login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112021
Number of partitions of n into Chen primes.
5
0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 30, 35, 40, 46, 52, 60, 67, 77, 87, 98, 111, 124, 140, 157, 175, 197, 219, 244, 272, 302, 336, 372, 412, 456, 503, 556, 613, 675, 742, 816, 896, 983, 1078, 1180, 1291, 1411, 1542, 1683, 1836, 2001, 2178
OFFSET
1,5
COMMENTS
a(n) = A000607(n) for n <= 42.
LINKS
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^A109611(k)). - Andrew Howroyd, Dec 28 2017
MATHEMATICA
fQ[n_] := PrimeQ@n && (PrimeQ[n + 2] || 2 == Plus @@ Last /@ FactorInteger[n + 2]); f[n_] := Block[{c = k = 0, l = PartitionsP@n, p = Union /@ IntegerPartitions@n}, While[k++; k < l, If[Union[fQ /@ p[[k]]] == {True}, c++ ]]; c]; lst = {}; Do[ AppendTo[lst, f[n]], {n, 61}]; lst (* or *)
Rest@ CoefficientList[ Series[1/Times @@ (1 - x^Select[ Range@100, fQ@# &]), {x, 0, 61}], x] (* Robert G. Wilson v, Jun 16 2006 *)
PROG
(PARI)
ok(n)={isprime(n) && bigomega(n+2)<3}
{my(n=80); Vec(prod(k=1, n, if(ok(k), 1/(1-x^k) + O(x*x^n), 1))-1, -n)} \\ Andrew Howroyd, Dec 28 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 26 2005
STATUS
approved