login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153644
a(n) = 4*n^2 + 28*n + 10.
1
42, 82, 130, 186, 250, 322, 402, 490, 586, 690, 802, 922, 1050, 1186, 1330, 1482, 1642, 1810, 1986, 2170, 2362, 2562, 2770, 2986, 3210, 3442, 3682, 3930, 4186, 4450, 4722, 5002, 5290, 5586, 5890, 6202, 6522, 6850, 7186, 7530, 7882, 8242, 8610, 8986, 9370
OFFSET
1,1
COMMENTS
Sequence gives values of x such that x^3 + 39x^2 = y^2 since a(n)^3 + 39*a(n)^2 = (8n^3 + 84n^2 + 216n + 70)^2.
a(n) = 2*(seventh diagonal to A153238).
About the first comment, naturally, the complete list of nonnegative values of x in x^3 + 39*x^2 = y^2 is given by x = m^2-39 with m>6. - Bruno Berselli, Jan 25 2012
FORMULA
From Colin Barker, Jan 24 2012: (Start)
a(1)=42, a(2)=82, a(3)=130, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*((3-x)*(7-5*x))/(1-x)^3. (End)
E.g.f.: 2*(-5 + (5 + 16*x + 2*x^2)*exp(x)). - G. C. Greubel, Aug 23 2016
Sum_{n>=1} 1/a(n) = 62/1995 + tan(sqrt(39)*Pi/2)*Pi/(4*sqrt(39)). - Amiram Eldar, Mar 02 2023
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {42, 82, 130}, 25] (* G. C. Greubel, Aug 23 2016 *)
Table[4n^2+28n+10, {n, 70}] (* Harvey P. Dale, Jan 15 2023 *)
PROG
(PARI) a(n)=4*n*(n+7)+10 \\ Charles R Greathouse IV, Jan 24 2012
(Magma) [4*n^2 + 28*n + 10: n in [1..50]]; // Vincenzo Librandi, Jan 25 2012
CROSSREFS
Sequence in context: A303283 A135850 A250381 * A172437 A160283 A325994
KEYWORD
nonn,easy,less
AUTHOR
Vincenzo Librandi, Dec 30 2008
STATUS
approved