login
A240844
Number of partitions of n into tribonacci numbers (cf. A000073).
6
1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 14, 16, 20, 23, 28, 32, 38, 43, 50, 56, 65, 73, 83, 92, 105, 116, 131, 144, 163, 178, 199, 217, 242, 263, 291, 316, 348, 377, 413, 447, 488, 527, 573, 617, 670, 720, 779, 835, 903, 966, 1041, 1112, 1198, 1277, 1371, 1460, 1566
OFFSET
0,3
EXAMPLE
a(6) = #{4+2, 4+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 6x1} = 6;
a(7) = #{7, 4+2+1, 4+1+1+1, 2+2+2+1, 2+2+1+1+1, 2+1+1+1+1+1, 7x1} = 7;
a(8) = #{7+1, 4+4, 4+2+2, 4+2+1+1, 4+1+1+1+1, 2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 2+6x1, 8x1} = 10;
a(9) = #{7+2, 7+1+1, 4+4+1, 4+2+2+1, 4+2+1+1+1, 4+5x1, 2+2+2+2+1, 2+2+2+1+1+1, 2+2+5x1, 2+7x1, 9x1} = 11;
a(10) = #{7+2+1, 7+1+1+1, 4+4+2, 4+4+1+1, 4+2+2+2, 4+2+2+1+1, 4+2+1+1+1+1, 4+6x1, 5x2, 2+2+2+2+1+1, 2+2+2+1+1+1+1, 2+2+6x1, 2+8x1, 10x1} = 14.
PROG
(Haskell)
a240844 = p $ drop 3 a000073_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
CROSSREFS
Cf. A117546.
Sequence in context: A319402 A319403 A029008 * A136343 A161254 A241313
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 13 2014
STATUS
approved