login
Search: a008892 -id:a008892
     Sort: relevance | references | number | modified | created      Format: long | short | data
Length of aliquot sequence for n, or -1 if aliquot sequence never cycles.
+0
39
2, 3, 3, 4, 3, 1, 3, 4, 5, 5, 3, 8, 3, 6, 6, 7, 3, 5, 3, 8, 4, 7, 3, 6, 2, 8, 4, 1, 3, 16, 3, 4, 7, 9, 4, 5, 3, 8, 4, 5, 3, 15, 3, 6, 8, 9, 3, 7, 5, 4, 5, 10, 3, 14, 4, 6, 4, 5, 3, 12, 3, 10, 4, 5, 4, 13, 3, 6, 5, 7, 3, 10, 3, 6, 6, 6, 4, 12, 3, 8, 6, 7, 3, 7, 4, 10, 8, 8, 3, 11, 5, 7, 5, 5, 3, 10, 3, 4, 5, 6
OFFSET
1,1
COMMENTS
The aliquot sequence for n is the trajectory of n under repeated application of the map x -> sigma(x) - x (= A001065).
The trajectory will either have a transient part followed by a cyclic part, or will have an infinite transient part and never cycle. It seems possible that this be the case for 276, i.e., a(276) = -1.
Sequence gives number of distinct terms in the trajectory = (length of transient part of trajectory) + (length of cycle (which is 1 if the trajectory reached 0)), or -1 if the sequence never cycles.
Concerning one of the previously unsolved cases, Robert G. Wilson v reports that 840 reaches 0 after 749 iterations. - Sep 10 2004
Up to 1000 there are 12 numbers whose fate is currently unknown, namely five well-known hard cases: 276, 552, 564, 660, 966 and seven others: 306, 396 and 696, all on same trajectory as 276; 780, on same trajectory as 564; 828, on same trajectory as 660; 888, on same trajectory as 552; 996, on same trajectory as 660. - T. D. Noe, Jun 06 2006
The sum-of-divisors function sigma (A000203) and thus aliquot parts A001065 are defined only on the positive integers, so the trajectory ends when 0 is reached. Some authors define A001065 to be the sum of the positive numbers less than n that divide n, in which case one would have A001065(0) = 0. - M. F. Hasler, Nov 16 2013
REFERENCES
K. Chum, R. K. Guy, M. J. Jacobson, Jr., and A. S. Mosunov, Numerical and statistical analysis of aliquot sequences. Exper. Math. 29 (2020), no. 4, 414-425; arXiv:2110.14136, Oct. 2021 [math.NT].
J.-P. Delahaye, Les inattendus mathématiques, Chapter 19, "Nombres amiables et suites aliquotes", pp. 217-229, Belin-Pour la Science, Paris 2004.
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
R. K. Guy, Unsolved Problems in Number Theory, B6.
R. K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.
Carl Pomerance, The aliquot constant, after Bosma and Kane, Q. J. Math. 69 (2018), no. 3, 915-930.
LINKS
T. D. Noe and N. J. A. Sloane, Table of n, a(n) for n = 1..275
Christophe Clavier, Aliquot Sequences
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 14.
Juan L. Varona, List of "primitive" numbers not known to terminate (Oct 19 2004: list begins 276, 552, 564, 660, 966, 1074, 1134, 1464, 1476, 1488, 1512, 1560, 1578, 1632, 1734, 1920, 1992, ...) [This is not the full list of numbers not known to terminate - see Comments above]
Eric Weisstein's World of Mathematics, Aliquot Sequence.
Wikipedia, Aliquot sequence
P. Zimmermann, Aliquot Sequences
EXAMPLE
Examples of trajectories:
1, 0.
2, 1, 0.
3, 1, 0. (and similarly for any prime)
4, 3, 1, 0.
5, 1, 0.
6, 6, 6, ... (and similarly for any perfect number)
8, 7, 1, 0.
9, 4, 3, 1, 0.
12, 16, 15, 9, 4, 3, 1, 0.
14, 10, 8, 7, 1, 0.
25, 6, 6, 6, ...
28, 28, 28, ... (the next perfect number)
30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0.
42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0.
