login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of the coefficients in the Taylor expansion of sec(x) + tan(x) around x=0.
11

%I #44 Oct 07 2019 02:40:20

%S 1,1,1,1,5,2,61,17,277,62,50521,1382,540553,21844,199360981,929569,

%T 3878302429,6404582,2404879675441,443861162,14814847529501,

%U 18888466084,69348874393137901,113927491862,238685140977801337,58870668456604,4087072509293123892361

%N Numerators of the coefficients in the Taylor expansion of sec(x) + tan(x) around x=0.

%H Seiichi Manyama, <a href="/A099612/b099612.txt">Table of n, a(n) for n = 0..487</a>

%H L. Euler, <a href="http://arXiv.org/abs/math.HO/0506415">On the sums of series of reciprocals</a>, par. 13, arXiv:math/0506415 [math.HO], 2005-2008.

%H L. Euler, <a href="http://eulerarchive.maa.org/pages/E041.html">De summis serierum reciprocarum</a>, E41, par. 13, Euler Archive.

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostBernoulliNumbers#Formulas_for_Euler.27s_Zeta_numbers">The Euler-Bernoulli diamond and the lost Bernoulli numbers</a>.

%F Let R(x) = (-1)^floor(x/2)*(4^(x+1)-2^(x+1))*((HurwitzZeta(-x,3/4) - HurwitzZeta(-x,1/4)) /(2^(-x)-2)-Zeta(-x))/Gamma(x+1) then a(n) = numerator(R(n)) and A099617(n) = denominator(R(n)) for n>=1. - _Peter Luschny_, Aug 25 2015

%F Let F(x,t) = exp(-I*t*x)*(1+(exp(exp(I*t))-1)/(exp(2*exp(I*t))+1)) and r(x) = ((cos(x*Pi/2)+sin(x*Pi/2))/Pi)*Integral_{t=0..2*Pi} F(x,t) then a(n) = numerator(r(n)) and A099617(n) = denominator(r(n)) for n>=1. - _Peter Luschny_, Aug 25 2015

%F a(n)/A099617(n) = A000111(n)/n!. - _Seiichi Manyama_, Jan 27 2017

%F From _Peter Luschny_, Aug 03 2017: (Start)

%F a(n) = numerator(2*i^(n+1)*PolyLog(-n, -i)/n!) for n>0.

%F a(n) = numerator(2^n*|Euler(n,1/2) - Euler(n,1)|/n!) for n>0 where Euler(n,x) are the Euler polynomials. (End)

%F Conjecture: For n >= 0, (-1)^n * a(n+1) is the numerator of the n-th term of the Taylor expansion of 1/(1 + sin(x)) around x = 0. [This is based on the fact that (sec(x) + tan(x))' = 1/(1 + sin(-x)). _Clark Kimberling_ in A279107 states my conjecture as a fact, but no proof or reference is given.] - _Petros Hadjicostas_, Oct 06 2019

%e 1 + x + 1/2*x^2 + 1/3*x^3 + 5/24*x^4 + 2/15*x^5 + 61/720*x^6 + 17/315*x^7 + ...

%e 1, 1, 1/2, 1/3, 5/24, 2/15, 61/720, 17/315, 277/8064, 62/2835, 50521/3628800, 1382/155925, 540553/95800320, ... = A099612/A099617

%p R := n -> (cos(n*Pi/2)+sin(n*Pi/2))*(4^(n+1)-2^(n+1))*((Zeta(0,-n,3/4)-Zeta(0,-n,1/4))/(2^(-n)-2)-Zeta(-n))/GAMMA(n+1):

%p [1, seq(numer(R(n)), n=1..19)]; # _Peter Luschny_, Aug 25 2015

%p # From _Peter Luschny_, Aug 03 2017: (Start) By recurrence:

%p S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else

%p S(n, k - 1) + S(n - 1, n - k) fi end: A099612 := n -> numer(S(n, n)/n!):

%p seq(A099612(n), n=0..26);

%p # or evaluating polynomials at -i:

%p P := proc(n, x) local k, j; add(add((-1)^j*2^(-k)*binomial(k,j)*(k-2*j)^n*

%p x^(n-k), j=0..k), k=0..n) end: R := n -> `if`(n = 0, 1, P(n-1, -I)/ n!):

%p seq(numer(R(n)), n=0..26);

%p # or with the Euler polynomials:

%p ep := n -> `if`(n=0,1,2^n*(euler(n,1/2)-euler(n,1))*(-1)^iquo(n+1,2)):

%p a := n -> numer(ep(n)/n!): seq(a(n), n=0..26); # (End)

%t nn = 26; Numerator[CoefficientList[Series[Sec[x] + Tan[x], {x, 0, nn}], x]] (* _T. D. Noe_, Jul 24 2013 *)

%t Table[If[n==0,1,2 I^(n+1) PolyLog[-n, -I] / n!], {n,0,26}] // Numerator (* _Peter Luschny_, Aug 03 2017 *)

%t Table[(1 + Mod[n,2])LerchPhi[(-1)^(n+1), n+1, 1/2]/Pi^(n+1), {n, 0, 26}] // Numerator (* _Peter Luschny_, Aug 03 2017 *)

%Y Cf. A000111, A099617, A279107.

%K nonn,frac

%O 0,5

%A _N. J. A. Sloane_, Nov 18 2004