login
A100961
For a decimal string s, let f(s) = decimal string ijk, where i = number of even digits in s, j = number of odd digits in s, k=i+j (see A171797). Start with s = decimal expansion of n; a(n) = number of applications of f needed to reach the string 123.
6
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 2, 1, 2
OFFSET
0,1
COMMENTS
Obviously if the digits of m and n have the same parity then a(m) = a(n). E.g. a(334) = a(110). In other words, a(n) = a(A065031(n)).
It is easy to show that (i) the trajectory of every number under f eventually reaches 123 (if s has more than three digits then f(s) has fewer digits than s) and (ii) since each string ijk has only finitely many preimages, a(n) is unbounded.
LINKS
EXAMPLE
n=0: s=0 -> f(s) = 101 -> f(f(s)) = 123, stop, a(0) = 2.
n=1: s=1 => f(s) = 011 -> f(f(s)) = 123, stop, f(1) = 2.
CROSSREFS
A073054 gives another version. f(n) is (essentially) A171797 or A073053.
Sequence in context: A067394 A337301 A076925 * A263206 A230501 A287272
KEYWORD
nonn,easy,base
AUTHOR
N. J. A. Sloane, Jun 17 2005
EXTENSIONS
More terms from Zak Seidov, Jun 18 2005
STATUS
approved