login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118793
Triangle where T(n,k) = -n!/(n-k)!*[x^k] ( x/log(1-x-x^2) )^(n+1), for n>=k>=0, read by rows.
3
1, -1, 3, 1, -9, 19, -1, 18, -103, 207, 1, -30, 325, -1605, 3211, -1, 45, -785, 6930, -32191, 64383, 1, -63, 1610, -22050, 175861, -790629, 1581259, -1, 84, -2954, 57750, -693861, 5216778, -22974463, 45948927, 1, -108, 4998, -131922, 2213211, -24542910, 177555925, -770820885, 1541641771
OFFSET
0,3
COMMENTS
[0, diagonal] = A052886 with e.g.f.: (1-sqrt(5-4*exp(x)))/2. [0, row sums] = A118794 with e.g.f.: 1-exp((-1+sqrt(5-4*exp(x)))/2). [0, unsigned row sums] = A118795 with e.g.f.: -1+exp((1-sqrt(5-4*exp(x)))/2). Here [0, sequence] indicates that the sequence is to be offset with leading zero.
EXAMPLE
Triangle begins:
1;
-1, 3;
1,-9, 19;
-1, 18,-103, 207;
1,-30, 325,-1605, 3211;
-1, 45,-785, 6930,-32191, 64383;
1,-63, 1610,-22050, 175861,-790629, 1581259;
-1, 84,-2954, 57750,-693861, 5216778,-22974463, 45948927; ...
which is formed from the powers of F(x) = x/log(1-x-x^2):
F(x)^1 = (-1) + 3/2*x - 11/12*x^2 + 9/8*x^3 - 641/720*x^4 +...
F(x)^2 = ( 1 - 3*x) + 49/12*x^2 - 5*x^3 + 1439/240*x^4 +...
F(x)^3 = (-1 + 9/2*x - 19/2*x^2) + 15*x^3 - 5161/240*x^4 +...
F(x)^4 = ( 1 - 18/3*x + 103/6*x^2 - 207/6*x^3) + 42239/720*x^4 +...
F(x)^5 = (-1 + 30/4*x - 325/12*x^2 + 1605/24*x^3 - 3211/24*x^4) +...
PROG
(PARI) {T(n, k)=local(x=X+X^2*O(X^(k+2))); -n!/(n-k)!*polcoeff(((x/log(1-x-x^2)))^(n+1), k, X)}
CROSSREFS
Cf. A052886 (diagonal), A118794 (row sums), A118795 (unsigned row sums); A118791 (variant).
Sequence in context: A111568 A209324 A121489 * A247231 A160568 A157403
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Apr 30 2006
STATUS
approved