700, 173250, 441000, 441000, 1262520, 2777544, 6957720, 16731660, 43506760, 43506760, 98658000, 98658000, 277101000, 541886400, 1322481600, 2715495552
OFFSET
2,3
COMMENTS
Number of decompositions of n! into factors of the form (p_k)^(e^k).
LINKS
Eric Weisstein's World of Mathematics, Alladi-Grinstead Constant
FORMULA
a(n) = A000688(n!) = A000688(A000142(n)). - Vladeta Jovovic, Jun 27 2003
EXAMPLE
4! = 3*8 = 2*3*4 = 2*2*2*3, so a(4)=3.
5! = 3*5*8 = 2*3*4*5 = 2*2*2*3*5, so a(5)=3.
MATHEMATICA
f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger[ n!]; Array[f, 34, 2] (* Robert G. Wilson v, Sep 22 2006 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Eric W. Weisstein, Jun 23 2003
EXTENSIONS
More terms from Vladeta Jovovic, Jun 27 2003
STATUS
approved