MAPLE
f:=proc(n) local t1, i, j, k; t1:=[n]; for i from 2 to 50 do j:= t1[i-1]; k:=sigma(j)-j; t1:=[op(t1), k]; od: t1; end; # produces trajectory for n
# 2nd implementation:
A098007 := proc(n)
local trac, x;
x := n ;
trac := [x] ;
while true do
x := numtheory[sigma](x)-trac[-1] ;
if x = 0 then
return 1+nops(trac) ;
elif x in trac then
return nops(trac) ;
end if;
trac := [op(trac), x] ;
end do:
end proc:
seq(A098007(n), n=1..100) ; # R. J. Mathar, Oct 08 2017
MATHEMATICA
g[n_] := If[n > 0, DivisorSigma[1, n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; Table[ Length[ f[n]] - 1, {n, 100}] (* Robert G. Wilson v, Sep 10 2004 *)
PROG
(Scheme)
(define (A098007 n) (let loop ((visited (list n)) (i 1)) (let ((next (A001065 (car visited)))) (cond ((zero? next) (+ 1 i)) ((member next visited) i) (else (loop (cons next visited) (+ 1 i)))))))
(define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
;; Antti Karttunen, Nov 01 2017
(PARI) apply( {A098007(n, t=0)=until(bittest(t, if(n, n=sigma(n)-n)), t+=1<<n); hammingweight(t)}, [1..99]) \\ M. F. Hasler, Feb 24 2018, improved Aug 14 2022 thanks to a remark from Jianing Song
(Python)
from sympy import divisor_sigma as sigma
def a(n, limit=float('inf')):
alst = []; seen = set(); i = n; c = 0
while i and i not in seen and c < limit:
alst.append(i); seen.add(i); i = sigma(i) - i; c += 1
return "NA" if c == limit else len(set(alst + [i]))
print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Jul 11 2021
CROSSREFS
Cf. A001065.
There are many related sequences:
Length of transient part + length of cycle: this sequence. Other versions of the current sequence: A044050, A003023.
Length of transient part: A098008, also A007906. Records for transients: A098009, A098010.
Numbers which eventually reach 1 (or equivalently 0): A080907.
Aliquot trajectories for certain interesting starting values: A008885 (for 30), A008886 A008887 A008888 A008889 A008890 A008891 A008892 (for 276), A014360 A014361 A074907 A014362 A045477 A014363 A014364 A014365 A074906, A171103.
For n < 220, A098008 = A098007 - 1, i.e., 220 is the first sociable number. - Robert G. Wilson v, Sep 10 2004
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Sep 09 2004
EXTENSIONS
More terms from Robert G. Wilson v and John W. Layman, Sep 10 2004
STATUS
approved
Length of transient part of aliquot sequence for n, or -1 if transient part is infinite.
+0
21
1, 2, 2, 3, 2, 0, 2, 3, 4, 4, 2, 7, 2, 5, 5, 6, 2, 4, 2, 7, 3, 6, 2, 5, 1, 7, 3, 0, 2, 15, 2, 3, 6, 8, 3, 4, 2, 7, 3, 4, 2, 14, 2, 5, 7, 8, 2, 6, 4, 3, 4, 9, 2, 13, 3, 5, 3, 4, 2, 11, 2, 9, 3, 4, 3, 12, 2, 5, 4, 6, 2, 9, 2, 5, 5, 5, 3, 11, 2, 7, 5, 6, 2, 6, 3, 9, 7, 7, 2, 10, 4, 6, 4, 4, 2, 9, 2, 3, 4, 5, 2, 18
OFFSET
1,2
COMMENTS
See A098007 for further information.
a(n) = 0 if and only if n is perfect (A000396) or part of a cycle of length greater than 1. - Comment corrected by Antti Karttunen, Nov 02 2017.
It is believed that the first time a(n) = -1 is at n = 276 (see A008892). - N. J. A. Sloane, Nov 02 2017
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B6.
R. K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.
LINKS
EXAMPLE
From Antti Karttunen, Nov 02 2017: (Start)
For n = 3, a(n) = 2, because A001065(3) = 1 and A001065(1) = 0, so it took two steps to end in zero.
For n = 25, a(n) = 1, because A001065(25) = 6, and A001065(6) = 6, so it took one step to enter into a cycle.
