OFFSET
1,1
EXAMPLE
a(1) = 3 = (1^2 + 2^3)/(1+2).
a(2) = 7 = (1^2 + 3^3)/(1+3) or (6^2 + 3^3)/(6+3).
a(3) = 13 = (1^2 + 4^3)/(1+4) or (12^2 + 4^3)/ (12+4).
a(4) = 31 = (1^2 + 6^3)/(1+6).
MAPLE
isA162869 := proc(p) local a, b ; if isprime(p) then for b from 1 to p do for d in numtheory[divisors](b^2*(b+1)) do a := d-b ; if a > 1 and (a^2+b^3)= p*(a+b) then RETURN(true); fi; od: od: RETURN(false) ; else false; fi; end:
for n from 1 do p := ithprime(n) ; if isA162869(p) then printf("%d, \n", p) ; fi; od: # R. J. Mathar, Sep 22 2009
MATHEMATICA
f[a_, b_]:=(a^2+b^3)/(a+b); lst={}; Do[Do[If[f[a, b]==IntegerPart[f[a, b]], If[a!=b&&PrimeQ[f[a, b]], AppendTo[lst, f[a, b]]]], {b, 4*6!}], {a, 4*6!}]; Take[Union[lst], 50]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Joseph Stephan Orlovsky, Jul 15 2009
EXTENSIONS
Comment turned into examples by R. J. Mathar, Sep 22 2009
STATUS
approved