OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 25*x^3 + 499*x^4 + 18897*x^5 + 1158175*x^6 +...
The logarithmic derivative equals the series:
A'(x)/A(x) = 1/(1-x) + 2!*2*x/((1-x)*(1-2*x)) + 3!*3^2*x^2/((1-x)*(1-2*x)*(1-3*x)) + 4!*4^3*x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) + 5!*5^4*x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) +...
Explicitly, the logarithm of the o.g.f. begins:
log(A(x)) = x + 5*x^2/2 + 67*x^3/3 + 1889*x^4/4 + 91771*x^5/5 + 6828545*x^6/6 + 721578187*x^7/7 + 102730470449*x^8/8 +...
PROG
(PARI) {a(n)=polcoeff(exp(intformal(sum(m=1, n+1, m!*m^(m-1)*x^(m-1)/prod(k=1, m, 1-k*x+x*O(x^n))))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 05 2014
STATUS
approved