login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332382
If n = Sum (2^e_k) then a(n) = Product (prime(e_k + 2)).
3
1, 3, 5, 15, 7, 21, 35, 105, 11, 33, 55, 165, 77, 231, 385, 1155, 13, 39, 65, 195, 91, 273, 455, 1365, 143, 429, 715, 2145, 1001, 3003, 5005, 15015, 17, 51, 85, 255, 119, 357, 595, 1785, 187, 561, 935, 2805, 1309, 3927, 6545, 19635, 221, 663, 1105, 3315, 1547, 4641, 7735, 23205
OFFSET
0,2
COMMENTS
Permutation of odd squarefree numbers (A056911).
a(n) is the n-th power of 3 in the monoid defined in A331590. - Peter Munn, May 02 2020
FORMULA
G.f.: Product_{k>=0} (1 + prime(k+2) * x^(2^k)).
a(0) = 1; a(n) = prime(floor(log_2(n)) + 2) * a(n - 2^floor(log_2(n))).
a(2^(k-1)-1) = A002110(k)/2 for k > 0.
From Peter Munn, May 02 2020: (Start)
a(2n) = A003961(a(n)).
a(2n+1) = 3 * a(2n).
a(n) = A225546(4^n).
a(n+k) = A331590(a(n), a(k)).
a(n XOR k) = A059897(a(n), a(k)), where XOR denotes bitwise exclusive-or, A003987.
A048675(a(n)) = 2n.
(End)
a(n+1) = A334748(a(n)). - Peter Munn, Mar 04 2022
EXAMPLE
21 = 2^0 + 2^2 + 2^4 so a(21) = prime(2) * prime(4) * prime(6) = 3 * 7 * 13 = 273.
MAPLE
a:= n-> (l-> mul(ithprime(i+1)^l[i], i=1..nops(l)))(convert(n, base, 2)):
seq(a(n), n=0..55); # Alois P. Heinz, Feb 10 2020
MATHEMATICA
nmax = 55; CoefficientList[Series[Product[(1 + Prime[k + 2] x^(2^k)), {k, 0, Floor[Log[2, nmax]]}], {x, 0, nmax}], x]
a[0] = 1; a[n_] := Prime[Floor[Log[2, n]] + 2] a[n - 2^Floor[Log[2, n]]]; Table[a[n], {n, 0, 55}]
PROG
(PARI) a(n) = my(b=Vecrev(binary(n))); prod(k=1, #b, if (b[k], prime(k+1), 1)); \\ Michel Marcus, Feb 10 2020
CROSSREFS
Bisection of A019565.
A003961, A003987, A059897, A331590, A334748 are used to express relationship between terms of this sequence.
Sequence in context: A100181 A180620 A336882 * A277323 A340194 A353340
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 10 2020
STATUS
approved