login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128816
Number of partitions of an n-element set avoiding the pattern 12|3.
0
1, 1, 2, 4, 8, 19, 53, 160, 512, 1753, 6431, 25072, 103022, 444145, 2004281, 9447784, 46407476, 236950873, 1254862955, 6880495528, 38999582018, 228195894313, 1376543144453, 8550048509440, 54619642413848, 358490894378881, 2415134218161767, 16686051606437104
OFFSET
0,3
LINKS
A. M. Goyt, Avoidance of partitions of a 3-element set, arXiv:math/0603481 [math.CO], 2006-2007
FORMULA
a(0)=1, a(1)=1, a(n) = 1 + a(n-1) + Sum_{k=1..n-2} binomial(n-2, k)*a(n-k-2).
The e.g.f. satisfies the differential equation y'' = y' + y(e^x-1) + e^x.
CROSSREFS
Sequence in context: A269023 A173310 A320178 * A006897 A287025 A034767
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 08 2007
STATUS
approved