For n = 12496, a(n) = 0, because 12496 is a member of 5-cycle of map n -> A001065(n) (see A072891).
(End)
MATHEMATICA
g[n_] := If[n > 0, DivisorSigma[1, n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; Table[ Length[ f[n]] - 2, {n, 102}] (* good only for n<220 *) (* Robert G. Wilson v, Sep 10 2004 *)
PROG
(Scheme)
(define (A098008 n) (let loop ((visited (list n)) (i 1)) (let ((next (A001065 (car visited)))) (cond ((zero? next) i) ((member next visited) => (lambda (transientplus1) (- (length transientplus1) 1))) (else (loop (cons next visited) (+ 1 i))))))) ;; Good for at least n = 1..275.
(define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
;; Antti Karttunen, Nov 02 2017
CROSSREFS
Cf. A001065, A098007, A044050, A003023, A008892. See A007906 for another version.
Cf. A206708 (gives a proper subset of zeros).
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Sep 09 2004
EXTENSIONS
More terms from Robert G. Wilson v, Sep 10 2004
STATUS
approved
Aliquot sequence starting at 30.
+0
17
30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0
OFFSET
0,1
COMMENTS
The sum-of-divisor function A000203 and thus aliquot parts A001065 are defined only for positive integers, so the trajectory ends when 0 is reached, here at index 15. - M. F. Hasler, Feb 24 2018
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, B6.
FORMULA
a(n+1) = A001065(a(n)). - R. J. Mathar, Oct 11 2017
EXAMPLE
a(0) = 30.
30 has eight divisors, 1, 2, 3, 5, 6, 10, 15, 30, which add up to 72, and 72 - 30 = 42, so a(1) = 42.
MAPLE
f := proc(n) option remember; if n = 0 then 30; else sigma(f(n-1))-f(n-1); fi; end:
MATHEMATICA
NestList[If[# > 0, DivisorSigma[1, #] - #, 0] &, 30, 80] (* Harvey P. Dale, Jun 12 2012 *)
PROG
(PARI) a(n, a=30)=for(i=1, n, a=sigma(a)-a); a \\ M. F. Hasler, Feb 24 2018
KEYWORD
nonn,fini,full
AUTHOR
EXTENSIONS
Edited by M. F. Hasler, Feb 24 2018
STATUS
approved
Aliquot sequence starting at 138.
+0
9
138, 150, 222, 234, 312, 528, 960, 2088, 3762, 5598, 6570, 10746, 13254, 13830, 19434, 20886, 21606, 25098, 26742, 26754, 40446, 63234, 77406, 110754, 171486, 253458, 295740, 647748, 1077612, 1467588, 1956812, 2109796, 1889486, 953914, 668966, 353578, 176792
OFFSET
0,1
COMMENTS
The sum-of-divisor function A000203 and aliquot parts A001065 are defined only for positive integers, so the trajectory ends when 0 is reached, here at index 178. - M. F. Hasler, Feb 24 2018
Merges into sequence A008889 after the first step.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B6.
Enoch Haga, Exploring Prime Numbers on Your PC, 2nd ed., 1998, pages 83-84 and Table 8, page 46. ISBN 1-885794-16-9.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..178 (full sequence).
Christophe Clavier, Aliquot Sequences
Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
FORMULA
a(n) = A001065(a(n-1)) for n > 0, thus a(n) = A001065^n(138) for all n < 179. - M. F. Hasler, Nov 16 2013
a(n) = A008889(n-1) for all n >= 1. - M. F. Hasler, Feb 24 2018
MAPLE
f := proc(n) option remember; if n = 0 then 138; else sigma(f(n-1))-f(n-1); fi; end:
MATHEMATICA
FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, 138] // Most (* Jean-François Alcover, Mar 28 2020 *)
PROG
(PARI) a(n, a=138)={for(i=1, n, a=sigma(a)-a); a} \\ M. F. Hasler, Feb 24 2018
CROSSREFS
Cf. A008885 (starting at 30), ..., A008892 (starting at 276), A098007 (length of aliquot sequences).
