login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255528
G.f.: Product_{k>=1} 1/(1+x^k)^k.
28
1, -1, -1, -2, 1, 0, 4, 2, 8, -2, 4, -11, -1, -25, -5, -35, 13, -26, 49, -6, 110, 6, 159, -23, 182, -141, 129, -358, 62, -640, 39, -897, 237, -1013, 771, -914, 1793, -664, 3143, -565, 4635, -1157, 5727, -3119, 6121, -7041, 5642, -13088, 5097, -20758, 5879
OFFSET
0,4
COMMENTS
In general, if m >= 1 and g.f. = Product_{k>=1} 1/(1 + x^k)^(m*k), then a(n, m) ~ (-1)^n * exp(-m/12 + 3 * 2^(-5/3) * m^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/18 - 5/6) * A^m * m^(1/6 - m/36) * Zeta(3)^(1/6 - m/36) * n^(m/36 - 2/3) / sqrt(3*Pi), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..5000 from Vaclav Kotesovec)
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 20.
FORMULA
a(n) ~ (-1)^n * A * Zeta(3)^(5/36) * exp(3*Zeta(3)^(1/3)*n^(2/3)/2^(5/3) - 1/12) / (2^(7/9) * sqrt(3*Pi) * n^(23/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Sep 29 2015
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A078306(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017
MAPLE
with(numtheory): A000219:=proc(n) option remember; if n = 0 then 1 else add(sigma[2](k)*A000219(n-k), k = 1..n)/n fi: end: A073592:=proc(n) option remember; if n = 0 then 1 else -add(sigma[2](k)*A073592(n-k), k = 1..n)/n fi: end: a:=proc(n); add(A073592(n-2*m)*A000219(m), m = 0..floor(n/2)): end: seq(a(n), n = 0..50); # Vaclav Kotesovec, Mar 09 2015
MATHEMATICA
nmax=100; CoefficientList[Series[Product[1/(1+x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) {a(n) = if(n<0, 0, polcoeff(exp(sum(k=1, n, (-1)^k * x^k / (1-x^k)^2 / k, x*O(x^n))), n))}
for(n=0, 100, print1(a(n), ", "))
CROSSREFS
Cf. A278710 (m=2), A279031 (m=3), A279411 (m=4), A279932 (m=5).
Sequence in context: A096794 A106375 A194734 * A201701 A131667 A322080
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Feb 24 2015
STATUS
approved