OFFSET
1,1
COMMENTS
Using a sieve, these primes can be generated quickly. In the set of primes < 10^9, the density of these primes is about 1/10. It is easy to show that this sequence contains all "safe" primes (A005385).
Primes p such that 6p is the denominator of some Bernoulli number. - T. D. Noe, Sep 26 2006
Except for 5 and 7, primes p such that 12p is the denominator of B(p - 1)/(p - 1) where B(n) is the Bernoulli number. [Peter Luschny, Dec 24 2008]
Primes p such that A027642(p-1) = 6p. Composites m such that A027642(m-1) = 6m are Carmichael numbers 310049210890163447, 18220439770979212619, ... - Amiram Eldar and Thomas Ordowski, May 26 2021
LINKS
T. D. Noe, Table of n, a(n) for n=1..1000
P. Luschny, Von Staudt prime number, definition and computation. [From Peter Luschny, Dec 24 2008]
FORMULA
Let h(x) = 12x(x + log(exp(-x) -1) - log(x)) and [x^n]S(h) denote the coefficient of x^n in the series expansion of h. Consider for n > 1 the relation n = denominator((n - 1)![x^n]S(h)). [Peter Luschny, Dec 24 2008]
EXAMPLE
11 is in the sequence because 10 is not a multiple of either 4 or 6.
13 is not in the sequence because, although 12 is not a multiple of 6 or 10, it is a multiple of 4.
MAPLE
For p>7: seq(`if`(denom(bernoulli(n-1)/(n-1))=12*n, n, NULL), n=2..500); # Peter Luschny, Dec 24 2008
MATHEMATICA
t = Table[p = Prime[n]; Length[Select[Divisors[p - 1] + 1, PrimeQ]], {n, 311}]; Prime[Flatten[Position[t, 3]]]
npqQ[n_]:=NoneTrue[Prime[Range[3, PrimePi[n]-1]], Mod[n-1, #-1]==0&]; Select[ Prime[ Range[3, 400]], npqQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 26 2019 *)
PROG
(Perl) use ntheory ":all"; forprimes { say if (bernfrac($_-1))[1] == 6*$_ } 1000; # Dana Jacobsen, Dec 29 2015
(Perl) use ntheory ":all"; forprimes { my $p=$_; say if vecnone { $_ > 3 && $_ < $p-1 && is_prime($_+1) } divisors($p-1); } 5, 1000; # Dana Jacobsen, Dec 29 2015
CROSSREFS
Cf. A090801 (distinct numbers appearing as denominators of Bernoulli numbers)
Cf. A092308 (for p=prime(n), the number of primes q such that q-1 divides p-1).
Cf. A005385 (primes p such that (p-1)/2 is also prime).
Cf. A152951. [From Peter Luschny, Dec 24 2008]
KEYWORD
nonn
AUTHOR
T. D. Noe, Feb 12 2004
STATUS
approved