KEYWORD
nonn,fini,full
AUTHOR
EXTENSIONS
Term 179 removed from b-file by Ivan Panchenko, Nov 16 2013
Edited by M. F. Hasler, Feb 24 2018
STATUS
approved
Aliquot sequence starting at 552.
+0
9
552, 888, 1392, 2328, 3552, 6024, 9096, 13704, 20616, 30984, 46536, 86904, 165816, 367704, 628356, 837836, 628384, 630356, 491884, 368920, 499400, 772840, 978650, 975652, 744248, 696712, 628628, 857836, 857892, 1472268
OFFSET
0,1
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B6.
LINKS
Tyler Busby, Table of n, a(n) for n = 0..1142 (terms 0..352 from T. D. Noe)
Christophe Clavier, Aliquot Sequences
Paul Zimmermann, Latest information
FORMULA
a(n+1) = A001065(a(n)). - R. J. Mathar, Oct 11 2017
MATHEMATICA
FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, 552, 100] (* Jean-François Alcover, Mar 28 2020 *)
PROG
(PARI) a(n, a=552)={for(i=1, n, a=sigma(a)-a); a} \\ M. F. Hasler, Feb 24 2018
CROSSREFS
Cf. A001065, A098007 (length of aliquot sequences).
Some other examples: A008885 (starting at 30) .. A008892 (starting at 276), A014361 (starting at 564) .. A014365 (starting at 1134), see link to index for a more complete list.
KEYWORD
nonn
STATUS
approved
Aliquot sequence starting at 1134.
+0
9
1134, 1770, 2550, 4146, 4158, 7362, 8628, 11532, 16272, 29670, 46362, 46374, 48666, 48678, 70362, 86118, 92058, 95622, 95634, 180846, 246834, 381006, 460458, 562902, 612138, 612150, 1316298, 1350582, 1509690, 3086790
OFFSET
0,1
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B6, pp. 92-95.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..3839 (terms 0..3568 from Robert G. Wilson v)
Christophe Clavier, Aliquot Sequences.
Paul Zimmermann, Latest information.
FORMULA
a(n+1) = A001065(a(n)). - R. J. Mathar, Oct 11 2017
MATHEMATICA
f[n_] := DivisorSigma[1, n] - n; NestList[f, 1134, 100] (* Robert G. Wilson v, Dec 22 2012 *)
PROG
(PARI) a(n, a=1134)={for(i=1, n, a=sigma(a)-a); a} \\ M. F. Hasler, Feb 25 2018
CROSSREFS
Cf. A098007 (length of aliquot sequences); some other examples: A008885 (starting at 30) .. A008892 (starting at 276), A014360 (starting at 552) .. A014364 (starting at 1074), see link to index for a more complete list.
Cf. A001065.
KEYWORD
nonn
STATUS
approved
Conjectured list of numbers whose aliquot sequence eventually reaches a cycle of length two or more.
+0
9
220, 284, 562, 1064, 1184, 1188, 1210, 1308, 1336, 1380, 1420, 1490, 1604, 1690, 1692, 1772, 1816, 1898, 2008, 2122, 2152, 2172, 2362, 2542, 2620, 2630, 2652, 2676, 2678, 2856, 2924, 2930, 2950, 2974, 3124, 3162, 3202, 3278, 3286, 3332, 3350, 3360
OFFSET
1,1
COMMENTS
For some numbers the outcome of the aliquot sequence is unknown. Currently, 276 is the least such.
KEYWORD
nonn
AUTHOR
Joshua Zucker, Aug 04 2006
EXTENSIONS
Edited by Don Reble, Aug 15 2006
STATUS
approved
Aliquot sequence starting at 150.
+0
7
150, 222, 234, 312, 528, 960, 2088, 3762, 5598, 6570, 10746, 13254, 13830, 19434, 20886, 21606, 25098, 26742, 26754, 40446, 63234, 77406, 110754, 171486, 253458, 295740, 647748, 1077612, 1467588, 1956812, 2109796, 1889486, 953914, 668966, 353578, 176792
OFFSET
0,1
COMMENTS
Start at 150, and repeatedly apply the map x -> Sum of divisors of x excluding x.
The sum-of-divisor function A000203 and aliquot parts A001065 are defined only for positive integers, so the trajectory ends when 0 is reached, here at index 14. - M. F. Hasler, Feb 24 2018
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B6.
