login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344085
Triangle of squarefree numbers first grouped by greatest prime factor, then sorted by omega, then in increasing order, read by rows.
7
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 154, 165, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 182, 195, 273, 286, 429, 455, 715, 1001, 390, 546, 858, 910, 1365, 1430, 2002, 2145, 3003, 5005, 2730, 4290, 6006, 10010, 15015, 30030
OFFSET
1,2
COMMENTS
Differs from A339195 in having 77 before 66.
FORMULA
From Michael De Vlieger, Jan 03 2025: (Start)
a(n) = A019565(A187769(n-1)).
As an irregular triangle T(n,k), where row 0 = {1}:
For n > 1, k = 1..2^(n-1).
For n > 1, omega(T(n,1)) = 1, omega(T(n, 2^(n-1))) = n, thus row n is divided into n segments S such that with S, omega(T(n,k)) = m, where m = 1..n. (See A187769 for the lengths of segments associated with Pascal's triangle A007318.) (End)
EXAMPLE
Triangle begins:
1
2
3 6
5 10 15 30
7 14 21 35 42 70 105 210
From Michael De Vlieger, Jan 03 2025: (Start)
Table of a(n) for n = 1..32, demonstrating relationship of this sequence with s = A187769:
<-factors <-factors
n-1 a(n) 2 3 5 7 s(n) | n-1 a(n) 2 3 5 7 11 s(n)
-------------------------|----------------------------
0 1 . 0 | 16 11 . . . . x 16
1 2 x 1 | 17 22 x . . . x 17
2 3 . x 2 | 18 33 . x . . x 18
3 6 x x 3 | 19 55 . . x . x 20
4 5 . . x 4 | 20 77 . . . x x 24
5 10 x . x 5 | 21 66 x x . . x 19
6 15 . x x 6 | 22 110 x . x . x 21
7 30 x x x 7 | 23 154 x . . x x 22
8 7 . . . x 8 | 24 165 . x x . x 25
9 14 x . . x 9 | 25 231 . x . x x 26
10 21 . x . x 10 | 26 385 . . x x x 28
11 35 . . x x 12 | 27 330 x x x . x 23
12 42 x x . x 11 | 28 462 x x . x x 27
13 70 x . x x 13 | 29 770 x . x x x 29
14 105 . x x x 14 | 30 1155 . x x x x 30
15 210 x x x x 15 | 31 2310 x x x x x 31
-------------------------|----------------------------
1 2 4 8 s(n) | 1 2 4 8 16 s(n)
bits-> bits-> (End)
MATHEMATICA
nn=4;
GatherBy[SortBy[Select[Range[Times@@Prime/@Range[nn]], SquareFreeQ[#]&&PrimePi[FactorInteger[#][[-1, 1]]]<=nn&], PrimeOmega], FactorInteger[#][[-1, 1]]&]
(* Second, faster program: *)
With[{m = 8},
Map[SortBy[#, PrimeNu] &,
TakeList[
Array[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &,
Reverse@ IntegerDigits[#, 2]] &, 2^m, 0],
{1}~Join~(2^Range[0, m - 1] ) ] ] ] // Flatten (* Michael De Vlieger, Jan 03 2025 *)
KEYWORD
nonn,tabf,changed
AUTHOR
Gus Wiseman, May 11 2021
STATUS
approved