login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140998
Triangle G(n, k), read by rows, for 0 <= k <= n, where G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, and G(n+3, m) = G(n+1, m-1) + G(n+1, m) + G(n+2, m) for n >= 0 and m = 1..n+1.
24
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 7, 5, 2, 1, 1, 12, 11, 5, 2, 1, 1, 20, 23, 12, 5, 2, 1, 1, 33, 46, 28, 12, 5, 2, 1, 1, 54, 89, 63, 29, 12, 5, 2, 1, 1, 88, 168, 137, 69, 29, 12, 5, 2, 1, 1, 143, 311, 289, 161, 70, 29, 12, 5, 2, 1, 1, 232, 567, 594, 367, 168, 70, 29, 12, 5, 2, 1
OFFSET
0,5
COMMENTS
From Petros Hadjicostas, Jun 10 2019: (Start)
According to the attached picture, the index of asymmetry here is s = 1 and the index of obliqueness (or obliquity) is e = 0.
In the picture, the equation G(n, e*n) = 1 becomes G(n, 0) = 1, while the equations G(n+x+1, n-e*n+e*x-e+1) = 2^x for 0 <= x < s = 1 become G(n+1, n+1) = 1 and G(n+2, n+1) = 2.
Also, in the picture, the recurrence G(n+s+2, k) = G(n+1, k-e*s+e-1) + Sum_{m=1..s+1} G(n+m, k-e*s+m*e-2*e) for k = 1..n+1 becomes G(n+3, k) = G(n+1, k-1) + G(n+1, k) + G(n+2, k) for k = 1..n+1.
Except for a shifting of the indices by 1, this array is a mirror image of array A140993. We have G(n, k) = A140993(n+1, n-k+1) for 0 <= k <= n. Triangular array A140993 has the same index of asymmetry (i.e., s = 1) but index of obliqueness e = 1.
(End)
FORMULA
From Petros Hadjicostas, Jun 10 2019: (Start)
G(n, k) = A140993(n+1, n-k+1) for 0 <= k <= n.
Let A(x,y) = Sum_{n,k >= 0} G(n, k)*x^n*y^k and B(x,y) = Sum_{n,k >= 1} A140993(n, k). Then A(x, y) = x^(-1) * B(x*y, y^(-1)). Thus, the g.f. of the current array is A(x, y) = (1 - x - x^2 + x^3*y)/((1 - x) * (1 - x*y) * (1 - x - x^2 - x^2*y)).
To find the g.f. of the k-th column (where k >= 0), we differentiate A(x, y) k times with respect to y, divide by k!, and substitute y = 0. For example, differentiating A(x, y) once w.r.t. y and setting y = 0, we get the g.f. of the k = 1 column: x/((1 - x)*(1 - x - x^2)). This is the g.f. of sequence (A000071(n+2): n >= 0) = (Fibonacci(n+2) - 1: n >= 0).
G.f. of column k = 2 is x^2*(1 - x + x^3)/((1 - x)*(1 - x - x^2)^2). Thus, column k = 2 is a shifted version of (A140992(n): n >= 0).
(End)
EXAMPLE
Triangle begins (with rows for n >= 0 and columns for k >= 0):
1;
1, 1;
1, 2, 1;
1, 4, 2, 1;
1, 7, 5, 2, 1;
1, 12, 11, 5, 2, 1;
1, 20, 23, 12, 5, 2, 1;
1, 33, 46, 28, 12, 5, 2, 1;
1, 54, 89, 63, 29, 12, 5, 2, 1;
1, 88, 168, 137, 69, 29, 12, 5, 2, 1;
1, 143, 311, 289, 161, 70, 29, 12, 5, 2, 1;
MATHEMATICA
G[n_, k_] := G[n, k] = Which[k==0 || k==n, 1, k==n-1, 2, True, G[n-2, k-1] + G[n-2, k] + G[n-1, k]]; Table[G[n, k], {n, 0, 12}, {k, 0, n}] (* Jean-François Alcover, Jun 09 2019 *)
PROG
(PARI) G(n, k) = if(k==0 || k==n, 1, if(k==n-1, 2, G(n-1, k) + G(n-2, k) + G(n-2, k-1)));
for(n=0, 12, for(k=0, n, print1(G(n, k), ", "))) \\ G. C. Greubel, Jun 09 2019
(Sage)
def G(n, k):
if (k==0 or k==n): return 1
elif (k==n-1): return 2
else: return G(n-1, k) + G(n-2, k) + G(n-2, k-1)
[[G(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 09 2019
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Indices in the definition corrected by R. J. Mathar, Aug 02 2009
Name edited by Petros Hadjicostas, Jun 10 2019
STATUS
approved