FORMULA
a(n) = A008888(n+1). - R. J. Mathar, Oct 28 2008
MAPLE
f := proc(n) option remember; if n = 0 then 150; else sigma(f(n-1))-f(n-1); fi; end:
MATHEMATICA
FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, 150] // Most (* Jean-François Alcover, Mar 28 2020 *)
PROG
(PARI) a(n, a=150)={for(i=1, n, a=sigma(a)-a); a} \\ M. F. Hasler, Feb 24 2018
CROSSREFS
Cf. A008885 (starting at 30), ..., A008892 (starting at 276), A098007 (length of aliquot sequences).
KEYWORD
nonn,fini,full
STATUS
approved
Numbers conjectured to have an infinite, aperiodic, aliquot sequence.
+0
7
276, 306, 396, 552, 564, 660, 696, 780, 828, 888, 966, 996, 1074, 1086, 1098, 1104, 1134, 1218, 1302, 1314, 1320, 1338, 1350, 1356, 1392, 1398, 1410, 1464, 1476, 1488, 1512, 1560, 1572, 1578, 1590, 1632, 1650, 1662, 1674, 1722, 1734, 1758, 1770, 1806, 1836
OFFSET
1,1
COMMENTS
From Martin Renner, Oct 28 2011: (Start)
There are 12 numbers up to 1000 with the five yet unknown trajectories
(1) 276 ->
306 -> 396 -> 696 -> ...
(2) 552 -> 888 -> ...
(3) 564 -> 780 -> ...
(4) 660 ->
828 ->
996 -> 1356 -> ...
(5) 966 -> 1338 -> ...
The least starting numbers 276, 552, 564, 660 and 966 for the trajectories are called Lehmer five.
There are currently 81 open end trajectories up to 10000. (End)
Sequence A216072 lists only the values that are the lowest starting elements of open end aliquot sequences that are the part of different open-ending families. But this sequence lists all the starting values of an aliquot sequence that lead to open-ending. It includes all values obtained by iterating from the starting values of this sequence. - V. Raman, Dec 08 2012
MATHEMATICA
(* This script is not suitable for a large number of terms *) maxAliquot = 10^50; A131884 = {}; s[1] = 1; s[n_] := DivisorSigma[1, n] - n; selQ[n_ /; n <= 5] = True; selQ[n_] := NestWhile[s, n, If[{##}[[-1]] > maxAliquot, Print[n]; AppendTo[A131884, n]; False, Length[{##}] < 4 || {##}[[-4 ;; -3]] != {##}[[-2 ;; -1]]] &, All] == 1; selQ /@ Range[1000]; A131884 (* Jean-François Alcover, Sep 10 2015 *)
CROSSREFS
KEYWORD
hard,nonn
AUTHOR
J. Lowell, Oct 24 2007
EXTENSIONS
More terms and links from Martin Renner, Oct 28 2011
STATUS
approved
Aliquot sequence starting at 46758.
+0
6
46758, 46770, 65550, 113010, 158286, 191922, 205518, 205530, 375078, 443418, 449958, 497562, 574278, 574290, 972090, 1918278, 2574522, 3034458, 4479750, 8807706, 11409894, 13311582, 13311594, 16269846, 16509018, 16578438
OFFSET
0,1
COMMENTS
As of today, 3488 terms of the sequence sequence are known, cf. link to the factodb web site. - M. F. Hasler, Feb 25 2018
MATHEMATICA
FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, 46758, 100] (* Jean-François Alcover, Mar 28 2020 *)
PROG
(PARI) a(n, a=46758)={for(i=1, n, a=sigma(a)-a); a} \\ M. F. Hasler, Feb 24 2018
CROSSREFS
Cf. A098007 (length of aliquot sequences); some other examples: A008885 (starting at 30) .. A008892 (starting at 276), A014360 (starting at 552) .. A014365 (starting at 1134), see link to index entries for a more complete list.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 25 2010, based on a posting by Hans Havermann to the Math Fun Mailing List, Sep 16, 2010
EXTENSIONS
Erroneous comment replaced by M. F. Hasler, Mar 01 2018
STATUS
approved

Search completed in 0.016 seconds